Showing posts with label Logos. Show all posts
Showing posts with label Logos. Show all posts

Monday, 6 May 2024

6G and Other 3GPP Logos

The Project Coordination Group (PCG) of 3GPP recently approved a new logo for use on specifications for 6G, during their 52nd PCG meeting, hosted by ATIS in Reston, Virginia. As with previous logos, surely people in general will use them not just for 3GPP 6G compliant products, but for all kinds of things.

Over the years many people have reached out to me to ask for 3GPP logos, even though they are available publicly. All 3GPP logos, from 3G to 6G is available in the Marcoms directory here. In addition to the logo, each directory also lists guidance for use of the logos. For example, 3GPP does not allow the use of the logo as shown on the left in the image on top of the post while the one on the right is okay.

Surely there isn't an issue for general use but for anyone wishing to use the logos for their products, equipment, documentation or books, they will have to strictly comply with the rules.

Related Posts

Monday, 17 May 2021

3GPP RAN Plenary Update and Evolution towards 5G-Advanced

(click on image to enlarge)

ETSI recently held a webinar to provide a 3GPP RAN Plenary update by Wanshi Chen, Senior director of technology at Qualcomm Technologies, who was appointed as the RAN Chair not too long back. The webinar video is embedded below. The following is from the 3GPP summary of the webinar:

Wanshi Chen acknowledged that Release 17 - the third release of 5G specifications - has been under pressure due to COVID-19 restrictions, but despite making the move to e-meetings, he reported that the group’s experts have managed to ensure positive progress towards the freeze of the RAN1 physical layer specifications on schedule, by December 2021.

This is to be followed by the Stage 3 freeze (RAN2, RAN3 and RAN4) by March 2022 and the ASN.1 freeze and the performance specifications completion by September 2022 – On the timeline agreed back in December 2019.

This staggered timeline has been made achievable with careful planning and management, demonstrated to the webinar viewers via a complex planning schedule, with a slide showing the array of Plenary & WG meetings and Release landmarks - Interspersed with a series of planned periods of inactivity, to allow delegates some relief from 3GPP discussions.

Wanshi Chen noted that the efficiency of e-meetings has not been comparable with physical meetings, in terms of getting everything done. To compensate for that, the companies involved have planned two RAN1 meetings in 4Q21 and two meetings for each of the RAN working groups in the 1Q22. He observed: “We will monitor Release 17 RAN progress closely and take the necessary actions to make sure we can get the release completed on time.”

Release 18 Planning

Looking forward to Release 18 and the start of work on 5G-Advanced, Chen outlined the schedule for an online RAN workshop from June 28 – July 2, to define what will be in the release. The workshop will set the scene for email discussions about the endorsed topics for consideration. The work will culminate with Release 18 Package Approval, at the December 2021 Plenary (RAN#94).

The high-level objective of the workshop will be to gather company proposals in three areas:

  • eMBB driven work;
  • Non-eMBB driven functionality;
  • Cross-functionality for both.

Wanshi Chen concluded that during the Release 18 planning process, some capacity must be kept in hand; keeping around 10% of WG effort in reserve, for workload management and to meet late, emerging critical needs from commercial deployments.

The following Q&A topics were covered, along with the time stamps:

  • The effect of the pandemic and eMeeting management schedules and tools (19.25).
  • Balance between commercial needs and societal needs, emergency services, energy efficiency, sustainability (21.20).
  • The importance of the verticals in the second phase of 5G – With 5G-Advanced. How will this Rel-18 workshop compare in scale with the 5G Phoenix workshop in 2015? (23.00)
  • The job of the Chair is to be impartial…but Wanshi guesses that Antennas, MiMo enh., Sidelink, Positioning, xR, AI machine learning…. could come up in Rel-18! (26.15)
  • Will 5G-Advanced have a strong identity & support? (30.05)
  • The potential for hybrid meetings – No clear answers yet, but we have learnt a lot in the past year.(34.35)
  • The link between gathering new requirements and use cases in SA1 and RAN work and RAN1’s role in focusing these needs for radio work. (40.10)
  • Software-ization of the RAN. Do you see more open RAN work coming to 3GPP? (44.18)
  • Machine type communications and IoT – Where is IoT going in 3GPP RAN? (47.01)
  • Some thoughts on Spectrum usage from a 3GPP point of view, is that difficult to fathom for non-experts? (52.00)
  • Can Standards writing become more agile, less linear? (54.00)

If you want to get hold of the slides, you will have to register on BrightTALK here and then download from attachments.

Signals Research Group has a short summary of 3GPP RAN #91 electronic plenary held in late March. It is available to download after registration from here.

xoxoxoxoxoxo Updated later, 07 June 2021 oxoxoxoxoxoxox 

5G-Advanced logo is now available as shown above. Guidelines on how to use the logo is available on 3GPP here.

