Showing posts with label White Papers and Reports. Show all posts
Showing posts with label White Papers and Reports. Show all posts

Thursday, 3 September 2020

Two Types of SMS in 5G


GSMA recently published updated "5G Implementation Guidelines: SA Option 2". It explains the two types of SMS in 5G, the same way there were 2 types of SMS in LTE.

Within 5GC, SMS Function (SMSF) supports SMS over NAS (SMSoNAS) defined in 3GPP TS 23.501. Besides, SMSoIP can also be considered as IMS based SMS solution under 5G network. SMSoIP can be deployed simultaneously with voice service over IMS to provide both voice and short message service. It is recommended to use SMSoNAS solution if voice services over IMS is not supported or for a 5G data card/Machine Type Communications (MTC)/Non-IMS device without voice service. The network architecture of SMSoIP and SMSoNAS is shown in Figure.


Mpirical explains it in the video as embedded below:



Related  posts:

Wednesday, 12 August 2020

Telecom Services and Data Pricing

With the mobile technology gaining even more subscribers and smartphones becoming common, the telecom services pricing that includes voice, SMS and data is falling. Many operators are now including bundles with generous amounts to satisfy everyone. In many European countries, it is very common to have plans with unlimited everything. 

One of the reports that ITU releases is called "Measuring Digital Development: ICT Price Trends". The latest report for 2019 was released in May this year. The press release says:

On average, prices for mobile-voice, mobile-data and fixed-broadband services are decreasing steadily around the world, and in some countries even dramatically. The reduction in price relative to income is even more dramatic, suggesting that, globally, telecommunication and information and communication technology services are becoming more affordable. However, both trends do not translate into rapidly increasing Internet penetration rates which suggests that there are other barriers to Internet use, concludes ITU in its new statistical report, Measuring Digital Development: ICT Price Trends 2019.

The latest statistics from ITU confirm that affordability may not be the only barrier to Internet uptake, and that other factors such as: 

  • low level of education, 
  • lack of relevant content, 
  • lack of content in local languages, 
  • lack of digital skills, and a 
  • low-quality Internet connection may also prevent effective use. 


Key results​:

  • An entry-level mobile-voice basket remains broadly affordable in most countries. In 70 countries, a low-usage mobile-voice plan was available for less than 1 per cent of gross national income (GNI) per capita, and in a further 37 countries it stood below 2 per cent. Although causality is difficult to prove, price reductions have undoubtedly helped contribute to the rapid rise in the mobile-voice penetration rate, alongside growing competition and better price monitoring and evaluation by regulators.
  • The expansion of bundled services has further reduced prices, as combined data-and-voice baskets are generally less expensive than the sum of the two separate baskets in most markets.
  • Prices have decreased from 2013 to 2019 relative to GNI per capita The global average price of a mobile-data basket of 1.5 GB shrank from 8.4 per cent of GNI per capita in 2013 to 3.2 per cent in 2019, at a compound annual growth rate of almost -15 per cent. When expressed in USD, the global average price of a mobile-data basket of at least 1.5 GB dropped by 7 per cent on average annually between 2013 and 2019.
  • Good progress has been made towards the Broadband Commission for Sustainable Development's target of achieving affordable broadband costing 2-5 per cent of GNI per capita by 2025, but still more remains to be done. There are still nine developing countries and 31 LDCs that have yet to reach the 2 per cent target by 2025.
  • Fixed-broadband packages remain generally more expensive than mobile-data packages (although data allowances are not always directly comparable). Over the past four years, the affordability of fixed broadband has not changed substantially, but advertised download speeds continue to increase.

(click on the image to enlarge)

Some of the results are quite interesting as shown in the image above. The picture on top left shows the different types of packages. The report analyses price data for five key services based on the following five baskets:

  1. mobile-data-and-voice basket (i.e. voice, SMS and mobile data combined) – low consumption (70 minutes, 20 SMSs and 500 MB);
  2. mobile-data-and-voice basket – high consumption (140 minutes, 70 SMSs and 1.5 GB);
  3. mobile-voice (including voice and SMS);
  4. mobile-data;
  5. fixed-broadband.

Chart 1 shows Mobile data and voice baskets in USD for 2019. LDCs stands for Least Developed Countries

Chart 2 shows Mobile data and voice baskets in PPP$, where PPP stands for purchasing power parity. This is defined as basket of goods based comparison approach (see here)

Finally, chart 3 shows Mobile data and voice basket as a % of GNI p.c. GNI stands for gross national income. Expressing prices relative to GNI per capita (GNI p.c.), as a measure of affordability, reveals huge gaps between prices for different levels of development. In developed countries, the price of a low-consumption mobile-data-and-voice basket was equivalent to 1 per cent of GNI p.c. in 2019. In developing countries, this basket cost 7.5 per cent of GNI p.c., while in the LDCs this rose sharply to 17 per cent. For high-consumption mobile-data-and-voice baskets, the differences were even larger.

