Showing posts with label 802.11n. Show all posts
Showing posts with label 802.11n. Show all posts

Monday 8 October 2018

Wi-Fi gets new name

Wi-Fi Alliance has announced that the next generation WiFi technology, 802.11ax, will be known as Wi-Fi 6. This is to probably make it simpler, similar to mobile technology generations. Everyone knows 3G and 4G but how many people know UMTS or LTE. Similarly they are hoping that people will be aware of Wi-Fi 4, 5 & 6. They haven't bothered to name anything below Wi-Fi 4.

Looking at this picture from R&S above, you can see that according to Wi-Fi Alliance naming convention:

Wi-Fi 1: 802.11a (1999)
Wi-Fi 2: 802.11b (1999)
Wi-Fi 3: 802.11g (2003)
Wi-Fi 4: 802.11n (2009)
Wi-Fi 5: 802.11ac (2014)
Wi-Fi 6: 802.11ax (2019)

Anyway, I am not going in any technical details in this post but look for the really good links on this topic below.

To learn more about the naming of next-gen Wi-Fi, check this link.

Further reading:

Tuesday 8 May 2012

WiFi: Standards, Spectrum and Deployment

Yesterday, IEEE published its fourth revision to 802.11. The updates include faster throughput, improved cellular hand-offs, and better communication between vehicles in addition to other improvements.The following from IEEE website:

The new IEEE 802.11-2012 revision1 has been expanded significantly by supporting devices and networks that are faster, more secure, while offering improved Quality of Service and, improved cellular network hand-off. IEEE 802.11 standards, often referred to as “Wi-Fi®,” already underpin wireless networking applications around the world, such as wireless access to the Internet from offices, homes, airports, hotels, restaurants, trains and aircraft around the world. The standard’s relevance continues to expand with the emergence of new applications, such as the smart grid, which augments the facility for electricity generation, distribution, delivery and consumption with a two-way, end-to-end network for communications and control.

IEEE 802.11 defines one MAC and several PHY specifications for wireless connectivity for fixed, portable and mobile stations. IEEE 802.11-2012 is the fourth revision of the standard to be released since its initial publication in 1997. In addition to incorporating various technical updates and enhancements, IEEE 802.11-2012 consolidates 10 amendments to the base standard that were approved since IEEE 802.11’s last full revision, in 2007. IEEE 802.11n™, for example, defined MAC and PHY modifications to enable much higher throughputs, with a maximum of 600Mb/s; other amendments that have been incorporated into IEEE 802.11-2012 addressed direct-link setup, “fast roam,” radio resource measurement, operation in the 3650-3700MHz band, vehicular environments, mesh networking, security, broadcast/multicast and unicast data delivery, interworking with external networks and network management.

“The new IEEE 802.11 release is the product of an evolutionary process that has played out over five years and drawn on the expertise and efforts of hundreds of participants worldwide. More than 300 voters from a sweeping cross-section of global industry contributed to the new standard, which has roughly doubled in size since its last published revision,” said Bruce Kraemer, chair of the IEEE 802.11 working group. “Every day, about two million products that contain IEEE 802.11-based technology for wireless communications are shipped around the world. Continuous enhancement of the standard has helped drive technical innovation and global market growth. And work on the next generation of IEEE 802.11 already has commenced with a variety of project goals including extensions that will increase the data rate by a factor of 10, improve audio/video delivery, increase range and decrease power consumption.”

1 IEEE 802.11™-2012 “Standard for Information technology--Telecommunications and information exchange between systems Local and metropolitan area networks--Specific requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications”

The following is from a presentation by Agilent in LTE World Summit last year. It summarises the 802.11 standards, the Spectrum available and deployment use cases.

Friday 22 August 2008

802.11n and 4G...

IEEE 802.11n is a proposed amendment to the IEEE 802.11-2007 wireless networking standard to significantly improve network throughput over previous standards, such as 802.11b and 802.11g, with a significant increase in raw (PHY) data rate from 54 Mbit/s to a maximum of 600 Mbit/s. Most devices today support a PHY rate of 300 Mbit/s, with the use of 2 Spatial Streams at 40 MHz. Depending on the environment, this may translate into a user throughput (TCP/IP) of 100 Mbit/s.