Related Posts:

Monday, 6 March 2017

IMT-2020 (5G) Requirements


ITU has just agreed on key 5G performance requirements for IMT-2020. A new draft report ITU-R M.[IMT-2020.TECH PERF REQ] is expected to be finally approved by  ITU-R Study Group 5 at its next meeting in November 2017. The press release says "5G mobile systems to provide lightning speed, ultra-reliable communications for broadband and IoT"


The following is from the ITU draft report:

The key minimum technical performance requirements defined in this document are for the purpose of consistent definition, specification, and evaluation of the candidate IMT-2020 radio interface technologies (RITs)/Set of radio interface technologies (SRIT) in conjunction with the development of ITU-R Recommendations and Reports, such as the detailed specifications of IMT-2020. The intent of these requirements is to ensure that IMT-2020 technologies are able to fulfil the objectives of IMT-2020 and to set a specific level of performance that each proposed RIT/SRIT needs to achieve in order to be considered by ITU-R for IMT-2020.


Peak data rate: Peak data rate is the maximum achievable data rate under ideal conditions (in bit/s), which is the received data bits assuming error-free conditions assignable to a single mobile station, when all assignable radio resources for the corresponding link direction are utilized (i.e., excluding radio resources that are used for physical layer synchronization, reference signals or pilots, guard bands and guard times). 

This requirement is defined for the purpose of evaluation in the eMBB usage scenario. 
The minimum requirements for peak data rate are as follows:
Downlink peak data rate is 20 Gbit/s.
Uplink peak data rate is 10 Gbit/s.


Peak spectral efficiency: Peak spectral efficiency is the maximum data rate under ideal conditions normalised by channel bandwidth (in bit/s/Hz), where the maximum data rate is the received data bits assuming error-free conditions assignable to a single mobile station, when all assignable radio resources for the corresponding link direction are utilized (i.e. excluding radio resources that are used for physical layer synchronization, reference signals or pilots, guard bands and guard times).

This requirement is defined for the purpose of evaluation in the eMBB usage scenario.
The minimum requirements for peak spectral efficiencies are as follows: 
Downlink peak spectral efficiency is 30 bit/s/Hz.
Uplink peak spectral efficiency is 15 bit/s/Hz.


User experienced data rate: User experienced data rate is the 5% point of the cumulative distribution function (CDF) of the user throughput. User throughput (during active time) is defined as the number of correctly received bits, i.e. the number of bits contained in the service data units (SDUs) delivered to Layer 3, over a certain period of time.

This requirement is defined for the purpose of evaluation in the related eMBB test environment.
The target values for the user experienced data rate are as follows in the Dense Urban – eMBB test environment: 
Downlink user experienced data rate is 100 Mbit/s
Uplink user experienced data rate is 50 Mbit/s


5th percentile user spectral efficiency: The 5th percentile user spectral efficiency is the 5% point of the CDF of the normalized user throughput. The normalized user throughput is defined as the number of correctly received bits, i.e., the number of bits contained in the SDUs delivered to Layer 3, over a certain period of time, divided by the channel bandwidth and is measured in bit/s/Hz. 

This requirement is defined for the purpose of evaluation in the eMBB usage scenario.
Indoor Hotspot – eMBB - Downlink: 0.3 bit/s/Hz Uplink: 0.21 bit/s/Hz
Dense Urban – eMBB - Downlink: 0.225 bit/s/Hz Uplink: 0.15 bit/s/Hz
Rural – eMBB - Downlink: 0.12 bit/s/Hz Uplink: 0.045 bit/s/Hz


Average spectral efficiency: Average spectral efficiency  is the aggregate throughput of all users (the number of correctly received bits, i.e. the number of bits contained in the SDUs delivered to Layer 3, over a certain period of time) divided by the channel bandwidth of a specific band divided by the number of TRxPs and is measured in bit/s/Hz/TRxP.

This requirement is defined for the purpose of evaluation in the eMBB usage scenario.
Indoor Hotspot – eMBB - Downlink: 9 bit/s/Hz/TRxP Uplink: 6.75 bit/s/Hz/TRxP
Dense Urban – eMBB - Downlink: 7.8 bit/s/Hz/TRxP Uplink: 5.4 bit/s/Hz/TRxP
Rural – eMBB - Downlink: 3.3 bit/s/Hz/TRxP Uplink: 1.6 bit/s/Hz/TRxP


Area traffic capacity: Area traffic capacity is the total traffic throughput served per geographic area (in Mbit/s/m2). The throughput is the number of correctly received bits, i.e. the number of bits contained in the SDUs delivered to Layer 3, over a certain period of time.

This requirement is defined for the purpose of evaluation in the related eMBB test environment.
The target value for Area traffic capacity in downlink is 10 Mbit/s/m2 in the Indoor Hotspot – eMBB test environment.


User plane latency: User plane latency is the contribution of the radio network to the time from when the source sends a packet to when the destination receives it (in ms). It is defined as the one-way time it takes to successfully deliver an application layer packet/message from the radio protocol layer 2/3 SDU ingress point to the radio protocol layer 2/3 SDU egress point of the radio interface in either uplink or downlink in the network for a given service in unloaded conditions, assuming the mobile station is in the active state. 
This requirement is defined for the purpose of evaluation in the eMBB and URLLC usage scenarios.
The minimum requirements for user plane latency are
4 ms for eMBB
1 ms for URLLC 
assuming unloaded conditions (i.e., a single user) for small IP packets (e.g., 0 byte payload + IP header), for both downlink and uplink.


Control plane latency: Control plane latency refers to the transition time from a most “battery efficient” state (e.g. Idle state) to the start of continuous data transfer (e.g. Active state).
This requirement is defined for the purpose of evaluation in the eMBB and URLLC usage scenarios.
The minimum requirement for control plane latency is 20 ms. Proponents are encouraged to consider lower control plane latency, e.g. 10 ms.


Connection density: Connection density is the total number of devices fulfilling a specific quality of service (QoS) per unit area (per km2).

This requirement is defined for the purpose of evaluation in the mMTC usage scenario.
The minimum requirement for connection density is 1 000 000 devices per km2.


Energy efficiency: Network energy efficiency is the capability of a RIT/SRIT to minimize the radio access network energy consumption in relation to the traffic capacity provided. Device energy efficiency is the capability of the RIT/SRIT to minimize the power consumed by the device modem in relation to the traffic characteristics. 
Energy efficiency of the network and the device can relate to the support for the following two aspects:
a) Efficient data transmission in a loaded case;
b) Low energy consumption when there is no data.
Efficient data transmission in a loaded case is demonstrated by the average spectral efficiency 

This requirement is defined for the purpose of evaluation in the eMBB usage scenario.
The RIT/SRIT shall have the capability to support a high sleep ratio and long sleep duration. Proponents are encouraged to describe other mechanisms of the RIT/SRIT that improve the support of energy efficient operation for both network and device.


Reliability: Reliability relates to the capability of transmitting a given amount of traffic within a predetermined time duration with high success probability

This requirement is defined for the purpose of evaluation in the URLLC usage scenario. 
The minimum requirement for the reliability is 1-10-5 success probability of transmitting a layer 2 PDU (protocol data unit) of 32 bytes within 1 ms in channel quality of coverage edge for the Urban Macro-URLLC test environment, assuming small application data (e.g. 20 bytes application data + protocol overhead). 
Proponents are encouraged to consider larger packet sizes, e.g. layer 2 PDU size of up to 100 bytes.


Mobility: Mobility is the maximum mobile station speed at which a defined QoS can be achieved (in km/h).

The following classes of mobility are defined:
Stationary: 0 km/h
Pedestrian: 0 km/h to 10 km/h
Vehicular: 10 km/h to 120 km/h
High speed vehicular: 120 km/h to 500 km/h

Mobility classes supported:
Indoor Hotspot – eMBB: Stationary, Pedestrian
Dense Urban – eMBB: Stationary, Pedestrian, Vehicular (up to 30 km/h)
Rural – eMBB: Pedestrian, Vehicular, High speed vehicular 


Mobility interruption time: Mobility interruption time is the shortest time duration supported by the system during which a user terminal cannot exchange user plane packets with any base station during transitions.

This requirement is defined for the purpose of evaluation in the eMBB and URLLC usage scenarios.
The minimum requirement for mobility interruption time is 0 ms.


Bandwidth: Bandwidth is the maximum aggregated system bandwidth. The bandwidth may be supported by single or multiple radio frequency (RF) carriers. The bandwidth capability of the RIT/SRIT is defined for the purpose of IMT-2020 evaluation.

The requirement for bandwidth is at least 100 MHz
The RIT/SRIT shall support bandwidths up to 1 GHz for operation in higher frequency bands (e.g. above 6 GHz). 

In case you missed, a 5G logo has also been released by 3GPP


Related posts:



Thursday, 23 October 2008

LTE and LTE-Advanced Official Logos now available




3GPP has finally decided to release the official logos and they will be using them extensively to promote LTE and LTE-Advanced. At the same time, the 3GPP website will be revamped and made to look a bit modern. This is the offical comment:

To establish the LTE term as a 3GPP brand, I have been working with the legal team to establish our claim to be the owner of the term.

In May 2008, the ETSI legal team submitted the term LTE as a trade mark, this will allow us to use the term and to be a guardian to ensure that it is not hi-jacked by external organisations. The process has now been completed for France, which allows us to extend trademark protection for “LTE” through an International Registration.

Two new logos have been created to promote the Technical Specifications and Reports for LTE and LTE-Advanced. The logos will be used to identify 3GPP deliverables that contain features that enable LTE or LTE-A.

The logos will also allow 3GPP to leverage its lead in LTE, by use of the logo on marketing material (Web sites, Brochures, Booths, etc.).

via: LTE watch.