Source - Visual capitalist. Click link to see complete picture

Visual Capitalist has a nice summary of data prices for 1GB of Mobile data in different parts of the world. A striking trend worth noting is that four out of five of the most expensive countries (Malawi, Benin, Chad, Yemen & Botswana) for mobile data are in Sub-Saharan Africa (SSA).


Cable.co.uk have an interactive map here, that allows you to see prices in different parts of the world. As you would guess, the cheapest data prices in the world is in India.

Finally, eXtensia has a list of data costs in African countries from 2019 here, a lot has changed in the last year so you may have to check if the information you need is correct as of today.

Related Posts:

Tuesday, 19 May 2020

5G Dynamic Spectrum Sharing (DSS)

5G Dynamic Spectrum Sharing is a hot topic. I have already been asked about multiple people for links on good resources / whitepapers. So here is what we liked, feel free to add anything else you found useful as part of comments.


Nokia has a nice high level overview of this topic which is available here. I really liked the decision tree as shown in the tweet above. I am going to quote a section here that is a great summary to decide if you want to dive deeper.

DSS in the physical layer
DSS allows CSPs to share resources dynamically between 4G and 5G in time and/or frequency domains, as shown on the left of Figure 3. It’s a simple idea in principle, but we also need to consider the detailed structure at the level of the resource block in order to understand the resource allocations for the control channels and reference signals. A single resource block is shown on the right side of Figure 3.

The 5G physical layer is designed to be so similar to 4G in 3GPP that DSS becomes feasible with the same subcarrier spacing and similar time domain structure. DSS is designed to be backwards compatible with all existing LTE devices. CSPs therefore need to maintain LTE cell reference signal (CRS) transmission. 5G transmission is designed around LTE CRS in an approach called CRS rate matching.

5G uses demodulation reference signals (DMRS), which are only transmitted together with 5G data and so minimize any impact on LTE capacity. If all LTE devices support Transmission Mode 9 (TM9), then the shared carrier has lower overheads because less CRS transmission is required. The control channel transmission and the data transmission can be selected dynamically between LTE and 5G, depending on the instantaneous capacity requirements.


The second resource is this Rohde & Schwarz webinar here. As can be seen in the tweet above, it provides nice detailed explanation.

Finally, we have a Comprehensive Deployment Guide to Dynamic Spectrum Sharing for 5G NR and 4G LTE Coexistence, which is a nice and detailed whitepaper from Mediatek. Quoting a small section from the WP for anyone not wanting to go too much in deep:

The DSS concept is based on the flexible design of NR physical layer. It uses the idea that NR signals are transmitted over unused LTE resources. With LTE, all the channels are statically assigned in the time-frequency domain, whereas the NR physical layer is extremely flexible for reference signals, data and control channels, thus allowing dynamic configurations that will minimize a chance of collision between the two technologies. 

One of the main concepts of DSS is that only 5G users are made aware of it, while the functionalities of the existing LTE devices remain unaffected (i.e. LTE protocols in connected or idle mode). Therefore, fitting the flexible physical layer design of NR around that of LTE is needed in order to deploy DSS on a shared spectrum. This paper discusses the various options of DSS implementation, including deployment challenges, possible impacts to data rates, and areas of possible improvements.

NR offers a scalable and flexible physical layer design depicted by various numerologies. There are different subcarrier spacing (SCS) for data channels and synchronization channels based on the band assigned. This flexibility brings even more complexity because it overlays the NR signals over LTE, which requires very tight coordination between gNB and eNB in order to provide reliable synchronization in radio scheduling.

The main foundation of DSS is to schedule NR users in the LTE subframes while ensuring no respective impact on LTE users in terms of essential channels, such as reference signals used for synchronization and downlink measurements. LTE Cell Reference Signals (CRS) is typically the main concept where DSS options are designated, as CRS have a fixed time-frequency resource assignment. The CRS resources layout can vary depending on the number of antenna ports. More CRS antenna ports leads to increased usage of Resource Elements (REs). CRS generates from 4.76% (1 antenna port) up to 14.29% (4 antenna ports) overhead in LTE resources. As CRS is the channel used for downlink measurements, avoiding possible collision with CRS is one of the foundations of the DSS options shown in figure 1. The other aspect of DSS design is to fit the 5G NR reference signals within the subframes in a way to avoid affecting NR downlink measurements and synchronization. For that, DSS considers the options shown in figure 1 to ensure NR reference signals such as Synchronization Signal Block (SSB) or Demodulation Reference Signal (DMRS) are placed in time-frequencies away from any collision with LTE signals.

