Showing posts with label ITU. Show all posts
Showing posts with label ITU. Show all posts

Tuesday, 23 May 2023

Top 10 New (2022) Security Standards That You Need to Know About!

I had been meaning to add this session to the blog for a while. Some security researchers may find these useful. 

At RSA Conference 2022, Bret Jordan, CTO, Emerging Technologies, Broadcom and Kirsty Paine, Advisor - Technology & Innovation, EMEA, Splunk Inc. presented a talk covering what they described as the most important, interesting and impactful technical standards, hot off the press and so 2022. From the internet and all its things, to the latest cybersecurity defenses, including 5G updates and more acronyms than one can shake a stick at. 

The video is embedded below and the slides are available here.

Related Posts

Thursday, 6 April 2023

ETSI's Summit on Sustainability: ICT Standards for a Greener World

The ETSI Summit on Sustainability - How ICT developments and standards can enable sustainability and have a positive impact on society, took place on 30 March 2023 and focused on the key role of the ICT industry and related standardization activities to support Green initiatives. The event brought a large and global audience of over 220 stakeholders including operators, solution providers, policy makers and standards bodies or fora working on the topic.

A multitude of presentations including two interactive panel sessions, rhythmed the day and succeeded to make it a highly interactive Summit, pointing out challenges and how ICT can be both the problem and the solution.

The opening session examined the sustainability challenges and global green initiatives from numerous global standards bodies and fora. One of the suggested actions was to adopt ESG (Environmental Social Governance) goals as an integral part of the company’s objectives. Another highlight from the session was the need for standards work on the measuring and reporting of “avoided emissions,” that is being covered by ongoing work in ETSI. Feedback from the audience pointed out that it would be beneficial to further investigate the balance of ICT deployments vs real needs. Do we really need to endlessly deploy new technologies, when exiting ones serve the need?

The following are presentations from the welcome address and session 1:

The second session focused on the role of ICT in sustainability and was animated by two panels. The first one addressed the operators’ objectives and their plans for sustainability. The second one dealt with various initiatives being taken by solutions providers to meet the needs expressed by the operators and society as a whole. Suggested actions emerging from the debate included putting sustainability criteria in the procurement phase towards the vendors and enhance collaboration between operators, to share their common requirements and provide them to the supply chain ecosystem. In an animated exchange between the Panellists and the audience it was highlighted that there is an urgent need to reduce energy consumption, extend the lifecycles of ICT equipment and systematically recycle and repurpose in order to reduce ICT waste.

The following are presentations from session 2:

  • Session 02 - The Role of ICT in Sustainability: The session comprises two interactive panel sessions examining 1) Operators objectives and plans for Sustainability and 2) several initiatives being taken by solutions providers to meet those objectives. Session Chaired by David Boswarthick, ETSI
    • Operators Panel Moderated by Anita Dohler, NGMN Alliance e.V.: The purpose of this panel is to examine what are the sustainability plans, challenges & priorities for Operators
      • Saima Ansari, Deutsche Telekom
      • P. Balaji, Vodafone Idea
      • Marc Grant, AT&T
      • Luca Pesando, TIM
    • Solution Providers Panel Moderated by Joe Barrett, GSA, Global Mobile Suppliers Association - The purpose is to examine what the current solutions and remaining challenges on Sustainability are.

The afternoon opened with an  overview of ETSI, 3GPP and oneM2M activities supporting technologies for sustainability. One of the presentations highlighted that ICT should initially focus its own environmental impacts and consider digital sobriety as it is recognized that the cleanest energy is the one that is not consumed.

The following are presentations from session 3:

The summit concluded with a dynamic exchange around what more telecoms can do to move forward in the right direction. ICT and specifically data centres create a significant carbon footprint, and there was a call to use the ISO Net Zero guidelines in order to develop sustainable strategies. The industry should adopt an eco-design (sustainability by design) approach and seek to have products that are energy efficient, with longer life cycles, recyclable and repairable.