According to the book "WI-Fi, Bluetooth, Zigbee and Wimax":

802.11n is the 4th generation of wireless lan technology.
  • First generation (IEEE 802.11) since 1997 (WLAN/1G)
  • Second generation (IEEE 802.11b) since 1998 (WLAN/2G)
  • Third generation (802.11a/g) since 2000 (WLAN/3G)
  • Fourth generation (IEEE 802.11n) (WLAN/4G)

The distinguishing features of 802.11n are:

  • Very high throughput (some hundreds of Mbps)
  • Long distances at high data rates (equivalent to IEEE 802.11b at 500 Mbps)
  • Use of robust technologies (e.g. multiple-input multiple-output [MIMO]and space time coding).

In the N option, the real data throughput is estimated to reach a theoretical 540 Mbps (which may require an even higher raw data rate at the physical layer), and should be up to 100 times faster than IEEE 802.11b, and well over ten times faster than IEEE 802.11a or IEEE 802.11g. IEEE 802.11n will probably offer a better operating distance than current networks. IEEE 802.11n builds upon previous IEEE 802.11 standards by adding MIMO. MIMO uses multiple transmitter and receiver antennae to allowfor increased data throughput through spatial multiplexing and increased range by exploiting the spatial diversity and powerful coding schemes. The N system is strongly based on the IEEE 802.11e QoS specification to improve bandwidth performance. The system supports basebands width of 20 or 40MHz.

Note that there is 802.11n PHY and 802.11n MAC that will be required to acheive 540Mbps.

To achieve maximum throughput a pure 802.11n 5 GHz network is recommended. The 5 GHz band has substantial capacity due to many non-overlapping radio channels and less radio interference as compared to the 2.4 GHz band. An all-802.11n network may be impractical, however, as existing laptops generally have 802.11b/g radios which must be replaced if they are to operate on the network. Consequently, it may be more practical to operate a mixed 802.11b/g/n network until 802.11n hardware becomes more prevalent. In a mixed-mode system, it’s generally best to utilize a dual-radio access point and place the 802.11b/g traffic on the 2.4 GHz radio and the 802.11n traffic on the 5 GHz radio.

A lot of phones are coming with inbuilt WiFi (or 802.11 a/b/g) and this WiFi is a must on Laptops or they wont sell. The main difference in 802.11n, compared to previous generation of 802.11 is that there is a presence of MIMO. 802.11 family uses OFDM which is the same technology being adopted by LTE. The new LTE handsets will have advantage of easily integrating this 802.11n technology and the same antennas can be reused. In fact the same is applicable for WiMAX as it supports MIMO and OFDM. Ofcourse we will have problems if they are using quite different frequencies as the antennas ore optimised to range of frequencies, this is something that has to be seen.

In the news:

MIT and a medical center based in Alabama are beginning to deploy faster wireless 802.11n access points from Cisco Systems Inc. In more than 100 buildings on MIT's Cambridge, Mass., campus, as many as 3,200 access points running older 802.11a/b/g protocols will be replaced with 802.11n devices in the next 12 to 16 months, said Chris Murphy, a networking engineer at the university. Murphy said MIT, with more than 10,000 students and 11,000 staff members, has a "very, very wide variety" of client devices, from handhelds to laptops. Many of the laptops probably support the 802.11n protocol, he said. Some MIT staffers have been using voice-over-IP wireless handsets and have experienced poor coverage with the older Wi-Fi technology, but they said they have had full signal strength within the range of the new 802.11n access points, he added. With 802.11n, the university could eventually provide IP television, which requires a lot of bandwidth, Murphy said.

Using 802.11n technology, Lapham said he was able to transmit a gigabyte of data in less than two minutes. Currently, the 370-bed medical center has about 450 access points on older protocols. Devices used on the wireless network include 180 laptops, which are used primarily for transmitting bedside patient data. The hospital also supports 100 VoIP wireless phones and a various medical devices.

Wi-Fi is expected to be available in 99 per cent of North American universities by 2013, according to research released by industry analyst ABI Research this week. Much of that penetration will be in the form of 802.11n equipment: higher education is clearly the number one market for early adopters of 802.11n, the company said.

ABI Research expects 802.11n uptake – which is today fairly small in the education market – to ramp up steeply to quite a high rate of penetration," said ABI Research vice president Stan Schatt. There are several reasons for this. ABI said many students now assume a campus Wi-Fi network as a given, and many of their shiny new laptops will be 'n'-compatible. Universities also have great bandwidth demands, as lecture halls may need to serve a large number of users with multimedia contention at any given time and 802.11n's greater speed and capacity can address that need. Moreover, said Schatt, "Universities are breaking new ground by using video over Wi-Fi in a number innovative ways. This is driving the adoption of high speed 802.11n. Students in the near future (at least the diligent ones) will be just as likely to watch their favourite professor's lectures on their laptops as they will be to view 'America's Next Top Model'."

You may also be interested in reading: