Showing posts with label India. Show all posts
Showing posts with label India. Show all posts

Monday, 7 June 2021

TSDSI's Low Mobility Large Cell (LMLC) Requirements in 5G


Back in November 2020, ITU completed the evaluation for global affirmation of IMT-2020 technologies. Three new technologies were successfully evaluated by ITU and were found to conform with the International Mobile Telecommunications 2020 (IMT-2020) vision and stringent performance requirements. The technologies are: 3GPP 5G-SRIT and 3GPP 5G-RIT submitted by the Third Generation Partnership Project (3GPP), and 5Gi submitted by Telecommunications Standards Development Society India (TSDSI). 

I have explained in earlier videos that 5G-SRIT  and 5G-RIT corresponds to Non-Standalone and Standalone respectively. 5Gi on the other hand is an updated version of 5G-RIT designed mainly to improve rural coverage. 

TSDSI announced this as follows:

TSDSI’s 5G Radio Interface Technology named as “5Gi” has cleared the rigorous processes of  International Telecommunication Union (ITU) and has been approved by the SG5 of ITU as a part of Draft Recommendation M.[IMT-2020.SPECS] in its meeting held on 23rd November 2020.

5Gi, the first  ever Mobile Radio Interface Technology contribution from India to become part of ITU-R’s  IMT recommendation, went through a rigorous evaluation process of the ITU-R working groups over the past 3 years before getting the approval.

This standard is a major breakthrough for bridging the rural-urban digital divide in 5G deployment due to enhanced coverage. It enables connecting majority of India’s villages through towers located at gram panchayats in a cost effective manner. It has found support from several countries as it addresses their regional needs from a 5G standpoint.

The standard will now be circulated by ITU to member states for adoption and approval. Specifications are expected to be published by ITU in early February 2021.

TSDSI thanks its members, the Department of Telecommunications, Govt. of India and its partners for their support over the last four years in helping get this standard reach the final stage in ITU.

In a keynote address presented to the 2020 IEEE 5G World Forum plenary session, Radha Krishna Ganti from TSDSI discusses rural connectivity challenges in India, Low Mobility Large Cell requirements, benefits of implementing LMLC for rural coverage, and internet ecosystem updates. His talk is embedded as follows:

TSDSI explains their 5Gi technology as follows:

TSDSI standard fulfils the requirements of affordable connectivity in rural, remote and sparsely populated areas. Enhanced cell coverage enabled by this standard, will be of great value in countries and regions that rely heavily on mobile technologies for connectivity but cannot afford dense deployment of base stations due to lack of deep fibre penetration,  poor economics and challenges of geographical terrain. The International Telecommunication Union (ITU), a UN body that is setting requirements for IMT 2020 (aka 5G), had earlier adopted the Low-Mobility-Large-Cell (LMLC) use case proposed by TSDSI as a mandatory 5G requirement in 2017. This test case addresses the problem of rural coverage by mandating large cell sizes in a rural terrain and scattered areas in developing as well as developed countries. Several countries supported this as they saw a similar need in their jurisdictions as well. TSDSI successfully introduced an indigenously developed 5G candidate Radio Interface Technology, compatible with 3GPP Technology, at the International Telecommunications Union (ITU) in 2019 for IMT 2020 ratification. The RIT incorporates India-specific technology enhancements that can enable larger coverage for meeting the LMLC requirements. It exploits a new transmit waveform that increases cell range developed by research institutions in India (IIT Hyderabad, CEWiT and IIT Madras) and supported by several Indian companies. It enables low-cost rural coverage and has additional features which enable higher spectrum efficiency and improved latency.

While technically this sounds interesting and as discussed in the talk, would make sense due to a large market like India, there are other solutions that are already possible that probably may make this redundant.

As someone who worked with the rural communities to bring coverage in hard to reach areas, small cells and In-band backhaul was one such solution to improve coverage in not-spot areas. Examples of that here and here. Relays are other option that don't cost much but can bring coverage quickly, at a much lower price.

Typically, in practice, the cells easily reach 10km radius. In theory this distance can be as much as 100km. Last year, Australian operator Telstra and vendor Ericsson announced that they have successfully managed to increase the range of an LTE cell from 100 km to 200 km. So, we can already have large cells with existing 4G/5G cells. 

Facebook connectivity is working on SuperCell concept, a Wide-Area Coverage Solution for Increasing Mobile Connectivity in Rural Communities. Details here. NGMN published a paper on Extreme Long Range Communications for Deep Rural Coverage. Details here.

Finally, we also have 5G Integrated Access and Backhaul (IAB) that can be used for backhauling and solving backhaul issues. They will end up playing a role in rural areas as well as dense urban areas eventually.

Let me know what you think.

Related Posts:

Sunday, 20 September 2020

Reliance Jio and 5G Network Architecture Option 6


Last week I read about Jio looking at 5G Network Architecture Option 6. There were also a few discussions on Twitter with users sounding a bit confused. So here is my attempt to explain what is Option 6. Video and slides embedded below. 

You can also see this original video where Satish Jamadagni, Vice President - Network Planning Engineering, Head of Standards at Reliance Jio talks about the need for Option 6. 

Feel free to leave your thoughts in the comments below.

Related Posts:

Wednesday, 12 August 2020

Telecom Services and Data Pricing

With the mobile technology gaining even more subscribers and smartphones becoming common, the telecom services pricing that includes voice, SMS and data is falling. Many operators are now including bundles with generous amounts to satisfy everyone. In many European countries, it is very common to have plans with unlimited everything. 

One of the reports that ITU releases is called "Measuring Digital Development: ICT Price Trends". The latest report for 2019 was released in May this year. The press release says:

On average, prices for mobile-voice, mobile-data and fixed-broadband services are decreasing steadily around the world, and in some countries even dramatically. The reduction in price relative to income is even more dramatic, suggesting that, globally, telecommunication and information and communication technology services are becoming more affordable. However, both trends do not translate into rapidly increasing Internet penetration rates which suggests that there are other barriers to Internet use, concludes ITU in its new statistical report, Measuring Digital Development: ICT Price Trends 2019.

The latest statistics from ITU confirm that affordability may not be the only barrier to Internet uptake, and that other factors such as: 

  • low level of education, 
  • lack of relevant content, 
  • lack of content in local languages, 
  • lack of digital skills, and a 
  • low-quality Internet connection may also prevent effective use. 


Key results​:

  • An entry-level mobile-voice basket remains broadly affordable in most countries. In 70 countries, a low-usage mobile-voice plan was available for less than 1 per cent of gross national income (GNI) per capita, and in a further 37 countries it stood below 2 per cent. Although causality is difficult to prove, price reductions have undoubtedly helped contribute to the rapid rise in the mobile-voice penetration rate, alongside growing competition and better price monitoring and evaluation by regulators.
  • The expansion of bundled services has further reduced prices, as combined data-and-voice baskets are generally less expensive than the sum of the two separate baskets in most markets.
  • Prices have decreased from 2013 to 2019 relative to GNI per capita The global average price of a mobile-data basket of 1.5 GB shrank from 8.4 per cent of GNI per capita in 2013 to 3.2 per cent in 2019, at a compound annual growth rate of almost -15 per cent. When expressed in USD, the global average price of a mobile-data basket of at least 1.5 GB dropped by 7 per cent on average annually between 2013 and 2019.
  • Good progress has been made towards the Broadband Commission for Sustainable Development's target of achieving affordable broadband costing 2-5 per cent of GNI per capita by 2025, but still more remains to be done. There are still nine developing countries and 31 LDCs that have yet to reach the 2 per cent target by 2025.
  • Fixed-broadband packages remain generally more expensive than mobile-data packages (although data allowances are not always directly comparable). Over the past four years, the affordability of fixed broadband has not changed substantially, but advertised download speeds continue to increase.

(click on the image to enlarge)

Some of the results are quite interesting as shown in the image above. The picture on top left shows the different types of packages. The report analyses price data for five key services based on the following five baskets:

  1. mobile-data-and-voice basket (i.e. voice, SMS and mobile data combined) – low consumption (70 minutes, 20 SMSs and 500 MB);
  2. mobile-data-and-voice basket – high consumption (140 minutes, 70 SMSs and 1.5 GB);
  3. mobile-voice (including voice and SMS);
  4. mobile-data;
  5. fixed-broadband.

Chart 1 shows Mobile data and voice baskets in USD for 2019. LDCs stands for Least Developed Countries

Chart 2 shows Mobile data and voice baskets in PPP$, where PPP stands for purchasing power parity. This is defined as basket of goods based comparison approach (see here)

Finally, chart 3 shows Mobile data and voice basket as a % of GNI p.c. GNI stands for gross national income. Expressing prices relative to GNI per capita (GNI p.c.), as a measure of affordability, reveals huge gaps between prices for different levels of development. In developed countries, the price of a low-consumption mobile-data-and-voice basket was equivalent to 1 per cent of GNI p.c. in 2019. In developing countries, this basket cost 7.5 per cent of GNI p.c., while in the LDCs this rose sharply to 17 per cent. For high-consumption mobile-data-and-voice baskets, the differences were even larger.

Source - Visual capitalist. Click link to see complete picture

Visual Capitalist has a nice summary of data prices for 1GB of Mobile data in different parts of the world. A striking trend worth noting is that four out of five of the most expensive countries (Malawi, Benin, Chad, Yemen & Botswana) for mobile data are in Sub-Saharan Africa (SSA).


Cable.co.uk have an interactive map here, that allows you to see prices in different parts of the world. As you would guess, the cheapest data prices in the world is in India.

Finally, eXtensia has a list of data costs in African countries from 2019 here, a lot has changed in the last year so you may have to check if the information you need is correct as of today.

Related Posts:

Tuesday, 26 May 2020

The Journey from Communications Service Provider (CSP) to Digital Service Provider (DSP)

Reliance Jio has recently been called as India's first digital service provider (DSP), but what exactly is a DSP and how does an existing mobile network transform from the traditional communications service provider (CSP) to a DSP?

Service Providers are also known as Telecommunications Service Provider (TSP) or Communications Service Provider (CSP). Basically, they refer to someone who provides services.

Mobile Network Operators (MNOs) are also referred to as Mobile Service Providers (MSPs) or Wireless Service Providers (WSPs). Even though CSP is a generic term, it generally always refers to MSP.

The term “Digital Service Provider" applies to any company that distributes media online. In the case of telcos, it's an organization that has moved on from offering core, traditional telecom services, to providing mobile broadband access, services, content and apps, all sold directly from the device.