The following are presentations from session 4:

As a conclusion it was agreed that ICT is part of the sustainability problem and must seek to reduce its own emissions, whilst at the same time ICT is certainly part of the solution and should be applied to other domains in order to help them reach their own sustainability goals. As a first step, making ICT more sustainable should be the #01 priority for the industry today and ETSI groups TC EE (environmental engineering), TC ATTM (access, terminal and multiplexing) and ISG OEU (operational energy efficiency for users) are currently providing the standards to enable this transition to greener digital technologies.

Event Wrap-Up / Conclusions is available here.

Should you wish to learn more about the summit, all of the presentations including the conclusion slides are available here.

Related Posts

Monday, 23 May 2022

5G Reality Check - Data Rates

One of the common questions that we encounter is why are 5G speeds so low as we were promised 5G downlink speeds of 20 Gbps. Most people do not understand how the 5G speeds are calculated and what do they depend on. In many cases, the network won’t be capable of delivering higher speeds due to some or the other limitation. 

In a new presentation, I try to explain the theoretical speeds and compare them with real world 5G data rates and even try to map it to why these speeds are what they are. Hopefully people won't mind me adding some humour as I go along.

Video and Slides embedded below

Embedded below is the Twitter thread on Speedtests ðŸ˜‚

Related Posts

Monday, 7 June 2021

TSDSI's Low Mobility Large Cell (LMLC) Requirements in 5G


Back in November 2020, ITU completed the evaluation for global affirmation of IMT-2020 technologies. Three new technologies were successfully evaluated by ITU and were found to conform with the International Mobile Telecommunications 2020 (IMT-2020) vision and stringent performance requirements. The technologies are: 3GPP 5G-SRIT and 3GPP 5G-RIT submitted by the Third Generation Partnership Project (3GPP), and 5Gi submitted by Telecommunications Standards Development Society India (TSDSI). 

I have explained in earlier videos that 5G-SRIT  and 5G-RIT corresponds to Non-Standalone and Standalone respectively. 5Gi on the other hand is an updated version of 5G-RIT designed mainly to improve rural coverage. 

TSDSI announced this as follows:

TSDSI’s 5G Radio Interface Technology named as “5Gi” has cleared the rigorous processes of  International Telecommunication Union (ITU) and has been approved by the SG5 of ITU as a part of Draft Recommendation M.[IMT-2020.SPECS] in its meeting held on 23rd November 2020.

5Gi, the first  ever Mobile Radio Interface Technology contribution from India to become part of ITU-R’s  IMT recommendation, went through a rigorous evaluation process of the ITU-R working groups over the past 3 years before getting the approval.

This standard is a major breakthrough for bridging the rural-urban digital divide in 5G deployment due to enhanced coverage. It enables connecting majority of India’s villages through towers located at gram panchayats in a cost effective manner. It has found support from several countries as it addresses their regional needs from a 5G standpoint.

The standard will now be circulated by ITU to member states for adoption and approval. Specifications are expected to be published by ITU in early February 2021.

TSDSI thanks its members, the Department of Telecommunications, Govt. of India and its partners for their support over the last four years in helping get this standard reach the final stage in ITU.

In a keynote address presented to the 2020 IEEE 5G World Forum plenary session, Radha Krishna Ganti from TSDSI discusses rural connectivity challenges in India, Low Mobility Large Cell requirements, benefits of implementing LMLC for rural coverage, and internet ecosystem updates. His talk is embedded as follows:

TSDSI explains their 5Gi technology as follows:

TSDSI standard fulfils the requirements of affordable connectivity in rural, remote and sparsely populated areas. Enhanced cell coverage enabled by this standard, will be of great value in countries and regions that rely heavily on mobile technologies for connectivity but cannot afford dense deployment of base stations due to lack of deep fibre penetration,  poor economics and challenges of geographical terrain. The International Telecommunication Union (ITU), a UN body that is setting requirements for IMT 2020 (aka 5G), had earlier adopted the Low-Mobility-Large-Cell (LMLC) use case proposed by TSDSI as a mandatory 5G requirement in 2017. This test case addresses the problem of rural coverage by mandating large cell sizes in a rural terrain and scattered areas in developing as well as developed countries. Several countries supported this as they saw a similar need in their jurisdictions as well. TSDSI successfully introduced an indigenously developed 5G candidate Radio Interface Technology, compatible with 3GPP Technology, at the International Telecommunications Union (ITU) in 2019 for IMT 2020 ratification. The RIT incorporates India-specific technology enhancements that can enable larger coverage for meeting the LMLC requirements. It exploits a new transmit waveform that increases cell range developed by research institutions in India (IIT Hyderabad, CEWiT and IIT Madras) and supported by several Indian companies. It enables low-cost rural coverage and has additional features which enable higher spectrum efficiency and improved latency.