MBSFN, option 1 in figure 1, stands for Multi-Broadcast Single-Frequency Network and is used in LTE for point-to-multipoint transmission such as eMBMS (Evolved Multimedia Broadcast Multicast Services). The general idea of MBSFN is that specific subframes within an LTE frame reserve the last 12 OFDM symbols of such subframe to be free from other LTE channel transmission. These symbols were originally intended to be used for broadcast services and are “muted” for data transmission in other LTE UE. Now this idea has been adjusted for use in a DSS concept, so that these reserved symbols are used for NR signals instead of eMBMS. While in general LTE PDCCH can occupy from 1 to 3 symbols (based on cell load), the first two OFDM symbols of such MBSFN subframe are used for LTE PDCCH, and DSS NR UE can use the third symbol. Using MBSFN is completely transparent to legacy LTE-only devices from 3GPP Release 9 onwards, as such LTE UE knows that these subframes are used for other purposes. In this sense this is the simplest way of deploying DSS. This method has disadvantages though. The main one is that if MBSFN subframes are used very frequently and it takes away resources from LTE users, heavily reducing LTE-only user throughput. Note that option 1 shown in figure 1 does not require LTE MBSFN Reference Signals to be used, because the MBSFN subframe is used to mute the subframe for DSS operation only, and LTE CRS shall only be transmitted in the non-MBSFN region (within the first two symbols) of the MBSFN subframe.

The two other options illustrated in figure 1 are dealing with non-MBSFN subframes that contain LTE reference signals. Option 2 is ‘mini-slot’ based; mini-slot scheduling is available in NR for URLLC applications that require extremely low latency. The symbols can be placed anywhere inside the NR slot. In respect to DSS, mini-slot operation just eliminates the usage of the symbols that contain LTE CRS and schedule only free ones for NR transmission. The basic limitation of this method comes from the concept itself. It is not very suitable for eMBB applications as too many resources are outside of NR scheduling. However it still can be utilized in some special cases like 30 kHz SSB insertion which will be described later in this paper.

Option 3 is based on CRS rate matching in non-MBSFN subframes, and it is expected to be the one most commonly used for NR data channels. In this option, the UE performs puncturing of REs used by LTE CRS so that the NR scheduler knows which REs are not available for NR data scheduling on PDSCH (Physical Downlink Shared Channel). The implementation of this option can be either Resource Block (RB)-level when the whole RB containing LTE CRS is taken out of NR scheduling, or RE-level where NR PDSCH scheduling avoids particular REs only. The end result of this method is that the scheduler will reduce the NR PDSCH transport block size as the number of REs available for scheduling become less in a slot.


Personally, I am not a big fan of DSS mainly because I think it is only useful in a very few scenarios. Also, it helps operators show a 5G logo but doesn't provide a 5G experience by itself. Nevertheless, it can come in handy for the coverage layer of 5G.


In one of the LinkedIn discussions (that I try and avoid mostly) somebody shared this above picture of Keysight Nemo DSS lab test results. As you can see there is quite a bit of overhead with DSS.

Sunday, 26 January 2020

NTT Docomo's Vision on 5G Evolution and 6G


NTT Docomo released a whitepaper on 5G Evolution and 6G. In a press release they announced:

NTT DOCOMO has released a white paper on the topic of 6G, the sixth-generation mobile communications system that the company aims to launch on a commercial basis by 2030. It incorporates DOCOMO's views in the field of 5G evolution and 6G communications technology, areas that the company has been researching since 2018. The white paper summarizes the related technical concepts and the expected diverse use cases of evolving 5G and new 6G communication technologies, as well as the technology components and performance targets.

Mobile communication systems typically evolve into the next generation over a period of roughly ten years; DOCOMO commenced its research into the commercial launch of 5G in 2010. In 2018, the company conducted successful radio wave propagation experiments at frequencies of up to 150 GHz, levels which are expected to enable the much faster and larger-capacity communications that 6G will require.

DOCOMO will continue to enhance the ultra-high-speed, large-capacity, ultra-reliable, low-latency and massive device-connectivity capabilities of 5G technology. It will continue its research into and development of 5G evolution and 6G technology, aiming to realize technological advances including:

  • the achievement of a combination of advances in connectivity, including ultra-high speed, large capacity and low latency
  • the pioneering of new frequency bands, including terahertz frequencies
  • the expansion of communication coverage in the sky, at sea and in space
  • the provision of ultra-low-energy and ultra-low-cost communications
  • the ensuring of highly reliable communications
  • the capability of massive device-connectivity and sensing

Visitors to DOCOMO Open House 2020 will be able to view conceptual displays incorporating DOCOMO's vision of the evolution of 5G technologies into 6G. The event will take place in the Tokyo Big Sight exhibition complex in Tokyo on January 23 and 24. DOCOMO also plans to hold a panel session entitled "5G Evolution and 6G" on January 24.

Videos from Docomo Open House are embedded below, along with a previous talk by Takehiro Nakamura from 6G Summit.


6G has become a hot topic, especially after China announced back in November that they are working on 6G. We have some interesting tweets on 6G as well.

This one from Stefan Pongratz, Dell'Oro group shows the timeline for 5G, Pre-6G and 6G



This one provides a timeline all the way from Release 99 up till 21



Finally, here is a tweet highlighting the 6G research



Finally, the paper acknowledges the 5G challenges and focus areas for 5G evolution, before focusing on 6G.
The mmWave coverage and mobility needs improvement, while the downlink is able to provide very high data rates, the uplink is struggling to be better than 4G. Also, there are some very extreme requirements for industrial use cases, 5G has yet to prove that it can meet them.

Finally, here is another view from iDate Digiworld comparing 5G vs 6G in terms of performance, spectrum and network.



Related Posts:

Saturday, 16 June 2018

Summary and Analysis of Ericsson Mobility Report 2018

Ericsson Mobility reports always make a fantastic reading. Its been a while since I wrote anything on this topic so I thought lets summarize it and also provide my personal analysis. Please feel free to disagree as this is just a blog post.

Before we start, the official site for the report is here. You can jump directly to the PDF here. Ericsson will also be holding a webinar on this topic on 19 June, you can register here.

A short summary of some of the highlights are in the table above but lets look at more in detail.

Mobile subscriptions 



  • The total number of mobile subscriptions was around 7.9 billion in Q1 2018.
  • There are now 5.5 billion mobile broadband subscriptions.
  • Global subscription penetration in Q1 2018 was 104 percent.
  • The number of LTE subscriptions increased by 210 million during the quarter to reach a total of 2.9 billion.
  • Over the same period, GSM/EDGE-only subscriptions declined by 90 million. Other technologies declined by around 32 million.
  • Subscriptions associated with smartphones now account for around 60 percent of all mobile phone subscriptions.

Many things to note above. There is still a big part of the world which is unconnected and most of the connectivity being talked about is population based coverage. While GSM/EDGE-only subscriptions are declining, many smartphone users are still camped on to GSM/EDGE for significant time.

While smartphones are growing, feature phones are not far behind. Surprisingly, Reliance Jio has become a leader of 4G feature phones.

My analysis from the developing world shows that many users are getting a GSM feature phone as a backup for when smartphone runs out of power.


Mobile subscriptions worldwide outlook


  • 1 billion 5G subscriptions for enhanced mobile broadband by the end of 2023, accounting for 12 percent of all mobile subscriptions.
  • LTE subscriptions continues to grow strongly and is forecast to reach 5.5 billion by the end of 2023
  • In 2023, there will be 8.9 billion mobile subscriptions, 8.3 billion mobile broadband subscriptions and 6.1 billion unique mobile subscribers.
  • The number of smartphone subscriptions is forecast to reach 7.2 billion in 2023.

The report describes "A 5G subscription is counted as such when associated with a device that supports NR as specified in 3GPP Release 15, connected to a 5G-enabled network." which is a good approach but does not talk about 5G availability. My old question (tweet below) on "How many 5G sites does an operator have to deploy so that they can say they have 5G?" is still waiting for an answer.


5G device outlook



  • First 5G data-only devices are expected from the second half of 2018.
  • The first 3GPP smartphones supporting 5G are expected in early 2019.
  • From 2020, when third-generation chipsets will be introduced, large numbers of 5G devices are forecast.
  • By 2023, 1 billion 5G devices for enhanced mobile broadband are expected to be connected worldwide.

Qualcomm has made a good progress (video) on this front and there are already test modems available for 5G. I wont be surprised with the launch. It would remain to be seen what will be the price point and demand for these 5G data-only devices. The Register put it quite bluntly about guinea pigs here. I am also worried about the misleading 5G claims (see here).


Voice over LTE (VoLTE) outlook



  • At the end of 2017, VoLTE subscriptions exceeded 610 million.
  • The number of VoLTE subscriptions is projected to reach 5.4 billion by the end of 2023.
  • VoLTE technology will be the foundation for enabling 5G voice calls.
  • New use cases in a 5G context are being explored, such as augmented reality (AR) and virtual reality (VR).

Back in 2011, I suggested the following (tweet below)
Looks like things haven't changed significantly. There are still many low end devices that do not support VoLTE and many operators dont support VoLTE on BYOD. VoLTE has been much harder than everyone imagined it to be.


Mobile subscriptions worldwide by region



  • Globally, mobile broadband subscriptions now make up 68 percent of all mobile subscriptions.
  • 5G subscriptions will be available in all regions in 2023.
  • In 2023, 48 percent of subscriptions in North America and 34 percent in North East Asia are expected to be for 5G.

I think that for some regions these predictions may be a bit optimistic. Many operators are struggling with finance and revenue, especially as the pricing going down due to intense competition. It would be interesting to see how these numbers hold up next year.

While China has been added to North-East Asia, it may be a useful exercise to separate it. Similarly Middle East should be separated from Africa as the speed of change is going to be significantly different.


Mobile data Traffic Growth and Outlook

  • In Q1 2018, mobile data traffic grew around 54 percent year-on-year.
  • The quarter-on-quarter growth was around 11 percent.
  • In 2023, 20 percent of mobile data traffic will be carried by 5G networks.
  • North America has the highest monthly usage of mobile data per smartphone at 7.2 gigabytes (GB), anticipated to increase to 49GB in 2023.
  • Total mobile data traffic is expected to increase by nearly eight times by the end of 2023.
  • In 2023, 95 percent of total mobile data traffic is expected to be generated by smartphones, increasing from 85 percent today.
  • North East Asia has the largest share of mobile data traffic – set to reach 25EB per month in 2023.

This is one of the toughest areas of prediction as there are a large number of factors affecting this from pricing to devices and applications.

Quiz question: Do you remember which year did data traffic overtake voice traffic? Answer here (external link to avoid spoilers)


Mobile traffic by application category



  • In 2023, video will account for around 73 percent of mobile data traffic.
  • Traffic from social networking is also expected to rise – increasing by 31 percent annually over the next 6 years.
  • The relative share of social networking traffic will decline over the same period, due to the stronger growth of video.
  • Streaming videos in different resolutions can impact data traffic consumption to a high degree. Watching HD video (720p) rather than standard resolution video (480p) typically doubles the data traffic volume, while moving to full HD (1080p) doubles it yet again.
  • Increased streaming of immersive video formats would also impact data traffic consumption.

It would have been interesting if games were a separate category. Not sure if it has been lumped with Video/Audio or in Other segments.


IoT connections outlook


  • The number of cellular IoT connections is expected to reach 3.5 billion in 2023. This is almost double our last forecast, due to ongoing large-scale deployments in China.
  • Of the 3.5 billion cellular IoT connections forecast for 2023, North East Asia is anticipated to account for 2.2 billion.
  • New massive cellular IoT technologies, such as NB-IoT and Cat-M1, are taking off and driving growth in the number of cellular IoT connections.
  • Mobile operators have commercially launched more than 60 cellular IoT networks worldwide using Cat-M1 and NB-IoT.

It is important to look at the following 2 definitions though.

Short-range IoT: Segment that largely consists of devices connected by unlicensed radio technologies, with a typical range of up to 100 meters, such as Wi-Fi, Bluetooth and Zigbee. This category also includes devices connected over fixed-line local area networks and powerline technologies

Wide-area IoT: Segment consisting of devices using cellular connections, as well as unlicensed low-power technologies, such as Sigfox and LoRa

The Wide-area IoT in the table above includes cellular IoT. If you are a regular reader of this blog, you will know that I think LoRa has a bright future and my belief is that this report ignores some of the reasons behind the popularity of LoRa and its growth story. 


Network coverage

  • In 2023, more than 20 percent of the world’s population will be covered by 5G.
  • 5G is expected to be deployed first in dense urban areas to support enhanced mobile broadband.
  • Another early use case for 5G will be fixed wireless access.
  • Today, 3GPP cellular networks cover around 95 percent of the world’s population.

A lot of work needs to be done in this area to improve coverage in rural and remote locations.

I will leave this post at this point. The report also contains details on Network Evolution, Network Performance, Smart Manufacturing, etc. You can read it from the report.

Sunday, 27 August 2017

Bluetooth 5 for IoT


Bluetooth 5 (not 5.0 - to simplify marketing messages and communication) was released last year. The main features being 2x Faster, 4x Range (Bluetooth 4 - 50m outdoors, 10m Indoors; Bluetooth 5 - 200m outdoors, 40m indoors) & 8x Data.
I like this above slide by Robin Heydon, Qualcomm from a presentation he gave in CW (Cambridge Wireless) earlier this year. What is highlights is that Bluetooth 5 is Low Energy (LE) like its predecessor 4.0.For anyone interested, a good comparison of 5 vs 4.2 is available here.

In addition, Mesh support is now available for Bluetooth. I assume that this will work with Bluetooth 4.0 onwards but it would probably only make sense from Bluetooth 5 due to support for reasonable range.

The Bluetooth blog has a few posts on Mesh (see here, here and here). I like this simple introductory video below.


This recent article by Geoff Varral on RTT says the following (picture from another source):

Long distance Bluetooth can also be extended with the newly supported mesh protocol.

This brings Bluetooth into direct competition with a number of other radio systems including 802.15,4 based protocols such as Zigbee, LoRa, Wireless-M (for meter reading), Thread and 6 LowPAN (IPV6 over local area networks. 802.11 also has a mesh protocol and long distance ambitions including 802.11ah Wi-Fi in the 900 MHz ISM band. It also moves Bluetooth into the application space targeted by LTE NB IOT and LTE M though with range limitations.

There are some interesting design challenges implied by 5.0. The BLE specification is inherently less resilient to interference than Classic or EDR Bluetooth. This is because the legacy seventy eight X 1 MHz channels within the 20 MHz 2.4 GHz pass band are replaced with thirty nine two MHz channels with three fixed non hopping advertising channels in the middle and edge of the pass band.

These have to withstand high power 20 MHz LTE TDD in Band 40 (below the 2.4 GHz pass band) and high power 20 MHz LTE TDD in band 41 above the pass band (and Band 7 LTE FDD). This includes 26 dBm high power user equipment.

The coexistence of Bluetooth, Wi-Fi and LTE has been intensively studied and worked on for over ten years and is now managed with surprising effectiveness within a smart phone through a combination of optimised analogue and digital filtering (SAW and FBAR filters) and time domain interference mitigation based on a set of  industry standard wireless coexistence protocols.

The introduction of high power Bluetooth however implies that this is no longer just a colocation issue but potentially a close location issue. Even managing Bluetooth to Bluetooth coexistence becomes a non-trivial task when you consider that +20 dBm transmissions will be closely proximate to -20 dBm or whisper mode -30 dBm transmissions and RX sensitivity of -93 dBm, potentially a dynamic range of 120dB. Though Bluetooth is a TDD system this isolation requirement will be challenging and vulnerable to ISI distortion. 

More broadly there is a need to consider how ‘5G Bluetooth’ couples technically and commercially with 5G including 5G IOT

Ericsson has a whitepaper on Bluetooth Mesh Networking. The conclusion of that agrees that Bluetooth may become a relevant player in IoT:

Bluetooth mesh is a scalable, short-range IoT technology that provides flexible and robust performance. The Bluetooth Mesh Profile is an essential addition to the Bluetooth ecosystem that enhances the applicability of Bluetooth technology to a wide range of new IoT use cases. Considering the large Bluetooth footprint, it has the potential to be quickly adopted by the market. 

With proper deployment and configuration of relevant parameters of the protocol stack, Bluetooth mesh is able to support the operation of dense networks with thousands of devices. The building automation use case presented in this white paper shows that Bluetooth mesh can live up to high expectations and provide the necessary robustness and service ratio. Furthermore, the network design of Bluetooth mesh is flexible enough to handle the introduction of managed operations on top of flooding, to further optimize behavior and automate the relay selection process.


Moreover, another Ericsson article says that "smartphones with built-in Bluetooth support can be part of the mesh, may be used to configure devices and act as capillary gateways."

A capillary network is a LAN that uses short-range radio-access technologies to provide groups of devices with wide area connectivity. Capillary networks therefore extend the range of the wide area mobile networks to constraint devices. Figure above illustrates the Bluetooth capillary gateway concept.

Once there are enough smartphones and Bluetooth devices with Bluetooth 5 and Mesh support, It would be interesting to see how developers use it. Would also be interesting to see if it will start encroaching LoRa and Sigfox markets as well.

Sunday, 6 November 2016

LTE, 5G and V2X

3GPP has recently completed the Initial Cellular V2X standard. The following from the news item:

The initial Cellular Vehicle-to-Everything (V2X) standard, for inclusion in the Release 14, was completed last week - during the 3GPP RAN meeting in New Orleans. It focuses on Vehicle-to-Vehicle (V2V) communications, with further enhancements to support additional V2X operational scenarios to follow, in Release 14, targeting completion during March 2017.
The 3GPP Work Item Description can be found in RP-161894.
V2V communications are based on D2D communications defined as part of ProSe services in Release 12 and Release 13 of the specification. As part of ProSe services, a new D2D interface (designated as PC5, also known as sidelink at the physical layer) was introduced and now as part of the V2V WI it has been enhanced for vehicular use cases, specifically addressing high speed (up to 250Kph) and high density (thousands of nodes).

...


For distributed scheduling (a.k.a. Mode 4) a sensing with semi-persistent transmission based mechanism was introduced. V2V traffic from a device is mostly periodic in nature. This was utilized to sense congestion on a resource and estimate future congestion on that resource. Based on estimation resources were booked. This technique optimizes the use of the channel by enhancing resource separation between transmitters that are using overlapping resources.
The design is scalable for different bandwidths including 10 MHz bandwidth.
Based on these fundamental link and system level changes there are two high level deployment configurations currently defined, and illustrated in Figure 3.
Both configurations use a dedicated carrier for V2V communications, meaning the target band is only used for PC5 based V2V communications. Also in both cases GNSS is used for time synchronization.
In “Configuration 1” scheduling and interference management of V2V traffic is supported based on distributed algorithms (Mode 4) implemented between the vehicles. As mentioned earlier the distributed algorithm is based on sensing with semi-persistent transmission. Additionally, a new mechanism where resource allocation is dependent on geographical information is introduced. Such a mechanism counters near far effect arising due to in-band emissions.
In “Configuration 2” scheduling and interference management of V2V traffic is assisted by eNBs (a.k.a. Mode 3) via control signaling over the Uu interface. The eNodeB will assign the resources being used for V2V signaling in a dynamic manner.

5G Americas has also published a whitepaper on V2X Cellular Solutions. From the press release:

Vehicle-to-Everything (V2X) communications and solutions enable the exchange of information between vehicles and much more - people (V2P), such as bicyclists and pedestrians for alerts, vehicles (V2V) for collision avoidance, infrastructure (V2I) such as roadside devices for timing and prioritization, and the network (V2N) for real time traffic routing and other cloud travel services. The goal of V2X is to improve road safety, increase the efficiency of traffic, reduce environmental impacts and provide additional traveler information services. 5G Americas, the industry trade association and voice of 5G and LTE for the Americas, today announced the publication of a technical whitepaper titled V2X Cellular Solutions that details new connected car opportunities for the cellular and automotive industries.




The whitepaper describes the benefits that Cellular V2X (C-V2X) can provide to support the U.S. Department of Transportation objectives of improving safety and reducing vehicular crashes. Cellular V2X can also be instrumental in transforming the transportation experience by enhancing traveler and traffic information for societal goals.

C-V2X is part of the 3GPP specifications in Release 14. 3GPP announced the completion of the initial C-V2X standard in September 2016. There is a robust evolutionary roadmap for C-V2X towards 5G with a strong ecosystem in place. C-V2X will be a key technology enabler for the safer, more autonomous vehicle of the future.

The whitepaper is embedded below:




Related posts:
Further Reading:



Sunday, 16 October 2016

Inside 3GPP Release-13 - Whitepaper by 5G Americas


The following is from the 5G Americas press release:

The summary offers insight to the future of wireless broadband and how new requirements and technological goals will be achieved. The report updates Release 13 (Rel-13) features that are now completed at 3GPP and were not available at the time of the publication of a detailed 5G Americas report, Mobile Broadband Evolution Towards 5G: 3GPP Release 12 & Release 13 and Beyond in June 2015.
The 3GPP standards have many innovations remaining for LTE to create a foundation for 5G.  Rel-12, which was finalized in December 2014, contains a vast array of features for both LTE and HSPA+ that bring greater efficiency for networks and devices, as well as enable new applications and services. Many of the Rel-12 features were extended into Rel-13.  Rel-13, functionally frozen in December 2015 and completed in March 2016, continues to build on these technical capabilities while adding many robust new features.
Jim Seymour, Principal Engineer, Mobility CTO Group, Cisco and co-leader of the 5G Americas report explained, “3GPP Release 13 is just a peek behind the curtain for the unveiling of future innovations for LTE that will parallel the technical work at 3GPP on 5G. Both LTE and 5G will work together to form our connected future.”
The numerous features in the Rel-13 standards include the following for LTE-Advanced:
  • Active Antenna Systems (AAS), including beamforming, Multi-Input Multi-Output (MIMO) and Self-Organizing Network (SON) aspects
  • Enhanced signaling to support inter-site Coordinated Multi-Point Transmission and Reception (CoMP)
  • Carrier Aggregation (CA) enhancements to support up to 32 component carriers
  • Dual Connectivity (DC) enhancements to better support multi-vendor deployments with improved traffic steering
  • Improvements in Radio Access Network (RAN) sharing
  • Enhancements to Machine Type Communication (MTC)
  • Enhanced Proximity Services (ProSe)
Some of the standards work in Rel-13 related to spectrum efficiency include:                                                                                                                       
  • Licensed Assisted Access for LTE (LAA) in which LTE can be deployed in unlicensed spectrum
  • LTE Wireless Local Area Network (WLAN) Aggregation (LWA) where Wi-Fi can now be supported by a radio bearer and aggregated with an LTE radio bearer
  • Narrowband IoT (NB-IoT) where lower power wider coverage LTE carriers have been designed to support IoT applications
  • Downlink (DL) Multi-User Superposition Transmission (MUST) which is a new concept for transmitting more than one data layer to multiple users without time, frequency or spatial separation
“The vision for 5G is being clarified in each step of the 3GPP standards. To understand those steps, 5G Americas provides reports on the developments in this succinct, understandable format,” said Vicki Livingston, Head of Communications for the association.

The whitepaper as follows:



Related posts:

Wednesday, 10 August 2016

New whitepaper on Narrowband Internet of Things

Rohde & Schwarz has just published a new whitepaper on Narrowband Internet of Things (NB-IoT).

NB-IoT has been introduced as part of 3GPP Rel-13 where 3GPP has specified a new radio interface. NBIoT is optimized for machine type traffic and is kept as simple as possible in order to reduce device costs and to minimize battery consumption. In addition, it is also adapted to work in difficult radio conditions, which is a frequent operational area for certain machine type communication devices. Although NB-IoT is an independent radio interface, it is tightly connected with LTE, which also shows up in its integration in the current LTE specifications.
The paper contains the necessary technical details including the new channels, new frame and slot structure, new signalling messages including the system information messages, etc. It's a good read.

Its embedded below and can be downloaded from here:



Related posts:

Sunday, 29 May 2016

5G & 802.11ax


Samsung is one of the 5G pioneers who has been active in this area for quite a while, working in different technology areas but also making results and details available for others to appreciate and get an idea on what 5G is all about. 

I published a post back in 2014 from their trials going on then. Since then they have been improving on these results. They recently also published the 5G vision paper which is available here and here.



In the recent 5G Huddle, Raj Gawera from Samsung gave an excellent presentation (below) on the topic of "The future connected world". 



What we really liked is how closely 5G and 802.11ax can be considered aligned, not only in terms of requirements but also the roadmap.

Anyway, here is the presentation embedded below. Let me know what you think in the comments below.


Friday, 25 March 2016

State of LTE & Connectivity


There are some reports that have been recently published on connectivity and connection numbers. This post intends to provide this info.

Facebook released "State of connectivity 2015" report. As can be seen in the picture above, at the end of 2015, estimates showed that 3.2 billion people were online. This increase (up from 3 billion in 2014) is partly attributed to more affordable data and rising global incomes in 2014. Over the past 10 years, connectivity increased by approximately 200 to 300 million people per year.

While this is positive news in terms of growth, it also means that globally, 4.1 billion people were still not internet users in 2015.

The four key barriers to internet access include:

Availability: Proximity of the necessary infrastructure required for access.
Affordability: The cost of access relative to income.
Relevance: A reason for access, such as primary language content.
Readiness: The capacity to access, including skills, awareness and cultural acceptance.

The PDF version of report is available here.


The number of LTE users crossed 1 Billion, end of 2015 according to a report by GSA. OpenSignal has a summary blog post on this here.



Finally, Open Signal has published Global State of LTE Market report that provides coverage, speeds and a lot more information.

South Korea and Singapore have set themselves apart from the main body of global operators, providing both superior coverage and speed. The biggest standouts were South Korea’s Olleh and Singapore’s Singtel. Olleh excelled in coverage, but also provided one of the fastest connections speeds in our report, 34 Mbps. Meanwhile Singtel hit the 40 Mbps mark in speed while still maintaining a coverage rating of 86%. There are other notable country clusters in the upper right-hand quadrant as well, for instance operators from the Netherlands, Canada and Hungary.

Meanwhile, other countries have staked positions for themselves in specific regions of the plot. U.S. and Kuwaiti operators are tightly clustered in the lower right, meaning they offer excellent coverage but poor 4G speeds. Japan and Taiwan congregate in the middle far right with their exceptional coverage but only average speeds. Most of New Zealand and Romania’s operators hover at the center top of the chart, indicating impressive bandwidth but a general lack of availability.

Its makes interesting reading, PDF available here.

*** Added Later: 25/03/16:12.15 ***

A good breakdown of LTE subscriptions by countries by Ovum:



Saturday, 30 January 2016

SDN & NFV lecture

I have been meaning to add this interesting lecture delivered by Dr. Yaakov Stein of RAD at IETF.

The video, which cannot be embedded, is available here. If you cant wait to get into the main presentation, jump to 19.40 on the time bar at the bottom.

The slides from the presentation are embedded below.



Assuming that you understand NFV and SDN well, have a look at another interesting whitepaper that was published by Signals Research group, "Bending Iron – Software Defined Networks & Virtualization for the Mobile Operator", available here.

Saturday, 12 December 2015

LTE-Advanced Pro (a.k.a. 4.5G)

3GPP announced back in October that the next evolution of the 3GPP LTE standards will be known as LTE-Advanced Pro. I am sure this will be shortened to LTE-AP in presentations and discussions but should not be confused with access points.

The 3GPP press release mentioned the following:

LTE-Advanced Pro will allow mobile standards users to associate various new features – from the Release’s freeze in March 2016 – with a distinctive marker that evolves the LTE and LTE-Advanced technology series.

The new term is intended to mark the point in time where the LTE platform has been dramatically enhanced to address new markets as well as adding functionality to improve efficiency.

The major advances achieved with the completion of Release 13 include: MTC enhancements, public safety features – such as D2D and ProSe - small cell dual-connectivity and architecture, carrier aggregation enhancements, interworking with Wi-Fi, licensed assisted access (at 5 GHz), 3D/FD-MIMO, indoor positioning, single cell-point to multi-point and work on latency reduction. Many of these features were started in previous Releases, but will become mature in Release 13.

LTE-evolution timelinea 350pxAs well as sign-posting the achievements to date, the introduction of this new marker confirms the need for LTE enhancements to continue along their distinctive development track, in parallel to the future proposals for the 5G era.


Some vendors have been exploring ways of differentiating the advanced features of Release-13 and have been using the term 4.5G. While 3GPP does not officially support 4.5G (or even 4G) terminology, a new term has been welcomed by operators and vendors alike.

I blogged about Release-13 before, here, which includes a 3GPP presentation and 4G Americas whitepaper. Recently Nokia (Networks) released a short and sweet video and a whitepaper. Both are embedded below:



The Nokia whitepaper (table of contents below) can be downloaded from here.