Analysys Mason provides this simple equation to explain how a CSP can transform into DSP


Another way of representing this is to compare CSP & DSP as shown in the table below

We made a tutorial on this topic, the slides and video is embedded below. If you want to jump directly to the DSP part, move to 2:35 in the video.





Finally, another term that gets thrown around often confuses people is Telco & Netco


Telco stands for Telecommunications Company, which basically means Mobile Network Operator.

NetCo or Network cooperation is the practice of a Mobile Network Operator (MNO) sharing part of its Radio Access Network (RAN) with another MNO.

There are other terms like Towerco & Infraco that probably deserve their own post.


Related Posts:



Saturday, 16 June 2018

Summary and Analysis of Ericsson Mobility Report 2018

Ericsson Mobility reports always make a fantastic reading. Its been a while since I wrote anything on this topic so I thought lets summarize it and also provide my personal analysis. Please feel free to disagree as this is just a blog post.

Before we start, the official site for the report is here. You can jump directly to the PDF here. Ericsson will also be holding a webinar on this topic on 19 June, you can register here.

A short summary of some of the highlights are in the table above but lets look at more in detail.

Mobile subscriptions 



  • The total number of mobile subscriptions was around 7.9 billion in Q1 2018.
  • There are now 5.5 billion mobile broadband subscriptions.
  • Global subscription penetration in Q1 2018 was 104 percent.
  • The number of LTE subscriptions increased by 210 million during the quarter to reach a total of 2.9 billion.
  • Over the same period, GSM/EDGE-only subscriptions declined by 90 million. Other technologies declined by around 32 million.
  • Subscriptions associated with smartphones now account for around 60 percent of all mobile phone subscriptions.

Many things to note above. There is still a big part of the world which is unconnected and most of the connectivity being talked about is population based coverage. While GSM/EDGE-only subscriptions are declining, many smartphone users are still camped on to GSM/EDGE for significant time.

While smartphones are growing, feature phones are not far behind. Surprisingly, Reliance Jio has become a leader of 4G feature phones.

My analysis from the developing world shows that many users are getting a GSM feature phone as a backup for when smartphone runs out of power.


Mobile subscriptions worldwide outlook


  • 1 billion 5G subscriptions for enhanced mobile broadband by the end of 2023, accounting for 12 percent of all mobile subscriptions.
  • LTE subscriptions continues to grow strongly and is forecast to reach 5.5 billion by the end of 2023
  • In 2023, there will be 8.9 billion mobile subscriptions, 8.3 billion mobile broadband subscriptions and 6.1 billion unique mobile subscribers.
  • The number of smartphone subscriptions is forecast to reach 7.2 billion in 2023.

The report describes "A 5G subscription is counted as such when associated with a device that supports NR as specified in 3GPP Release 15, connected to a 5G-enabled network." which is a good approach but does not talk about 5G availability. My old question (tweet below) on "How many 5G sites does an operator have to deploy so that they can say they have 5G?" is still waiting for an answer.


5G device outlook



  • First 5G data-only devices are expected from the second half of 2018.
  • The first 3GPP smartphones supporting 5G are expected in early 2019.
  • From 2020, when third-generation chipsets will be introduced, large numbers of 5G devices are forecast.
  • By 2023, 1 billion 5G devices for enhanced mobile broadband are expected to be connected worldwide.

Qualcomm has made a good progress (video) on this front and there are already test modems available for 5G. I wont be surprised with the launch. It would remain to be seen what will be the price point and demand for these 5G data-only devices. The Register put it quite bluntly about guinea pigs here. I am also worried about the misleading 5G claims (see here).


Voice over LTE (VoLTE) outlook



  • At the end of 2017, VoLTE subscriptions exceeded 610 million.
  • The number of VoLTE subscriptions is projected to reach 5.4 billion by the end of 2023.
  • VoLTE technology will be the foundation for enabling 5G voice calls.
  • New use cases in a 5G context are being explored, such as augmented reality (AR) and virtual reality (VR).

Back in 2011, I suggested the following (tweet below)
Looks like things haven't changed significantly. There are still many low end devices that do not support VoLTE and many operators dont support VoLTE on BYOD. VoLTE has been much harder than everyone imagined it to be.


Mobile subscriptions worldwide by region



  • Globally, mobile broadband subscriptions now make up 68 percent of all mobile subscriptions.
  • 5G subscriptions will be available in all regions in 2023.
  • In 2023, 48 percent of subscriptions in North America and 34 percent in North East Asia are expected to be for 5G.

I think that for some regions these predictions may be a bit optimistic. Many operators are struggling with finance and revenue, especially as the pricing going down due to intense competition. It would be interesting to see how these numbers hold up next year.

While China has been added to North-East Asia, it may be a useful exercise to separate it. Similarly Middle East should be separated from Africa as the speed of change is going to be significantly different.


Mobile data Traffic Growth and Outlook

  • In Q1 2018, mobile data traffic grew around 54 percent year-on-year.
  • The quarter-on-quarter growth was around 11 percent.
  • In 2023, 20 percent of mobile data traffic will be carried by 5G networks.
  • North America has the highest monthly usage of mobile data per smartphone at 7.2 gigabytes (GB), anticipated to increase to 49GB in 2023.
  • Total mobile data traffic is expected to increase by nearly eight times by the end of 2023.
  • In 2023, 95 percent of total mobile data traffic is expected to be generated by smartphones, increasing from 85 percent today.
  • North East Asia has the largest share of mobile data traffic – set to reach 25EB per month in 2023.

This is one of the toughest areas of prediction as there are a large number of factors affecting this from pricing to devices and applications.

Quiz question: Do you remember which year did data traffic overtake voice traffic? Answer here (external link to avoid spoilers)


Mobile traffic by application category



  • In 2023, video will account for around 73 percent of mobile data traffic.
  • Traffic from social networking is also expected to rise – increasing by 31 percent annually over the next 6 years.
  • The relative share of social networking traffic will decline over the same period, due to the stronger growth of video.
  • Streaming videos in different resolutions can impact data traffic consumption to a high degree. Watching HD video (720p) rather than standard resolution video (480p) typically doubles the data traffic volume, while moving to full HD (1080p) doubles it yet again.
  • Increased streaming of immersive video formats would also impact data traffic consumption.

It would have been interesting if games were a separate category. Not sure if it has been lumped with Video/Audio or in Other segments.


IoT connections outlook


  • The number of cellular IoT connections is expected to reach 3.5 billion in 2023. This is almost double our last forecast, due to ongoing large-scale deployments in China.
  • Of the 3.5 billion cellular IoT connections forecast for 2023, North East Asia is anticipated to account for 2.2 billion.
  • New massive cellular IoT technologies, such as NB-IoT and Cat-M1, are taking off and driving growth in the number of cellular IoT connections.
  • Mobile operators have commercially launched more than 60 cellular IoT networks worldwide using Cat-M1 and NB-IoT.

It is important to look at the following 2 definitions though.

Short-range IoT: Segment that largely consists of devices connected by unlicensed radio technologies, with a typical range of up to 100 meters, such as Wi-Fi, Bluetooth and Zigbee. This category also includes devices connected over fixed-line local area networks and powerline technologies

Wide-area IoT: Segment consisting of devices using cellular connections, as well as unlicensed low-power technologies, such as Sigfox and LoRa

The Wide-area IoT in the table above includes cellular IoT. If you are a regular reader of this blog, you will know that I think LoRa has a bright future and my belief is that this report ignores some of the reasons behind the popularity of LoRa and its growth story. 


Network coverage

  • In 2023, more than 20 percent of the world’s population will be covered by 5G.
  • 5G is expected to be deployed first in dense urban areas to support enhanced mobile broadband.
  • Another early use case for 5G will be fixed wireless access.
  • Today, 3GPP cellular networks cover around 95 percent of the world’s population.

A lot of work needs to be done in this area to improve coverage in rural and remote locations.

I will leave this post at this point. The report also contains details on Network Evolution, Network Performance, Smart Manufacturing, etc. You can read it from the report.

Thursday, 10 August 2017

Mobile can help with United Nations SDGs, only if prices go down

I came across this interesting article in WSJ, courtesy of the Benedict Evans newsletter, which discusses how Indians are using their smartphones even more and consuming far more data than they previously did. Due to low incomes, spending money on mobile top-up is to the detriment of other sectors. To quote the article:
“There was a time when kids would come here and blow their pocket money on chips and chocolate,” said Anup Kapoor, who runs a mom-and-pop grocery shop in New Delhi. These days, “they spend every last rupee on a data recharge instead.”

United Nations have created 17 very ambitious Sustainable Development Goals (SDGs) that universally apply to all, countries will mobilize efforts to end all forms of poverty, fight inequalities and tackle climate change, while ensuring that no one is left behind.
The SDGs, also known as Global Goals, build on the success of the Millennium Development Goals (MDGs) and aim to go further to end all forms of poverty. The new Goals are unique in that they call for action by all countries, poor, rich and middle-income to promote prosperity while protecting the planet. They recognize that ending poverty must go hand-in-hand with strategies that build economic growth and addresses a range of social needs including education, health, social protection, and job opportunities, while tackling climate change and environmental protection.
I have talked about Rural connectivity on this blog and a lot more on small cells blog. In fact the heart touching end user story from Rural England was shared multiple times on different platforms. GSMA has done a good amount of work with the rural communities with their mobile for development team and have some interesting videos showing positive impacts of bringing connectivity to rural communities in Tanzania (see here and here).

While you will always hear about the challenges in bringing connectivity to these rural communities, all technological challenges can be solved. There are many highly ambitious projects using balloons, drones, creating droneways, Helikites, Satellite backhaul, drone based backhaul, mmWave backhaul, etc. The real problem to solve here are the costs (spectrum, infrastructure, etc.) and the end-user pricing.

Coming back to the first story of this post about India, when given an option about selecting mobile data or shampoo, people will probably choose mobile data. What about mobile data vs food? While there are some innovative young companies that can help bring the costs down, there is still a big hurdle to leap in terms of convincing the operators mindsets, bureaucracy, etc.

To help explain my point lets look at an excerpt from this article in Wired:
It’s the kind of problem that Vanu Bose, the founder of the small cell network provider CoverageCo, has been trying to solve with a new, ultra-energy-efficient mobile technology. Bose chose two places to pilot this tech: Vermont and Rwanda. “We picked these two locations because we knew they would be challenging in terrain and population density,” he says. “What we didn’t expect was that many of the problems were the same in Rwanda and Vermont—and in fact the rollout has been much easier in Africa.
The good news is that things are changing. Parallel Wireless (see disclosure at the bottom) is one such company trying to simplify network deployment and at the same time bring the costs down. In a recent deployment with Ice Wireless in Canada, this was one of the benefit to the operator. To quote from MobileSyrup:
A radio access network is one of the key components in the architecture of any wireless network. RANs sit between consumer-facing devices like smartphones and computers and the core network, helping connect those devices to the larger network.  
Essentially where the likes of Nokia and Huawei ask clients to buy an expensive hardware component for their RAN needs, Parallel Wireless offers allows companies like Ice Wireless to use off-the-shelf computer and server components to emulate a RAN. The company also sells wireless base stations like the two pictured above that are smaller than the average cell tower one sees in cities and less remote parts of the country.  
Besides reducing the overall price of a network deployment, Parallel’s components present several other advantages for a company like Ice Wireless.  
For instance, small base stations make it easier for the company to build redundancies into its network, something that’s especially important when a single arctic snowstorm can knock out wireless service for thousands of people.
These kind of benefits allow operators to pass on the cost reduction thereby allowing the price reduction for end users. In case of Ice Wireless, they have already got rid of roaming charges and have started offering unlimited data plans for the communities in Canada's North.

Finally, to quote David Nabarro, Special Adviser of the United Nations Secretary-General on the 2030 Agenda for Sustainable Development from the GSMA 2016 Mobile Industry Impact Report: Sustainable Development Goals:
Achieving the SDGs demands new technologies, innovations, and data collection that can integrate and complement traditional statistics. A driving force behind this data revolution is mobile technology. 
Mobile phone technology has already transformed societies around the globe, even the poorest countries and communities. It is helping to empower women, create jobs, spur financial independence, improve education, boost agriculture production, and promote better health. Mobile phones have enabled communities to monitor elections, hold governments accountable, and save lives in natural disasters. 
As we focus on implementing the Sustainable Development Goals, the mobile industry has a critical role in working with governments and the international community to expand connectivity, to lower barriers to access, and to ensure that tools and applications are developed with vulnerable communities in mind. 

With 5G just round the corner, I hope that the operators and vendors will be able to get their costs down, resulting in lower end-user prices. That would be a win-win for everyone.

*Full Disclosure: I work for Parallel Wireless as a Senior Director, Strategic Marketing. This blog is maintained in my personal capacity and expresses my own views, not the views of my employer or anyone else. Anyone who knows me well would know this.

Monday, 19 June 2017

Network Sharing is becoming more relevant with 5G

5G is becoming a case of 'damned if you do damned if you don't'. Behind the headlines of new achievements and faster speeds lies the reality that many operators are struggling to keep afloat. Indian and Nigerian operators are struggling with heavy debt and it wont be a surprise if some of the operators fold in due course.

With increasing costs and decreasing revenues, its no surprise that operators are looking at ways of keeping costs down. Some operators are postponing their 5G plans in favour of Gigabit LTE. Other die hard operators are pushing ahead with 5G but looking at ways to keep the costs down. In Japan for example, NTT DOCOMO has suggested sharing 5G base stations with its two rivals to trim costs, particularly focusing efforts in urban areas.


In this post, I am looking to summarise an old but brilliant post by Dr. Kim Larsen here. While it is a very well written and in-depth post, I have a feeling that many readers may not have the patience to go through all of it. All pictures in this post are from the original post by Dr. Kim Larsen.


Before embarking on any Network sharing mission, its worthwhile asking the 5W's (Who, Why, What, Where, When) and 2H's (How, How much).

  • Why do you want to share?
  • Who to share with? (your equal, your better or your worse).
  • What to share? (sites, passives, active, frequencies, new sites, old sites, towers, rooftops, organization, ,…).
  • Where to share? (rural, sub-urban, urban, regional, all, etc..).
  • When is a good time to start sharing? During rollout phase, steady phase or modernisation phase. See picture below. For 5G, it would make much more sense that network sharing is done from the beginning, i.e., Rollout Phase


  • How to do sharing?. This may sound like a simple question but it should take account of regulatory complexity in a country. The picture below explains this well:



  • How much will it cost and how much savings can be attained in the long term? This is in-fact a very important question because the end result after a lot of hard work and laying off many people may result in an insignificant amount of cost savings. Dr. Kim provides detailed insight on this topic that I find it difficult to summarise. Best option is to read it on his blog.


An alternative approach to network sharing is national roaming. Many European operators are dead against national roaming as this means the network loses its differentiation compared to rival operators. Having said that, its always worthwhile working out the savings and seeing if this can actually help.

National Roaming can be attractive for relative low traffic scenarios or in case were product of traffic units and national roaming unit cost remains manageable and lower than the Shared Network Cost.

The termination cost or restructuring cost, including write-off of existing telecom assets (i.e., radio nodes, passive site solutions, transmission, aggregation nodes, etc….) is likely to be a substantially financial burden to National Roaming Business Case in an area with existing telecom infrastructure. Certainly above and beyond that of a Network Sharing scenario where assets are being re-used and restructuring cost might be partially shared between the sharing partners.

Obviously, if National Roaming is established in an area that has no network coverage, restructuring and termination cost is not an issue and Network TCO will clearly be avoided, Albeit the above economical logic and P&L trade-offs on cost still applies.

If this has been useful to understand some of the basics of network sharing, I encourage you to read the original blog post as that contains many more details.

Futher Reading:



Thursday, 1 June 2017

Smartphones, Internet Trends, etc

Every few years I add Mary Meeker's Internet Trends slides on the blog. Interested people can refer to 2011 and  2014 slide pack to see how world has changed.


One of the initial slide highlights that the number of smartphones are reached nearly 3 billion by end of 2016. If we looked at this excellent recent post by Tomi Ahonen, there were 3.2 billion smartphones at the end of Q1 2017. Here is a bit of extract from that.

SMARTPHONE INSTALLED BASE AT END OF MARCH 2017 BY OPERATING SYSTEM

Rank . OS Platform . . . . Units . . . . Market share  Was Q4 2016
1 . . . . All Android . . . . . . . . . . . . 2,584 M . . . 81 % . . . . . . ( 79 %)  
a . . . . . . Pure Android/Play . . . . 1,757 M . . . 55%
b . . . . . . Forked Anroid/AOSP . . . 827 M . . . 26%
2 . . . . iOS  . . . . . . . . . . . . . . . . . . 603 M . . . 19 % . . . . . . ( 19 %) 
Others . . . . . . . . . . . . . . . . . . . . . . 24 M  . . . . 1 % . . . . . . (   1 %)
TOTAL Installed Base . 3,211 M smartphones (ie 3.2 Billion) in use at end of Q1, 2017

Source: TomiAhonen Consulting Analysis 25 May 2017, based on manufacturer and industry data


BIGGEST SMARTPHONE MANUFACTURERS BY UNIT SALES IN Q1 2017

Rank . . . Manufacturer . Units . . . Market Share . Was Q4 2016 
1 (2) . . . Samsung . . . .  79.4 M . . 22.7% . . . . . . . ( 17.9% ) 
2 (1) . . . Apple  . . . . . . . 50.8 M . . 14.5% . . . . . . . ( 18.0% ) 
3 (3) . . . Huawei  . . . . . . 34.6 M . . . 9.9% . . . . . . . (10.4% ) 
4 (4) . . . Oppo . . . . . . . . 28.0 M . . . 8.0% . . . . . . . (   7.1% ) 
5 (5) . . . Vivo . . . . . . . . . 22.0 M . . . 6.3% . . . . . . . (   5.6% ) 
6 (9) . . . LG  . . . . . . . .  . 14.8 M . . . 4.2% . . . . . . . (   3.3% ) 
7 (7) . . . Lenovo .  . . . . . 13.2 M . . . 3.8% . . . . . . . (   3.8% )
8 (8) . . . Gionee . . . . . . . .9.6 M . . . 2.7% . . . . . . .  (   3.5% )
9 (6) . . . ZTE  . . . . . . . . . 9.2 M . . . 2.6% . . . . . . . (   5.2% ) 
10 (10) . TCL/Alcatel . . .  8.7 M . . . 2.5% . . . . . . . (  2.4% ) 
Others . . . . . . . . . . . . . . 80.2 MTOTAL . . . . . . . . . . . . . 350.4 M

Source: TomiAhonen Consulting Analysis 25 May 2017, based on manufacturer and industry data


This year, the number of slides have gone up to 355 and there are some interesting sections like China Internet, India Internet, Healthcare, Interactive games, etc. The presentation is embedded below and can be downloaded from slideshare



Monday, 13 January 2014

My observations on Mobiles and OTT Apps in India

What a change 2 years can make. The last time I was in India, people were reluctant to use data, smartphones were far and few and even those smartphones were just status symbols rather than for actual 'smart' use.


This time a lot of things were very different. I found that there was a Phablet craze going on. No sooner were people starting to get used to these big screen devices they realised how many things they could do. The well to do were buying Samsung devices and the people who did not want to spend big bucks were content with the little known brands.


The Domo phablet on the left in the picture above costs around 8000 (£80/$130) and the Maxx on the right is roughly ₹5500 (£55/$90). Both these come with 1 year warranty.


There were also quite a few ads using celebrities promoting Phablets. Its good to see people spending on these devices. Unlike UK where most of these devices are subsidised on a contract, people in India prefer pre-paid option and buying the phone outright.


I have to admit that even though I am a fan of these big screen devices, I find the Samsung Galaxy Tab just a bit too big for the use as a phone (see pic above).

It was also good to see that people have embraced the 3G data usage as well. I got a 6GB package for roughly 1000 (£10/$16). I found that people complained about the speeds and were prepared to pay more for 4G (faster data rates). I also noticed that a few people were not aware of Wi-Fi and the fixed broadband. I was told that the fixed broadband was capped, offered similar prices and could be quite unreliable. I guess Wireless is helping in India where the fixed Infrastructure may still be an issue in many places.

I have to mention here that I did not meet anyone who was using an iPhone. This could be due to iPhone being ridiculously expensive and people may be thinking why pay a high price for such a small screen. A comparison of iPhone prices worldwide showed that the price of iPhone 5S as % of GDP per capita (PPP) is the highest in India. See here.


Another area of observation was SMS and OTT apps. I remember spending a lot of time trying to convince people to use OTT apps for messaging as it would be cheaper for International messages. Well, now it seems everyone has adopted it whole heartedly. One of the problems with SMS in India is that you get too much Spam SMS and sometimes the operators are the culprits. There is no way to send a stop for these SMS messages. With OTT Apps, you know who is sending you messages and you can block the offenders.

There are many OTT Apps which are popular like Hike, Line, WeChat, WhatsApp, etc. The winner though is undoubtedly WhatsApp. I met an acquaintance whose has stopped using emails for business and now relies completely on WhatsApp. Then there were others who loved it because of Group chat facility.

There were many reasons why WhatsApp is a winner. Along with a simple interface and Group chat facility, one of the other reasons pointed out was that the facility to see when the person was last online was very useful. Recently WhatsApp introduced facility to send Voice messages. This helped it acquire some of the WeChat users.

It was good to see the beginnings of the mobile revolution in India. Wonder what my next trip will show me.

Please note that this article is based on what I observed in Mumbai among friends and family. In no way should this be treated as  detailed research.

Sunday, 19 May 2013

Is the Global Mobile Roaming model broken?

Yesterday, I noticed some heavyweights discussing roaming prices on Twitter. It is embedded below using the new Twitter embed feature:


Those who follow me on Twitter may have noticed me ranting about the roaming prices recently so I thought that this is a perfect opportunity to put my thoughts down.

As being discussed above, I went on the websites of two UK operators and found out about their roaming rates to India and The USA and they are as follows:


 It should be noted that there is a better rate available with some kind of bundle opt-in from both the operators and I have not shown about the other UK operators but they offer a similar sort of rate so I am not trying to single out O2 and/or Vodafone.

Since LTE is 'All-IP' network my interest is more from Data point of view rather than the voice point of view. A colleague who went to India recently decided that enough is enough and he bought a SIM in India locally. Apparently is just a bit too difficult to get SIM in India if you are not an Indian resident, nevertheless he somehow managed it. The rates as shown below was INR 24 for 100 MB of data.


Rs. 24 is something like $0.50 or £0.35. You see my problem regarding the data rates? People may be quick to point out here that India has the cheapest data rates in the world. On the other hand we look at US, the rates are as follows:

Even if we assume $15 / 1GB data, its far cheaper than the roaming rate which may be something like,  £3/MB = £3000/GB or £6/MB = £6000/GB.

I blogged about all the interesting developments that have been happening in LTE World Summit regarding the roaming solutions but what is the point of having all these solutions if the operators cant work out a way to reduce these costs. Or is it that they do not want to reduce these costs as they are a good source of income?

The operators complain that the OTT services are taking business away from them and turning them into dumb data pipes but to a lot of extent its their fault. People like me who travel often dont want to spend loads of cash on data and have worked out a way around it. Most of the places I visit have WiFi, most of my work is not urgent enough and I can wait till I am in a WiFi coverage area. In some parts of the world, still I have to buy an expensive WiFi access but compared to the roaming rates, its still cheap so I have stopped complaining about it. My decision to book a hotel depends of reviews, free breakfast and free WiFi. Some of our clients who give us their phone to use abroad strictly inform us that data should not be turned on unless its a matter of life and death.

If the operators dont change their strategies and work out a better solution for the roaming rates I am afraid that their short term gains will only lead to long term pains.

Do you have an opinion? I am interested in hearing.

Friday, 1 July 2011

Summary of 'The Future of Wireless International Conference' #fwic

Here is a summary of the Future of Wireless International conference held in Cambridge on the 27th and 28th of June 2011. The summary is a compilation of my notes with the tweets sent using the #FWIC tag.

DAY 1

Roberto di Pietro, VP Product Marketing and Business Development, Qualcomm CDMA Technologies
• 26 million 3G connections being added every month
• 226% growth is seen in smartphones from 2010 - 2014
• Mobile as a single platform for developers.
• Devices smart enough to know which network to connect to
• Qualcomm arrived on the scene 6 months after everyone but they are the only ones with 4G, 3G and 2G multi-mode chips
• In 2012 they would be releasing the new System Architecture with Single / Dual / Quad cores upto 2.5GHz (Snapdragon next gen)
• Question: Will smartphones die in the future when people move to tablets for everything except for voice/sms and they get simpler phones for that
• Answer: Smartphones will co-exist as companion devices with the tablets and will continue growing for a while.
• In other discussions: QoS will be a big differentiator and offloading would certainly be needed. Femtocells are going to form part of any strategy.
• Network signaling load and need for developers to improve apps design noted in qualcomm keynote here in cambridge


Mr. BongGoon Kwak, Senior Vice President, The head of Mobile Business Fast Incubation Business Department Mobile Business Group in Korea Telecom.
• KT adding 0.5 million users every month.
• Mobile data predicted to grow 26 fold by 2015 (6.2 exabytes/month)
• E = MC^2. Where E = evolution, M = mobile and C = connectivity
• mobile banking users in Korea increased 100% to 18 million due to smartphones
• smartphone ARPU up 32% on feature phone
• KakaoTalk (http://www.kakao.com/talk/en) users have increased which has in turn reduced the SMS ARPU
• NaaS (Network as a Service) is a new trend

Mr. Edward Zhou, CMO of Western European Region, Huawei Technologies Co. Ltd.
• states they have 5300 people in Europe but only 65% are from local market
• No. 2 telecom solution provider with revenues of $28 billion
• has 110,000+ employees with 150 nationalities worldwide, more than half work in R&D
• By 2020 there will be 5.5B MBB (Mobile Broadband) users as opposed to 1.5B FBB (Fixed Broadband)
• 70% of companies (especially SMEs) will be using cloud based services.


Mr. R. Swaminathan, Senior Executive Vice President, Reliance Communications Ltd.
• Low cost mobile networks and devices helped drive innovation in low cost business models in Rural India
• Customisation is a mecessity for the rural market.
• One offering includes a fixed phone that uses Mobile as a backhual using the Yagi antenna
• 15 operators in rural India. Voice tariff went from 20cents to 1 cent. Entry cost reduced by 95%
• ARPU in rural India is $2.
• Telecom operators have done innovations to keep costs to minimum
• Phone to tablet is best evolution for Indian rural market, using visual images and txt to speech technologies not smartphones
• Good to have some text to voice and vice-versa apps
• Ends with saying that there are 870 million people in rural India and possible market size is $25 billion that can be exploited


Kanwar Chadha, Chief Marketing Officer and Board Member of Cambridge Silicon Radio
• Innovations in location-aware wire-free connected world
• Spoke on view of local business vs global, very entertaining perspective , assume nothing and be careful of interpretation
• Example is the initial GPS cost $3700 but was still successful in Japan because guys wanted to show it off to their dates.
• Maslow's hierarchy of needs dont work for India as its more important to have entertainment (TV) than roof.
• FM very succesful in India but nowhere else.
• Sat Navs will not succeed in India because addresses and maps not very well mapped. Things like coupons, sms will be very successful


Innovation Hothouse: Mr. Christian Leicher, Member of the Executive Board at Rohde & Schwarz GmbH & Co. KG.


Session on start-ups very interesting
• Augmentra talked of GPS based smartphone apps. Users can share and get paid when someone else download what they share. Their guidebooks, etc are trusted by half the search and rescue mountain teams
• Oxems have a solution for the new plastic pipes that are being deployed. The normal metal detectors cant detect these pipes so they have a RFID based solution.
• Pneumacare has a non-contact medicare solution that can be used to track people with respiratory problems
• MagicSolver.com has a unique app discovery solution that can reach upto 6 millions users in 90 different countries.
• Cambridge temperature concepts has a solution that can increase the chances of fertility without IVF to the same levels after 6 months use.


Interesting points from the breakout sessions:
• Mike Bowerman of Alcatel-Lucent: Soon we will see pricing based on time of day, location, etc. Infrastructure sharing lower costs but it means that coverage from some location can completely vanish.
• John frieslaar of Huawei talks about how many will be connected to networks and the cause of demand
• Stephen temple says industry must spur innovation not gov.agree but will gov let us?
• 75% of UK mobile data consumption is driven by BBC iplayer, YouTube and adult videos says Sam Leinhardt of Penthera
• Ed Candy, 3: Apps evolving from Handset Apps to Widgets to Intelligent Browsers based
• Content is king but context is queen
• O2 in UK started putting data caps and lost 7K customers in London. They were using 7% of network capacity so O2 happy to get rid of them


DAY 2
Stephen Baily, General Manager, BBC R&D
• BBC R&D iPlayer usage on tablets is 3million/mth 2% of total
• Dual screens being explored by BBC with a universal controller API. The proposal has been submitted to W3C.
• Working on Dual-Screen concept where iPad becomes a complimentary device to TV (See http://www.pocket-lint.com/news/40584/bbc-focused-ipad-dual-screen)
• BBC R&D iPlayer usage on tablets is 3million/mth 2% of total
• BBC is looking again at mobile broadcasting based on DVB-t2m standard
• 90% of broadcast os normal schedule than the time shifted one.

Dr. Tapani Ryhänen, Laboratory Director, heading Eurolab (Cambridge and Lausanne) of Nokia Research Centre
• Imagining tomorrow devices, creating technology today
• Morph concept video



• Nokia Research Center in Cambridge working in lots of futuristic technologies like Data driven Apps, Stretchable electronics, Bend to zoom, flexible phone and display
• Another video that I wasnt able to locate on Youtube


Few points from The "Can big wireless deliver on the promise of a big society?" Panel Debate
• Motorola's David Chater-Lea: "Due to spectrum needs we're going to see breakdown of barriers between commercial & private networks"
• Neul/Ofcom's William Webb: "To get a truely wireless society we need more small cells and increased backhaul. Then we need FTTH"
• Otherwise we're going to have situation where wireless will be held back by the wired network
• Public safety: should governments use private networks or commercial networks & give priority to emergency services over customers?



Graham Fisher, Former CEO of Orange Labs R&D, BathCube:
• Net neutrality doesn't work in a world of finite resources
• High end phones expectaions include screens that can work in sunlight, AR, 3D, etc.
• When it comes to retail price plans mobile operators are all in a bargain basement, they need to reintroduce value

Dan Reed, Corporate Vice President, Technology Policy and Strategy and eXtreme Computing Group at Microsoft
• The uber change happening is collision of computing/comms/content. We need to work out how to work together


Ken Blakeslee, Chairman of WebMobility Ventures:
• Digital natives vs digital immigrants
• Is mobile too inward looking?
• We're moving from hardware to software driven marketplace where communities are the new currency
• Users can be bought and bribed, communities can not


Interesting Obervation:
• Cambridge Wireless - run largely by women as an organisation but 95% of attendees at Future of Wireless conf #fwic are male


Poll of #fwic audience returns 50:50 re: whether mobile infrastructure should be common wholesale solution vs competitive between operators

Hopefully you have enjoyed this summary!