While technically this sounds interesting and as discussed in the talk, would make sense due to a large market like India, there are other solutions that are already possible that probably may make this redundant.

As someone who worked with the rural communities to bring coverage in hard to reach areas, small cells and In-band backhaul was one such solution to improve coverage in not-spot areas. Examples of that here and here. Relays are other option that don't cost much but can bring coverage quickly, at a much lower price.

Typically, in practice, the cells easily reach 10km radius. In theory this distance can be as much as 100km. Last year, Australian operator Telstra and vendor Ericsson announced that they have successfully managed to increase the range of an LTE cell from 100 km to 200 km. So, we can already have large cells with existing 4G/5G cells. 

Facebook connectivity is working on SuperCell concept, a Wide-Area Coverage Solution for Increasing Mobile Connectivity in Rural Communities. Details here. NGMN published a paper on Extreme Long Range Communications for Deep Rural Coverage. Details here.

Finally, we also have 5G Integrated Access and Backhaul (IAB) that can be used for backhauling and solving backhaul issues. They will end up playing a role in rural areas as well as dense urban areas eventually.

Let me know what you think.

Related Posts:

Monday, 24 May 2021

ITU Standardization Bureau on Machine Learning for 5G


Last year I blogged about Global ITU AI/ML 5G Challenge on the theme “How to apply ITU's ML architecture in 5G networks".  The grand challenge finale happened in December. All the recording and presentations are available here.

Back in October, Bilel Jamoussi from ITU presented a keynote to the 2020 IEEE 5G World Forum plenary session where he addressed the challenges of applying machine learning in networks, ITU’s ML toolkit, and ITU’s AI/ML in 5G Competition. IEEE Tv shared the presentation only in April so the competition part is a bit outdated. It does nevertheless an interesting 20 minute talk.

ITU Recommendation Y.3174, Framework for data handling to enable machine learning in future networks including IMT-2020 is available here.

Related Posts

Wednesday, 12 August 2020

Telecom Services and Data Pricing

With the mobile technology gaining even more subscribers and smartphones becoming common, the telecom services pricing that includes voice, SMS and data is falling. Many operators are now including bundles with generous amounts to satisfy everyone. In many European countries, it is very common to have plans with unlimited everything. 

One of the reports that ITU releases is called "Measuring Digital Development: ICT Price Trends". The latest report for 2019 was released in May this year. The press release says:

On average, prices for mobile-voice, mobile-data and fixed-broadband services are decreasing steadily around the world, and in some countries even dramatically. The reduction in price relative to income is even more dramatic, suggesting that, globally, telecommunication and information and communication technology services are becoming more affordable. However, both trends do not translate into rapidly increasing Internet penetration rates which suggests that there are other barriers to Internet use, concludes ITU in its new statistical report, Measuring Digital Development: ICT Price Trends 2019.

The latest statistics from ITU confirm that affordability may not be the only barrier to Internet uptake, and that other factors such as: 

  • low level of education, 
  • lack of relevant content, 
  • lack of content in local languages, 
  • lack of digital skills, and a 
  • low-quality Internet connection may also prevent effective use. 


Key results​:

  • An entry-level mobile-voice basket remains broadly affordable in most countries. In 70 countries, a low-usage mobile-voice plan was available for less than 1 per cent of gross national income (GNI) per capita, and in a further 37 countries it stood below 2 per cent. Although causality is difficult to prove, price reductions have undoubtedly helped contribute to the rapid rise in the mobile-voice penetration rate, alongside growing competition and better price monitoring and evaluation by regulators.
  • The expansion of bundled services has further reduced prices, as combined data-and-voice baskets are generally less expensive than the sum of the two separate baskets in most markets.
  • Prices have decreased from 2013 to 2019 relative to GNI per capita The global average price of a mobile-data basket of 1.5 GB shrank from 8.4 per cent of GNI per capita in 2013 to 3.2 per cent in 2019, at a compound annual growth rate of almost -15 per cent. When expressed in USD, the global average price of a mobile-data basket of at least 1.5 GB dropped by 7 per cent on average annually between 2013 and 2019.
  • Good progress has been made towards the Broadband Commission for Sustainable Development's target of achieving affordable broadband costing 2-5 per cent of GNI per capita by 2025, but still more remains to be done. There are still nine developing countries and 31 LDCs that have yet to reach the 2 per cent target by 2025.
  • Fixed-broadband packages remain generally more expensive than mobile-data packages (although data allowances are not always directly comparable). Over the past four years, the affordability of fixed broadband has not changed substantially, but advertised download speeds continue to increase.

(click on the image to enlarge)

Some of the results are quite interesting as shown in the image above. The picture on top left shows the different types of packages. The report analyses price data for five key services based on the following five baskets:

  1. mobile-data-and-voice basket (i.e. voice, SMS and mobile data combined) – low consumption (70 minutes, 20 SMSs and 500 MB);
  2. mobile-data-and-voice basket – high consumption (140 minutes, 70 SMSs and 1.5 GB);
  3. mobile-voice (including voice and SMS);
  4. mobile-data;
  5. fixed-broadband.

Chart 1 shows Mobile data and voice baskets in USD for 2019. LDCs stands for Least Developed Countries

Chart 2 shows Mobile data and voice baskets in PPP$, where PPP stands for purchasing power parity. This is defined as basket of goods based comparison approach (see here)

Finally, chart 3 shows Mobile data and voice basket as a % of GNI p.c. GNI stands for gross national income. Expressing prices relative to GNI per capita (GNI p.c.), as a measure of affordability, reveals huge gaps between prices for different levels of development. In developed countries, the price of a low-consumption mobile-data-and-voice basket was equivalent to 1 per cent of GNI p.c. in 2019. In developing countries, this basket cost 7.5 per cent of GNI p.c., while in the LDCs this rose sharply to 17 per cent. For high-consumption mobile-data-and-voice baskets, the differences were even larger.

Source - Visual capitalist. Click link to see complete picture

Visual Capitalist has a nice summary of data prices for 1GB of Mobile data in different parts of the world. A striking trend worth noting is that four out of five of the most expensive countries (Malawi, Benin, Chad, Yemen & Botswana) for mobile data are in Sub-Saharan Africa (SSA).


Cable.co.uk have an interactive map here, that allows you to see prices in different parts of the world. As you would guess, the cheapest data prices in the world is in India.

Finally, eXtensia has a list of data costs in African countries from 2019 here, a lot has changed in the last year so you may have to check if the information you need is correct as of today.

Related Posts:

Saturday, 1 August 2020

Artificial Intelligence (AI) / Machine Learning (ML) in 5G Challenge by ITU


ITU is conducting a global ITU AI/ML 5G Challenge on the theme “How to apply ITU's ML architecture in 5G networks". If you don't know the difference between AI & ML, this picture from the old blog post may help.


The ITU website says:

Artificial Intelligence (AI) will be the dominant technology of the future and will impact every corner of society. In particular, AI / ML (machine learning) will shape how communication networks, a lifeline of our society, will be run. Many companies in the ICT sector are exploring how to make best use of AI/ML. ITU has been at the forefront of this endeavour exploring how to best apply AI/ML in future networks including 5G networks. The time is therefore right to bring together the technical community and stakeholders to brainstorm, innovate and solve relevant problems in 5G using AI/ML. Building on its standards work, ITU is conducting a global ITU AI/ML 5G Challenge on the theme “How to apply ITU's ML architecture in 5G networks". 

Participants will be able to solve real world problems, based on standardized technologies developed for ML in 5G networks. Teams will be required to enable, create, train and deploy ML models (such that participants will acquire hands-on experience in AI/ML in areas relevant to 5G). Participation is open to ITU Member States, Sector Members, Associates and Aca​demic Institutions and to any individual from a country that is a member of ITU. ​

There are also some cash prizes, etc. There are various topics with presentation slides & recordings freely available. 

I found the slides from ITU AI/ML in 5G Challenge —”Machine Learning for Wireless LANs + Japan Challenge Introduction” (link) very interesting. There are many other topics including AR / VR / XR, etc, as well.

Have a look at the ITU website here.


Related Posts:

Sunday, 12 April 2020

Spectrum for 5G NR beyond 52.6 GHz

3GPP TR 38.807: Study on requirements for NR beyond 52.6 GHz has recently been revised with all the new information post WRC-19. There is a section that details potential use cases for this new spectrum.


Quoting from the specs:

The relatively underutilized millimeter-wave (mmWave) spectrum offers excellent opportunities to provide high speed data rate, low latency, and high capacity due to the enormous amount of available contiguous bandwidth. However, operation on bands in frequencies above 52.6GHz will be limited by the performance of devices, for example, poor power amplifier (PA) efficiency and larger phase noise impairment, the increased front-end insertion loss together with the low noise amplifier (LNA) and analog-to-digital converter (ADC) noise. In addition, bands in frequencies above 52.6GHz have high propagation and penetration losses challenge. Even so, various use cases are envisioned for NR operating in frequencies between 52.6GHz and 114.25GHz. Some of the use cases are illustrated in Figure 5.1-1 and following section provide detailed description of the uses cases. It should be noted that there is not a 1-to-1 mapping of use cases and wireless interfaces, e.g. Uu, slidelink, etc. Various wireless interfaces could be applicable to various uses cases described.

  • High data rate eMBB
  • Mobile data offloading
  • Short-range high-data rate D2D communications
  • Vertical industry factory application
  • Broadband distribution network
  • Integrated access backhaul (IAB)
  • Factory automation/Industrial IoT (IIoT)
  • Augmented reality/virtual reality headsets and other high-end wearables
  • Intelligent Transport Systems (ITS) and V2X
  • Data Center Inter-rack Connectivity
  • Smart grid automation
  • Radar/Positioning
  • Private Networks
  • Critical medical communication

There is quite detailed information for each use case in the document that I am not detailing here.


It also details information on the allocation within the frequency range 52.6 GHz to 116 GHz in ITU Radio Regulation (see table below). The column with comments contains (a subset of) information on protection requirements for incumbent services. For the full details please refer to the Radio Regulations.

Quoting from the specs:

Within the range 52.6 to 116 GHz, the frequency bands 66-76 GHz (including 66-71 and 71-76 GHz) and 81-86 GHz are being studied under WRC-19 Agenda Item 1.13 for potential IMT identification. Results of sharing and compatibility studies, potential technical and regulatory conditions are included in Draft CPM Report, and the final decisions are to be made in WRC-19 with respect to IMT identification or no IMT identification, along with the corresponding technical and regulatory conditions.

For 66-71 GHz, Studies were carried out for the ISS, MSS (Earth-to-space) indicating that sharing is feasible, with a need for separation distance in the order of few kilometers for the case of MSS (space-to-Earth). The need for studies addressing interference from IMT towards RNS is still under debate. Thus, final conclusions in the regulatory and technical conditions for this band cannot be drawn.

For 71-76 GHz, studies were carried out for the FS, RLS and FSS (space-to-Earth) indicating that sharing with FS and FSS is feasible. However, additional limits of the IMT BS and UE unwanted emissions is needed to protect RLS in the adjacent frequency band 76-81 GHz.

For 81-86 GHz, studies were carried out for the FS, FSS (Earth-to-space), RAS (in band and adjacent band), EESS (passive) and RLS. Studies are not needed for the SRS (passive), as this service is dealing with sensors around other planets and no interference issue is expected. Studies were also not carried out for the MSS. The results of those studies indicate that sharing with FS, FSS and RAS (in band and adjacent band) is feasible. Notice that additional limits of the IMT BS and UE unwanted emissions would be needed to ensure protection of EESS (passive) in the adjacent frequency band 76-81 GHz and RLS in the adjacent frequency band 86-82 GHz.

An interesting paper looking at Waveforms, Numerology, and Phase Noise Challenge for Mobile Communications Beyond 52.6 GHz is available here.


Related Posts:

Thursday, 7 March 2019

Updated 5G Terminology Presentation (Feb 2019)


I made this video before MWC with the intention to educate the attendees about the various architecture options and 5G terminologies being discussed. As always, happy to get feedback on what can be done better. Slides followed by video below.







Complete list of our training resources are available on 3G4G page here.

Saturday, 2 March 2019

Beyond-5G and 6G at #MWC19


MWC is huge and there is absolutely no way that I even managed to cover 1% of the floor, even though I spend half a day, every day looking at the demos and talking to companies. I came across just a couple of companies looking at post 5G research. One was Mehdi Bennis, from University of Oulu and a good friend of this blog and the other one was Interdigital, which has featured heavily on 3G4G blogs too.

From the standards point of view, I am only aware of ITU 'Network 2030' (FG NET-2030) that is looking at how future network architectures, requirements, use cases, and capabilities of the networks will change by 2030 and beyond. I blogged about it here.

It's too early to call anything as 6G because we don't even realise the ways in which 5G will change the world and the limitations that will feed into the requirements of IMT-2030 (just guessing the probable name).

So here is the first video from Mehdi Bennis.






I also caught up with Interdigital and I got a very detailed video on their vision of what comes beyond 5G



Would love to know what else did I miss on 6G and Beyond-5G at MWC 2019.

Related Posts:

Saturday, 2 February 2019

ITU-NGMN Joint Conference on “Licensing practices in 5G industry segments"


IPR, Licensing and royalties are always an interesting topic. In the end they decide what price a device would be sold at. If I put it simply, the cost of device = cost of manufacturing + marketing + sales and distribution + support and insurance + profit + IPR. The licensing cost is often added in the end as it could be applicable on the selling price of the device.
The above tweet is interesting as it lists out the IPR costs by major patent holders. I wrote a post earlier detailing the 5G patent holders here. Since then this have moved on significantly. In addition to the royalty charged by the 5G patent holders (it also includes legacy technologies like 2G, 3G, 4G &Wi-Fi), there are patents for messaging, Codecs (seperate for audio / video), etc. To be fair it's a complex process. This is why I sometimes get shocked when I see 4G smartphones selling for £20 ($25).

Coming back to the conference, all the presentations are available on ITU page here.

Sylvia Lu, who wears many different hats including one for CW, UK5G and uBlox and a friend of 3G4G blog was one of the speakers at this conference. Here is a tweet on what she had to say about this event:
For those who may not know, FRAND stands for Fair, Reasonable, And Non-Discriminatory. Wikipedia has a nice article explaining it here.

NGMN Press Release on this conference mentions the following:

The Next Generation Mobile Networks (NGMN) Alliance has jointly organised and executed a successful conference on Licensing Practices in 5G Industry Segments with the International Telecommunication Union (ITU), bringing various experts from around the world together to discuss licensing practices and challenges of 5G.

The conference featured moderators and speakers from some of the biggest names in telecoms, including AT&T, Deutsche Telekom, NTT DOCOMO, Orange, Ericsson, Nokia and Microsoft. Also in attendance were key stakeholders of vertical industries, including Audi, Bosch, Panasonic and u-Blox, and patent pool administrators, namely Avanci, MPEG-LA, Sisvel and Via Licensing, who co-sponsored the event, the European Telecommunications Standards Institute (ETSI), the Japanese and the European Patent Offices, and the European Commission.

Focusing on the development of 5G and the Internet of Things (IoT), the conference facilitated sharing and discussing of present-day licensing practices and related issues across different industry segments.

A host of insightful sessions took place igniting an inclusive exchange on:
  • Patent licensing practices with interactive discussions that focused on issues stakeholders need to be aware of.
  • Sharing licensors’, licensees’ and pool administrators’ requirements on patent pools/platforms.
  • Identifying proposed practices and conducts for licensors and licensees.
  • Listing requirements for increasing transparency and assessing essentiality of Standard Essential Patents declared to Standards Developing Organisations.
“It’s great to notice that our joint ITU-NGMN conference has been such a success,” said Dr. Peter Meissner, CEO of NGMN. “Obviously, the 5G Eco-System is different. New use cases beyond mobile broadband - like massive IoT as well as highly demanding requirements from vertical industries on low latency, ultra-high reliability and security - are causing substantial network transformations. All these challenges have implications on the intellectual property of mobile network operators and across the different industry segments. Conferences like this are key in identifying IPR issues and exploring solutions for the enlarged eco-system.”

If you have any insights on this topic, or just any comment in general, feel free to add them as comments below.

Related Article:


Wednesday, 16 January 2019

5G Slicing Templates

We looked at slicing not long back in this post here, shared by ITU, from Huawei. The other day I read a discussion on how do you define slicing. Here is my definition:

Network slicing allows sharing of the physical network infrastructure resources into independent virtual networks thereby giving an illusion of multiple logically seperate end-to-end networks, each bound by their own SLAs, service quality and peformance guarantees to meet the desired set of requirements. While it is being officially defined for 5G, there is no reason that a proprietary implementation for earlier generations (2G, 3G or 4G)  or Wi-Fi cannot be created.

The picture above from a China Mobile presentation, explain the slice creation process nicely:

  1. Industry customers order network slices from operators and provide the network requirements, including network slice type, capacity, performance, and related coverage. Operators generate network slices according to their needs. Provide the network service requirement as General Service Template (GST).
  2. Transfer GST to NST (Network Slice Template)
  3. Trigger Network Instantiation Process
  4. Allocate the necessary resources and create the slice.
  5. Expose slice management information. Industry customers obtain management information of ordered slices through open interfaces (such as number of access users, etc.).

For each specific requirement, a slicing template is generated that is translated to an actual slice. Let's look at some examples:

Let's take an example of Power Grid. The picture below shows the scenario, requirement and the network slicing template.
As can be seen, the RAN requirement is timing and low latency while the QoS requirement in the core would be 5 ms latency with guaranteed 2 Mbps throughout. There are other requirements as well. The main transport requirement would be hard isolation.

The Network requirement for AR Gaming is high reliability, low latency and high density of devices. This translates to main RAN requirement of low jitter and latency; Transport requirement of Isolation between TICs (telecom integrated cloud) and finally Core QoS requirement of 80 ms latency and 2 Mbps guaranteed bit rate.


More resources on Network Slicing:


Friday, 14 September 2018

End-to-end Network Slicing in 5G

I recently realised that I have never written a post just on Network slicing. So here is one on the topic. So the first question asked is, why do we even need Network Slicing? Alan Carlton from Interdigital wrote a good article on this topic. Below is what I think is interesting:

Network slicing is a specific form of virtualization that allows multiple logical networks to run on top of a shared physical network infrastructure. The key benefit of the network slicing concept is that it provides an end-to-end virtual network encompassing not just networking but compute and storage functions too. The objective is to allow a physical mobile network operator to partition its network resources to allow for very different users, so-called tenants, to multiplex over a single physical infrastructure. The most commonly cited example in 5G discussions is sharing of a given physical network to simultaneously run Internet of Things (IoT), Mobile Broadband (MBB), and very low-latency (e.g. vehicular communications) applications. These applications obviously have very different transmission characteristics. For example, IoT will typically have a very large number of devices, but each device may have very low throughput. MBB has nearly the opposite properties since it will have a much smaller number of devices, but each one will be transmitting or receiving very high bandwidth content. The intent of network slicing is to be able to partition the physical network at an end-to-end level to allow optimum grouping of traffic, isolation from other tenants, and configuring of resources at a macro level.

Source: ITU presentation, see below

The key differentiator of the network slicing approach is that it provides a holistic end-to-end virtual network for a given tenant. No existing QoS-based solution can offer anything like this. For example, DiffServ, which is the most widely deployed QoS solution, can discriminate VoIP traffic from other types of traffic such as HD video and web browsing. However, DiffServ cannot discriminate and differentially treat the same type of traffic (e.g. VoIP traffic) coming from different tenants.

Also, DiffServ does not have the ability to perform traffic isolation at all. For example, IoT traffic from a health monitoring network (e.g. connecting hospitals and outpatients) typically have strict privacy and security requirements including where the data can be stored and who can access it. This cannot be accomplished by DiffServ as it does not have any features dealing with the compute and storage aspects of the network. All these identified shortfalls of DiffServ will be handled by the features being developed for network slicing.

