Showing posts with label ITU. Show all posts
Showing posts with label ITU. Show all posts

Sunday, 5 August 2018

ITU 'Network 2030': Initiative to support Emerging Technologies and Innovation looking beyond 5G advances

Source: ITU

As per this recent ITU Press Release:

The International Telecommunication Union, the United Nations specialized agency for information and communication technology (ICT), has launched a new research initiative to identify emerging and future ICT sector network demands, beyond 2030 and the advances expected of IMT-2020 (5G) systems. This work will be carried out by the newly established ITU Focus Group on Technologies for Network 2030, which is open to all interested parties.

The ITU focus group aims to guide the global ICT community in developing a "Network 2030" vision for future ICTs. This will include new concepts, new architecture, new protocols – and new solutions – that are fully backward compatible, so as to support both existing and new applications.

"The work of the ITU Focus Group on Technologies for 'Network 2030' will provide network system experts around the globe with a very valuable international reference point from which to guide the innovation required to support ICT use cases through 2030 and beyond," said ITU Secretary-General Houlin Zhao.

These ICT use cases will span new media such as hologrammes, a new generation of augmented and virtual reality applications, and high-precision communications for 'tactile' and 'haptic' applications in need of processing a very high volume of data in near real-time – extremely high throughput and low latency.   

Emphasizing this need, the focus group's chairman, Huawei's Richard Li, said, "This Focus Group will look at new media, new services and new architectures. Holographic type communications will have a big part to play in industry, agriculture, education, entertainment – and in many other fields. Supporting such capabilities will call for very high throughput in the range of hundreds of gigabits per second or even higher."

The ITU Focus Group on Technologies for 'Network 2030' is co-chaired by Verizon's Mehmet Toy, Rostelecom's Alexey Borodin, China Telecom's Yuan Zhang, Yutaka Miyake from KDDI Research, and is coordinated through ITU's Telecommunication Standardization Sector – which works with ITU's 193 Member States and more than 800 industry and academic members to establish international standards for emerging ICT innovations.

The ITU focus group reports to and will inform a new phase of work of the ITU standardization expert group for 'Future Networks' – Study Group 13. It will also strengthen and leverage collaborative relationships with and among other standards development organizations including: The European Telecommunications Standards Institute (ETSI), the Association for Computing Machinery's Special Interest Group on Data Communications (ACM SIGCOMM), and the Institute of Electrical and Electronics Engineers' Communications Society (IEEE ComSoc).
Source: ITU

According to the Focus Group page:

The FG NET-2030, as a platform to study and advance international networking technologies, will investigate the future network architecture, requirements, use cases, and capabilities of the networks for the year 2030 and beyond. 

The objectives include: 

• To study, review and survey existing technologies, platforms, and standards for identifying the gaps and challenges towards Network 2030, which are not supported by the existing and near future networks like 5G/IMT-2020.
• To formulate all aspects of Network 2030, including vision, requirements, architecture, novel use cases, evaluation methodology, and so forth.
• To provide guidelines for standardization roadmap.
• To establish liaisons and relationships with other SDOs.

An ITU interview with Dr. Richard Li, Huawei, Chairman of the ITU-T FG on Network 2030 is available on YouTube here.

A recent presentation by Dr. Richard Li on this topic is embedded below:



First Workshop on Network 2030 will be held in New York City, United States on 2 October 2018. Details here.

Related News:

Friday, 22 June 2018

5G and IoT Security Update from ETSI Security Week 2018

ETSI Security Week 2018 (link) was held at ETSI's Headquarters in Sophia Antipolis, South of France last week. It covered wide variety of topics including 5G, IoT, Cybersecurity, Middlebox, Distributed Ledger Technology (DLT), etc. As 5G and IoT is of interest to the readers of this blog, I am providing links to the presentations so anyone interested can check them out at leisure.


Before we look at the presentations, what exactly was the point of looking at 5G Security? Here is an explanation from ETSI:

5G phase 1 specifications are now done, and the world is preparing for the arrival of 5G networks. A major design goal of 5G is a high degree of flexibility to better cater for specific needs of actors from outside the telecom sector (e.g. automotive industry, mission-critical organisations). During this workshop, we will review how well 5G networks can provide security for different trust models, security policies, and deployment scenarios – not least for ongoing threats in the IoT world. 5G provides higher flexibility than legacy networks by network slicing and virtualization of functions. The workshop aims to discuss how network slicing could help in fulfilling needs for different users of 5G networks.

5G will allow the use of different authentication methods. This raises many interesting questions. How are these authentication methods supported in devices via the new secure element defined in ETSI SCP, or vendor-specific concepts? How can mission-critical and low-cost IoT use cases coexist side-by-side on the same network?

The 5G promise of higher flexibility is also delivered via its Service-Based Architecture (SBA). SBA provides open 3rd party interfaces to support new business models which allow direct impact on network functions. Another consequence of SBA is a paradigm shift for inter-operator networks: modern APIs will replace legacy signaling protocols between networks. What are the relevant security measures to protect the SBA and all parties involved? What is the role of international carrier networks like IPX in 5G?

Event Objectives
The workshop intends to:

  • Gather different actors involved in the development of 5G, not only telecom, and discuss together how all their views have shaped phase 1 of 5G, to understand how security requirements were met, and what challenges remain;
  • Discuss slicing as a means to implement separate security policies and compartments for independent tenants on the same infrastructure;
  • Give an update of what is happening in 3GPP 5G security;
  • Explain to IoT players what 5G security can (and cannot) do for them, including risks and opportunities related to alternative access credentials;
  • Understand stakeholders' (PMNs, carriers, GSMA, vendors) needs to make SBA both secure and successful. How can SBA tackle existing issues in interconnect networks like fraud, tracking, privacy breaches;
  • Allow vendors to present interesting proposals for open security questions in 5G: secure credential store, firewalling SBA's RESTful APIs;
  • Debate about hot topics such as: IoT security, Slicing security, Privacy, Secure storage and processing and Security of the interconnection network.


So here are the relevant presentations:

Session 1: Input to 5G: Views from Different Stakeholders
Session Chair: Bengt Sahlin, Ericsson

Hardening a Mission Critical Service Using 5G, Peter Haigh, NCSC

Security in the Automotive Electronics Area, Alexios Lekidis, SecurityMatters

Integrating the SIM (iUICC), Adrian Escott, QUALCOMM

Smart Secure Platform, Klaus Vedder, Giesecke & Devrient, ETSI SCP Chairman

Network Slicing, Anne-Marie Praden, Gemalto

Don't build on Sand: Validating the Security Requirements of NFV Infrastructure to Confidently Run Slices, Nicolas Thomas, Fortinet

5G Enhancements to Non-3GPP Access Security, Andreas Kunz, Lenovo

Security and Privacy of IoT in 5G, Marcus Wong, Huawei Technologies

ITU-T activities and Action Plan on 5G Security, Yang Xiaoya, ITU-T SG17

Wrap up: 5G Overview from 3GPP SA3 Perspective and What is There to Be Done for Phase 2, Sander Kievit, TNO


Session 2: Security in 5G Inter-Network Signalling
Session Chair: Stefan Schroeder, T-Systems

Presentation on SBA: Introduction of the Topic and Current Status in SA3, Stefan Schroeder, T-Systems

5G Inter-PLMN Security: The Trade-off Between Security and the Existing IPX Business Model, Ewout Pronk, KPN on behalf of GSMA Diameter End to End Security Subgroup

Secure Interworking Between Networks in 5G Service Based Architecture, Silke Holtmanns, Nokia Bell Labs

Security Best Practises using RESTful APIs, Sven Walther, CA Technologies

Identifying and Managing the Issues around 5G Interconnect Security, Stephen Buck, Evolved Intelligence

Zero Trust Security Posture in 5G Architecture, Galina Pildush, Palo Alto Networks (Missing)


Session 1 & 2 Workshop Wrap up: 5G Phase 1 Conclusions and Outlook Towards Phase 2 - Stefan Schroeder, T-Systems and Bengt Sahlin, Ericsson


Session 5: Benefits and Challenges of 5G and IoT From a Security Perspective
Session Chair: Arthur van der Wees, Arthur's Legal

Setting the Scene, Franck Boissière, European Commission

ENISA's View on Security Implications of IoT and 5G, Apostolos Malatras, ENISA

Smart City Aspects, Bram Reinders, Institute for Future of Living

The Network Operators Perspective on IoT Security, Ian Smith, GSMA


Related Links:

Sunday, 25 March 2018

5G Security Updates - March 2018


Its been a while since I wrote about 5G security in this fast changing 5G world. If you are new to 3GPP security, you may want to start with my tutorial here.

3GPP SA3 Chairman, Anand R. Prasad recently mentioned in his LinkedIn post:

5G security specification finalized! Paving path for new business & worry less connected technology use.

3GPP SA3 delegates worked long hours diligently to conclude the specification for 5G security standard during 26 Feb.-2 Mar. Several obstacles were overcome by focussed effort of individuals & companies from around the globe. Thanks and congrats to everyone!

All together 1000s of hours of work with millions of miles of travel were spent in 1 week to get the work done. This took 8 meetings (kicked off Feb. 2017) numerous on-line meetings and conference calls.

Excited to declare that this tremendous effort led to timely completion of 5G security specification (TS 33.501) providing secure services to everyone and everything!

The latest version of specs is on 3GPP website here.

ITU also held a workshop on 5G Security in Geneva, Switzerland on 19 March 2018 (link). There were quite a few interesting presentations. Below are some slides that caught my attention.

The picture in the tweet above from China Mobile summarises the major 5G security issues very well. 5G security is going to be far more challenging than previous generations.

The presentation by Haiguang Wang, Huawei contained a lot of good technical information. The picture at the top is from that presentation and highlights the difference between 4G & 5G Security Architecture.


New entities have been introduced to make 5G more open.


EPS-AKA vs 5G-AKA (AKA = Authentication and Key Agreement) for trusted nodes


EAP-AKA' for untrusted nodes.


Slice security is an important topic that multiple speakers touched upon and I think it would continue to be discussed for a foreseeable future.

Dr. Stan Wing S. Wong from King’s College London has some good slides on 5G security issues arising out of Multi-Tenancy and Multi-Network Slicing.

Peter Schneider from Nokia-Bell Labs had good slides on 5G Security Overview for Programmable Cloud-Based Mobile Networks

Sander Kievit from TNO, a regular participant of working group SA3 of 3GPP on behalf of the Dutch operator KPN presented a view from 3GPP SA3 on the Security work item progress (slides). The slide above highlights the changes in 5G key hierarchy.

The ITU 5G Security Workshop Outcomes is available here.

ETSI Security Week 2018 will be held 11-15 June 2018. 5G security/privacy is one of the topics.

There is also 5GPPP Workshop on 5G Networks Security (5G-NS 2018), being held in Hamburg, Germany on August 27-30, 2018.

In the meantime, please feel free to add your comments & suggestions below.


Related Posts & Further Reading:

Tuesday, 13 February 2018

Artificial Intelligence - Beyond SON for Autonomous Networks


What is the next step in evolution of SON? Artificial Intelligence obviously. The use of artificial intelligence (AI) techniques in the network supervisory system could help solve some of the problems of future network deployment and operation. ETSI has therefore set up a new 'Industry Specification Group' on 'Experiential Networked Intelligence' (ISG ENI) to develop standards for a Network Supervisory assistant system.


The ISG ENI focuses on improving the operator experience, adding closed-loop artificial intelligence mechanisms based on context-aware, metadata-driven policies to more quickly recognize and incorporate new and changed knowledge, and hence, make actionable decisions. ENI will specify a set of use cases, and the generic technology independent architecture, for a network supervisory assistant system based on the ‘observe-orient-decide-act’ control loop model. This model can assist decision-making systems, such as network control and management systems, to adjust services and resources offered based on changes in user needs, environmental conditions and business goals.


The introduction of technologies such as Software-Defined Networking (SDN), Network Functions Virtualisation (NFV) and network slicing means that networks are becoming more flexible and powerful. These technologies transfer much of the complexity in a network from hardware to software, from the network itself to its management and operation. ENI will make the deployment of SDN and NFV more intelligent and efficient and will assist the management and orchestration of the network.


We expect to complete the first phase of ENI work in 2019. It will include a description of use cases and requirements and terminology, including a definition of features, capabilities and policies, which we will publish in a series of informative best practice documents (Group Reports (GRs)).
This will of course require co-operation from many different industry bodies including GSMA, ITU-T, MEF, IETF, etc.

Will see how this goes.

Further reading:



Friday, 22 December 2017

The small detail about 5G you may have missed...


While going through the latest issue of CW Journal, I came across this article from Moray Rumney, Lead Technologist, Keysight. It highlights an interesting point that I missed out earlier that 5G also includes all LTE specifications from Release 15 onwards.

I reached out to our CW resident 3GPP standards expert Sylvia Lu to clarify and received more details.
There is a whole lot of detail available in RP-172789.zip. Here RIT stands for Radio Interface Technology and SRIT for Set of RIT.

In fact at Sylvia clarified, NB-IoT and Cat-M will also be part of the initial IMT-2020 submissions early next year. Thanks Sylvia.


There is also this nice presentation by Huawei in ITU (here) that describes Requirements, Evaluation Criteria and Submission Templates for the development of IMT-2020. It is very helpful in understanding the process.

Coming back to the question I have often asked (see here for example),
1. What features are needed for operator to say they have deployed 5G, and
2. How many sites / coverage area needed to claim 5G rollout

With LTE Release-15 being part of 5G, I think it has just become easy for operators to claim they have 5G.

What do you think?

Monday, 6 March 2017

IMT-2020 (5G) Requirements


ITU has just agreed on key 5G performance requirements for IMT-2020. A new draft report ITU-R M.[IMT-2020.TECH PERF REQ] is expected to be finally approved by  ITU-R Study Group 5 at its next meeting in November 2017. The press release says "5G mobile systems to provide lightning speed, ultra-reliable communications for broadband and IoT"


The following is from the ITU draft report:

The key minimum technical performance requirements defined in this document are for the purpose of consistent definition, specification, and evaluation of the candidate IMT-2020 radio interface technologies (RITs)/Set of radio interface technologies (SRIT) in conjunction with the development of ITU-R Recommendations and Reports, such as the detailed specifications of IMT-2020. The intent of these requirements is to ensure that IMT-2020 technologies are able to fulfil the objectives of IMT-2020 and to set a specific level of performance that each proposed RIT/SRIT needs to achieve in order to be considered by ITU-R for IMT-2020.


Peak data rate: Peak data rate is the maximum achievable data rate under ideal conditions (in bit/s), which is the received data bits assuming error-free conditions assignable to a single mobile station, when all assignable radio resources for the corresponding link direction are utilized (i.e., excluding radio resources that are used for physical layer synchronization, reference signals or pilots, guard bands and guard times). 

This requirement is defined for the purpose of evaluation in the eMBB usage scenario. 
The minimum requirements for peak data rate are as follows:
Downlink peak data rate is 20 Gbit/s.
Uplink peak data rate is 10 Gbit/s.


Peak spectral efficiency: Peak spectral efficiency is the maximum data rate under ideal conditions normalised by channel bandwidth (in bit/s/Hz), where the maximum data rate is the received data bits assuming error-free conditions assignable to a single mobile station, when all assignable radio resources for the corresponding link direction are utilized (i.e. excluding radio resources that are used for physical layer synchronization, reference signals or pilots, guard bands and guard times).

This requirement is defined for the purpose of evaluation in the eMBB usage scenario.
The minimum requirements for peak spectral efficiencies are as follows: 
Downlink peak spectral efficiency is 30 bit/s/Hz.
Uplink peak spectral efficiency is 15 bit/s/Hz.


User experienced data rate: User experienced data rate is the 5% point of the cumulative distribution function (CDF) of the user throughput. User throughput (during active time) is defined as the number of correctly received bits, i.e. the number of bits contained in the service data units (SDUs) delivered to Layer 3, over a certain period of time.

This requirement is defined for the purpose of evaluation in the related eMBB test environment.
The target values for the user experienced data rate are as follows in the Dense Urban – eMBB test environment: 
Downlink user experienced data rate is 100 Mbit/s
Uplink user experienced data rate is 50 Mbit/s


5th percentile user spectral efficiency: The 5th percentile user spectral efficiency is the 5% point of the CDF of the normalized user throughput. The normalized user throughput is defined as the number of correctly received bits, i.e., the number of bits contained in the SDUs delivered to Layer 3, over a certain period of time, divided by the channel bandwidth and is measured in bit/s/Hz. 

This requirement is defined for the purpose of evaluation in the eMBB usage scenario.
Indoor Hotspot – eMBB - Downlink: 0.3 bit/s/Hz Uplink: 0.21 bit/s/Hz
Dense Urban – eMBB - Downlink: 0.225 bit/s/Hz Uplink: 0.15 bit/s/Hz
Rural – eMBB - Downlink: 0.12 bit/s/Hz Uplink: 0.045 bit/s/Hz


Average spectral efficiency: Average spectral efficiency  is the aggregate throughput of all users (the number of correctly received bits, i.e. the number of bits contained in the SDUs delivered to Layer 3, over a certain period of time) divided by the channel bandwidth of a specific band divided by the number of TRxPs and is measured in bit/s/Hz/TRxP.

This requirement is defined for the purpose of evaluation in the eMBB usage scenario.
Indoor Hotspot – eMBB - Downlink: 9 bit/s/Hz/TRxP Uplink: 6.75 bit/s/Hz/TRxP
Dense Urban – eMBB - Downlink: 7.8 bit/s/Hz/TRxP Uplink: 5.4 bit/s/Hz/TRxP
Rural – eMBB - Downlink: 3.3 bit/s/Hz/TRxP Uplink: 1.6 bit/s/Hz/TRxP


Area traffic capacity: Area traffic capacity is the total traffic throughput served per geographic area (in Mbit/s/m2). The throughput is the number of correctly received bits, i.e. the number of bits contained in the SDUs delivered to Layer 3, over a certain period of time.

This requirement is defined for the purpose of evaluation in the related eMBB test environment.
The target value for Area traffic capacity in downlink is 10 Mbit/s/m2 in the Indoor Hotspot – eMBB test environment.


User plane latency: User plane latency is the contribution of the radio network to the time from when the source sends a packet to when the destination receives it (in ms). It is defined as the one-way time it takes to successfully deliver an application layer packet/message from the radio protocol layer 2/3 SDU ingress point to the radio protocol layer 2/3 SDU egress point of the radio interface in either uplink or downlink in the network for a given service in unloaded conditions, assuming the mobile station is in the active state. 
This requirement is defined for the purpose of evaluation in the eMBB and URLLC usage scenarios.
The minimum requirements for user plane latency are
4 ms for eMBB
1 ms for URLLC 
assuming unloaded conditions (i.e., a single user) for small IP packets (e.g., 0 byte payload + IP header), for both downlink and uplink.


Control plane latency: Control plane latency refers to the transition time from a most “battery efficient” state (e.g. Idle state) to the start of continuous data transfer (e.g. Active state).
This requirement is defined for the purpose of evaluation in the eMBB and URLLC usage scenarios.
The minimum requirement for control plane latency is 20 ms. Proponents are encouraged to consider lower control plane latency, e.g. 10 ms.


Connection density: Connection density is the total number of devices fulfilling a specific quality of service (QoS) per unit area (per km2).

This requirement is defined for the purpose of evaluation in the mMTC usage scenario.
The minimum requirement for connection density is 1 000 000 devices per km2.


Energy efficiency: Network energy efficiency is the capability of a RIT/SRIT to minimize the radio access network energy consumption in relation to the traffic capacity provided. Device energy efficiency is the capability of the RIT/SRIT to minimize the power consumed by the device modem in relation to the traffic characteristics. 
Energy efficiency of the network and the device can relate to the support for the following two aspects:
a) Efficient data transmission in a loaded case;
b) Low energy consumption when there is no data.
Efficient data transmission in a loaded case is demonstrated by the average spectral efficiency 

This requirement is defined for the purpose of evaluation in the eMBB usage scenario.
The RIT/SRIT shall have the capability to support a high sleep ratio and long sleep duration. Proponents are encouraged to describe other mechanisms of the RIT/SRIT that improve the support of energy efficient operation for both network and device.


Reliability: Reliability relates to the capability of transmitting a given amount of traffic within a predetermined time duration with high success probability

This requirement is defined for the purpose of evaluation in the URLLC usage scenario. 
The minimum requirement for the reliability is 1-10-5 success probability of transmitting a layer 2 PDU (protocol data unit) of 32 bytes within 1 ms in channel quality of coverage edge for the Urban Macro-URLLC test environment, assuming small application data (e.g. 20 bytes application data + protocol overhead). 
Proponents are encouraged to consider larger packet sizes, e.g. layer 2 PDU size of up to 100 bytes.


Mobility: Mobility is the maximum mobile station speed at which a defined QoS can be achieved (in km/h).

The following classes of mobility are defined:
Stationary: 0 km/h
Pedestrian: 0 km/h to 10 km/h
Vehicular: 10 km/h to 120 km/h
High speed vehicular: 120 km/h to 500 km/h

Mobility classes supported:
Indoor Hotspot – eMBB: Stationary, Pedestrian
Dense Urban – eMBB: Stationary, Pedestrian, Vehicular (up to 30 km/h)
Rural – eMBB: Pedestrian, Vehicular, High speed vehicular 


Mobility interruption time: Mobility interruption time is the shortest time duration supported by the system during which a user terminal cannot exchange user plane packets with any base station during transitions.

This requirement is defined for the purpose of evaluation in the eMBB and URLLC usage scenarios.
The minimum requirement for mobility interruption time is 0 ms.


Bandwidth: Bandwidth is the maximum aggregated system bandwidth. The bandwidth may be supported by single or multiple radio frequency (RF) carriers. The bandwidth capability of the RIT/SRIT is defined for the purpose of IMT-2020 evaluation.

The requirement for bandwidth is at least 100 MHz
The RIT/SRIT shall support bandwidths up to 1 GHz for operation in higher frequency bands (e.g. above 6 GHz). 

In case you missed, a 5G logo has also been released by 3GPP


Related posts:



Saturday, 9 January 2016

5G Spectrum Discussions

While most people are looking at 5G from the point of new technologies, innovative use cases and even lumping everything under sun as part of 5G, many are unaware of the importance of spectrum and the recently concluded ITU World Radio Conference 2015 (WRC-15).

As can be seen in the picture above, quite a few bands above 24GHz were identified for 5G. Some of these bands have an already existing allocation for mobile service on primary basis. What this means is that mobile services can be deployed in these bands. For 3G and 4G, the spectrum used was in bands below 4GHz, with 1800MHz being the most popular band. Hence there was never a worry for those high frequency bands being used for mobile communication.

As these bands have now been selected for study by ITU, 5G in these bands cannot be deployed until after WRC-19, where the results of these studies will be presented. There is a small problem though. Some of the bands that were initially proposed for 5G, are not included in this list of bands to be studied. This means that there is a possibility that some of the proponent countries can go ahead and deploy 5G in those bands.

For three bands that do not already have mobile services as primary allocation, additional effort will be required to have mobile as primary allocation for them. This is assuming that no problems are identified as a result of studies going to be conducted for feasibility of these bands for 5G.


To see real benefits of 5G, an operator would need to use a combination of low and high frequency bands as can be seen in the picture above. Low frequencies for coverage and high frequencies for capacity and higher data rates.


As I mentioned in an earlier blog post, 5G will be coming in two phases. Phase 1 will be Rel-15 in H2, 2018 and Phase 2, Rel-16, in Dec. 2019. Phase 1 of 5G will generally consist of deployment in lower frequency bands as the higher frequency bands will probably get an approval after WRC-19. Once these new bands have been cleared for 5G deployment, Phase 2 of 5G would be ready for deployment of these high frequency bands.

This also brings us to the point that 5G phase 1 wont be significantly different from LTE-A Pro (or 4.5G). It may be slightly faster and maybe a little bit more efficient.

One thing I suspect that will happen is start of switching off of 3G networks. The most commonly used 3G (UMTS) frequency is 2100MHz (or 2.1GHz). If a network has to keep some 3G network running, it will generally be this frequency. This will also allow other international users to roam onto that network. All other 3G frequencies would soon start migrating to 4G or maybe even 5G phase 1.

Anyway, 2 interesting presentations on 5G access and Future of mmWave spectrum are embedded below. They are both available to download from the UK Spectrum Policy Forum (SPF) notes page here.








Further reading:


Saturday, 19 December 2015

ADS-B to enable global flight tracking


One of the things that the World Radio Conference 2015 (WRC-15) enabled was to provide a universal spectrum allocation for flight tracking. What this means in simple terms is that once completely implemented, flights will hopefully no longer be lost, like MH370. It will now be possible to accurately track flights with satellites across nearly 100% of the globe, up from 30% today, by 2018.

To make you better understand this, see this video below:


Automatic Dependent Surveillance (ADS) is a surveillance technique in which aircraft automatically provide, via a data link, data derived from on-board navigation and position-fixing systems, including aircraft identification, four-dimensional position and additional data as appropriate. ADS data is displayed to the controller on a screen that replicates a radar screen. ICAO Doc 4444 PANS-ATM notes that air traffic control service, may be predicated on the use of ADS provided that identification of the aircraft involved is unambiguously established. Two main versions of ADS are currently in use:

  • Automatic Dependent Surveillance-Broadcast (ADS-B) is a function on an aircraft or surface vehicle that broadcasts position, altitude, vector and other information for use by other aircraft, vehicles and by ground facilities. It has become the main application of the ADS principle.
  • Automatic Dependent Surveillance-Contract (ADS-C) functions similarly to ADS-B but the data is transmitted based on an explicit contract between an ANSP and an aircraft. This contract may be a demand contract, a periodic contract, an event contract and/or an emergency contract. ADS-C is most often employed in the provision of ATS over transcontinental or transoceanic areas which see relatively low traffic levels. 

The ITU press release on this topic:

The frequency band 1087.7-1092.3 MHz has been allocated to the aeronautical mobile-satellite service (Earth-to-space) for reception by space stations of Automatic Dependent Surveillance-Broadcast (ADS-B) emissions from aircraft transmitters.

The frequency band 1087.7-1092.3 MHz is currently being utilized for the transmission of ADS-B signals from aircraft to terrestrial stations within line-of-sight. The World Radiocommunication Conference (WRC-15) has now allocated this frequency band in the Earth-to-space direction to enable transmissions from aircraft to satellites. This extends ADS-B signals beyond line-of-sight to facilitate reporting the position of aircraft equipped with ADS-B anywhere in the world, including oceanic, polar and other remote areas.

WRC-15 recognized that as the standards and recommended practices (SARP) for systems enabling position determination and tracking of aircraft are developed by the International Civil Aviation Organization (ICAO), the performance criteria for satellite reception of ADS-B signals will also need to be addressed by ICAO.

This agreement follows the disappearance and tragic loss of Malaysian Airlines Flight MH370 in March 2014 with 239 people on board, which spurred worldwide discussions on global flight tracking and the need for coordinated action by ITU and other relevant organizations.

For more details see: globalflightsafety.org

Monday, 7 December 2015

ITU Workshop on VoLTE and ViLTE Interoperability



ITU recently held a workshop on "Voice and Video Services Interoperability Over Fixed-Mobile Hybrid Environments,Including IMT-Advanced (LTE)" in Geneva, Switzerland on 1st December 2015.

The following is the summary of that workshop:



I also like this presentation by R&S:



All the presentations from the workshop are available online from ITU website here.

Friday, 12 December 2014

5G Spectrum and challenges

I was looking at the proposed spectrum for 5G last week. Anyone who follows me on Twitter would have seen the tweets from last weekend already. I think there is more to discuss then just tweet them so here it is.




Metis has the most comprehensive list of all the bands identified from 6GHz, all the way to 86GHz. I am not exactly sure but the slide also identifies who/what is currently occupying these bands in different parts of the world.


The FCC in the USA has opened a Notice of Inquiry (NoI) for using the bands above 24GHz for mobile broadband. The frequency bands above have a potential as there is a big contiguous chunk of spectrum available in each band.



Finally, the slides from ETRI, South Korea show that they want to have 500MHz bandwidth in frequencies above 6GHz.

As I am sure we all know, the higher the frequency, the lower the cell size and penetration indoors. The advantage on the other hand is smaller cell sizes, leading to higher data rates. The antennas also become smaller at higher frequencies thereby making it easier to have higher order MIMO (and massive MIMO). The only way to reliably be able to do mobile broadband is to use beamforming. The tricky part with that is the beam has to track the mobile user which may be an issue at higher speeds.

The ITU working party 5D, recently released a draft report on 'The technical feasibility of IMT in the bands above 6 GHz'. The document is embedded below.




xoxoxo Added Later (13/12/2014) xoxoxo
Here are some links on the related topic:


xoxoxo Added Later (18/12/2014) xoxoxo
Moray Rumney from Keysight (Agilent) gave a presentation on this topic in the Cambridge Wireless Mobile Broadband SIG event yesterday, his presentation is embedded below.