I came across this presentation by Peter Ashwood-Smith from Huawei Technologies who presented '5G End to-end network slicing Demo' at ITU-T Focus Group IMT-2020 Workshop and Demo Day on 7 December 2016. Its a great presentation, I wish a video of this was available as well. Anyway, the presentation is embedded below and the PPT can be downloaded from here.



The European Telecommunications Standards Institute (ETSI) has established a new Industry Specification Group (ISG) on Zero touch network and Service Management (ZSM) that is working to produce a set of technical specifications on fully automated network and service management with, ideally, zero human intervention. ZSM is targeted for 5G, particularly in network slice deployment. NTT Technical review article on this is available here.

Finally, here is a presentation by Sridhar Bhaskaran of Cellular Insights blog on this topic. Unfortunately, not available for download.


Related Posts:

Sunday, 5 August 2018

ITU 'Network 2030': Initiative to support Emerging Technologies and Innovation looking beyond 5G advances

Source: ITU

As per this recent ITU Press Release:

The International Telecommunication Union, the United Nations specialized agency for information and communication technology (ICT), has launched a new research initiative to identify emerging and future ICT sector network demands, beyond 2030 and the advances expected of IMT-2020 (5G) systems. This work will be carried out by the newly established ITU Focus Group on Technologies for Network 2030, which is open to all interested parties.

The ITU focus group aims to guide the global ICT community in developing a "Network 2030" vision for future ICTs. This will include new concepts, new architecture, new protocols – and new solutions – that are fully backward compatible, so as to support both existing and new applications.

"The work of the ITU Focus Group on Technologies for 'Network 2030' will provide network system experts around the globe with a very valuable international reference point from which to guide the innovation required to support ICT use cases through 2030 and beyond," said ITU Secretary-General Houlin Zhao.

These ICT use cases will span new media such as hologrammes, a new generation of augmented and virtual reality applications, and high-precision communications for 'tactile' and 'haptic' applications in need of processing a very high volume of data in near real-time – extremely high throughput and low latency.   

Emphasizing this need, the focus group's chairman, Huawei's Richard Li, said, "This Focus Group will look at new media, new services and new architectures. Holographic type communications will have a big part to play in industry, agriculture, education, entertainment – and in many other fields. Supporting such capabilities will call for very high throughput in the range of hundreds of gigabits per second or even higher."

The ITU Focus Group on Technologies for 'Network 2030' is co-chaired by Verizon's Mehmet Toy, Rostelecom's Alexey Borodin, China Telecom's Yuan Zhang, Yutaka Miyake from KDDI Research, and is coordinated through ITU's Telecommunication Standardization Sector – which works with ITU's 193 Member States and more than 800 industry and academic members to establish international standards for emerging ICT innovations.

The ITU focus group reports to and will inform a new phase of work of the ITU standardization expert group for 'Future Networks' – Study Group 13. It will also strengthen and leverage collaborative relationships with and among other standards development organizations including: The European Telecommunications Standards Institute (ETSI), the Association for Computing Machinery's Special Interest Group on Data Communications (ACM SIGCOMM), and the Institute of Electrical and Electronics Engineers' Communications Society (IEEE ComSoc).
Source: ITU

According to the Focus Group page:

The FG NET-2030, as a platform to study and advance international networking technologies, will investigate the future network architecture, requirements, use cases, and capabilities of the networks for the year 2030 and beyond. 

The objectives include: 

• To study, review and survey existing technologies, platforms, and standards for identifying the gaps and challenges towards Network 2030, which are not supported by the existing and near future networks like 5G/IMT-2020.
• To formulate all aspects of Network 2030, including vision, requirements, architecture, novel use cases, evaluation methodology, and so forth.
• To provide guidelines for standardization roadmap.
• To establish liaisons and relationships with other SDOs.

An ITU interview with Dr. Richard Li, Huawei, Chairman of the ITU-T FG on Network 2030 is available on YouTube here.

A recent presentation by Dr. Richard Li on this topic is embedded below:



First Workshop on Network 2030 will be held in New York City, United States on 2 October 2018. Details here.

Related News: