Showing posts with label Nokia Networks. Show all posts
Showing posts with label Nokia Networks. Show all posts

Tuesday, 1 May 2018

MAMS (Multi Access Management Services) at MEC integrating LTE and Wi-Fi networks

Came across Multi Access Management Services (MAMS) a few times recently so here is a quick short post on the topic. At present MAMS is under review in IETF and is being supported by Nokia, Intel, Broadcom, Huawei, AT&T, KT.

I heard about MAMS for the first time at a Small Cell Forum event in Mumbai, slides are here for this particular presentation from Nokia.

As you can see from the slide above, MAMS can optimise inter-working of different access domains, particularly at the Edge. A recent presentation from Nokia (here) on this topic provides much more detailed insight.

From the presentation:

        MAMS (Multi Access Management Services) is a framework for

-            Integrating different access network domains based on user plane (e.g. IP layer) interworking,

-            with ability to select access and core network paths independently

-            and user plane treatment based on traffic types

-            that can dynamically adapt to changing network conditions

-            based on negotiation between client and network
        The technical content is available as the following drafts*



-            MAMS User Plane Specification: https://tools.ietf.org/html/draft-zhu-intarea-mams-user-protocol-02




*Currently under review, Co-authors: Nokia, Intel, Broadcom, Huawei, AT&T, KT,

The slides provide much more details, including the different use cases (pic below) for integrating LTE and Wi-Fi at the Edge.


Here are the references for anyone wishing to look at this in more detail:

Wednesday, 7 March 2018

Quick summary of Mobile World Congress 2018 (#MWC18)


This year at MWC, I took the time out to go and see as many companies as I can. My main focus was looking at connectivity solutions, infrastructure, devices, gadgets and anything else cool. I have to say that I wasn't too impressed. I found some of the things later on Twitter or YouTube but as it happens, one cannot see everything.

I will be writing a blog on Small Cells, Infrastructure, etc. later on but here are some cool videos that I have found. As its a playlist, if I find any more, it will be added to the same playlist below.



The big vendors did not open up their stands for everyone (even I couldn't get in 😉) but the good news is that most of their demos is available online. Below are the name of the companies that had official MWC 2018 websites. Will add more when I find them.

Operators

Network Equipment Vendors

Handset Manufacturers

Chipset Manufacturers

Did I miss anyone? Feel free to suggest links in comments.


MWC Summary from other Analysts:


Tuesday, 16 January 2018

3GPP-VRIF workshop on Virtual Reality Ecosystem & Standards in 5G

Its been a year since I last posted about Augmented / Virtual Reality Requirements for 5G. The topic of Virtual Reality has since made good progress for 5G. There are 2 technical reports that is looking at VR specifically. They are:

The second one is work in progress though. 

Anyway, back in Dec. 3GPP and Virtual Reality Industry Forum (VRIF) held a workshop on VR Ecosystem & Standards. All the materials, including agenda is available here. The final report is not there yet but I assume that there will be a press release when the report is published.

While there are some interesting presentations, here is what I found interesting:

From presentation by Gordon Castle, Head of Strategy Development, Ericsson





From presentation by Martin Renschler, Senior Director Technology, Qualcomm


For anyone wanting to learn more about 6 degrees of freedom (6- DoF), see this Wikipedia entry. According to the Nokia presentation, Facebook’s marketing people call this “6DOF;” the engineers at MPEG call it “3DOF+.”
XR is 'cross reality', which is any hardware that combines aspects of AR, MR and VR; such as Google Tango.

From presentation by Devon Copley, Former Head of Product, Nokia Ozo VR Platform
Some good stuff in the pres.

From presentation by Youngkwon Lim, Samsung Research America; the presentation provided a link to a recent YouTube video on this presentation. I really liked it so I am embedding that here:



Finally, from presentation by Gilles Teniou, SA4 Vice chairman - Video SWG chairman, 3GPP





You can check and download all the presentations here.

Further Reading:

Sunday, 5 November 2017

RRC states in 5G

Looking back at my old post about UMTS & LTE (re)selection/handovers, I wonder how many different kinds of handovers and (re)selection options may be needed now.

In another earlier post, I talked about the 5G specifications. This can also be seen in the picture above and may be easy to remember. The 25 series for UMTS mapped the same way to 36 series for LTE. Now the same mapping will be applied to 38 series for 5G. RRC specs would thus be 38.331.

A simple comparison of 5G and LTE RRC states can be seen in the picture above. As can be seen, a new state 'RRC Inactive' has been introduced. The main aim is to maintain the RRC connection while at the same time minimize signalling and power consumption.

Looking at the RRC specs you can see how 5G RRC states will work with 4G RRC states. There are still for further studies (FFS) items. Hopefully we will get more details soon.

3GPP TS 22.261, Service requirements for the 5G system; Stage 1 suggests the following with regards to inter-working with 2G & 3G

5.1.2.2 Legacy service support
The 5G system shall support all EPS capabilities (e.g., from TSs 22.011, 22.101, 22.278, 22.185, 22.071, 22.115, 22.153, 22.173) with the following exceptions:
- CS voice service continuity and/or fallback to GERAN or UTRAN,
- seamless handover between NG-RAN and GERAN,
- seamless handover between NG-RAN and UTRAN, and
- access to a 5G core network via GERAN or UTRAN.

Friday, 1 September 2017

Nokia Bell Labs - Future Impossible Series Videos

Picture Source: Cnet

Bell Labs, which has played a significant role in telecoms history and has a very glorious list of achievements created a collection of short films highlighting the brilliant minds who created the invisible nervous system of our society. Some of you may be aware that Bell Labs is now a part of Nokia but was previously part of Alcatel-Lucent, Lucent and AT&T before that.

The playlist with 5 videos is embedded below and short details of the videos follows that.


Video 1: Introduction

Introducing 'Future Impossible', a collection of short films highlighting the brilliant minds who created the invisible nervous system of our society, a fantastic intelligent network of wires and cables undergirding and infiltrating every aspect of modern life.


Video 2: The Shannon Limit

In 1948, father of communications theory Claude Shannon developed the law that dictated just how much information could ever be communicated down any path, anywhere, using any technology. The maximum rate of this transmission would come to be known as the Shannon Limit.  Researchers have spent the following decades trying to achieve this limit and to try to go beyond it.


Video 3: The Many Lives of Copper

In the rush to find the next generation of optical communications, much of our attention has moved away from that old standby, copper cabling. But we already have miles and miles of the stuff under our feet and over our heads. What if instead of laying down new optical fiber cable everywhere, we could figure out a way to breathe new life into copper and drive the digital future that way?


Video 4: The Network of You

In the future, every human will be connected to every other human on the planet by a wireless network. But that’s just the beginning. 

Soon the stuff of modern life will all be part of the network, and it will unlock infinite opportunities for new ways of talking, making and being. The network will be our sixth sense, connecting us to our digital lives. In this film, we ponder that existence and how it is enabled by inventions and technologies developed over the past 30 years, and the innovations that still lie ahead of us.


Video 5: Story of Light

When Alexander Graham Bell discovered that sound could be carried by light, he never could have imagined the millions of written text and audio and video communications that would one day be transmitted around the world every second on a single strand of fiber with the dimensions of a human hair.

Follow the journey of a single text message zipping around the globe at the speed of light, then meet the researchers that have taken up Bell’s charge.


For anyone interested, Wikipedia has a good detailed info on Bell Labs history here.

Friday, 24 February 2017

Connecting Rural Scotland using Airmasts and Droneways


This week EE has finally done a press release on what they term as Airmasts (see my blog post here). Back in Nov. last year, Mansoor Hanif, Director of Converged Networks and Innovation BT/EE gave an excellent presentation on connecting rural Scottish Islands using Airmasts and Droneways at the Facebook TIP Summit. Embedded below are the slides and video from that talk.





In other related news, AT&T is showing flying COWs (Cell On Wheels) that can transmit LTE signals


Their innovation blog says:

It is designed to beam LTE coverage from the sky to customers on the ground during disasters or big events.
...
Here’s how it works. The drone we tested carries a small cell and antennas. It’s connected to the ground by a thin tether. The tether between the drone and the ground provides a highly secure data connection via fiber and supplies power to the Flying COW, which allows for unlimited flight time.  The Flying COW then uses satellite to transport texts, calls, and data. The Flying COW can operate in extremely remote areas and where wired or wireless infrastructure is not immediately available. Like any drone that we deploy, pilots will monitor and operate the device during use.

Once airborne, the Flying COW provides LTE coverage from the sky to a designated area on the ground.  

Compared to a traditional COW, in certain circumstances, a Flying COW can be easier to deploy due to its small size. We expect it to provide coverage to a larger footprint because it can potentially fly at altitudes over 300 feet— about 500% higher than a traditional COW mast.  

Once operational, the Flying COW could eventually provide coverage to an area up to 40 square miles—about the size of a 100 football fields. We may also deploy multiple Flying COWs to expand the coverage footprint.

Nokia on the other hand has also been showcasing drones and LTE connectivity for public safety at D4G Award event in Dubai


Nokia's Ultra Compact Network provides a standalone LTE network to quickly re-establish connectivity to various mission-critical applications including video-equipped drones. Drones can stream video and other sensor data in real time from the disaster site to a control center, providing inputs such as exact locations where people are stranded and nature of the difficulty of reaching the locations.

Related Posts:



Sunday, 4 December 2016

5G, Hacking & Security


It looks like devices that are not manufactures with security and privacy in mind are going to be the weakest link in future network security problems. I am sure you have probably read about how hacked cameras and routers enabled a Mirai botnet to take out major websites in October. Since then, there has been no shortage of how IoT devices could be hacked. In fact the one I really liked was 'Researchers hack Philips Hue lights via a drone; IoT worm could cause city blackout' 😏.


Enter 5G and the problem could be be made much worse. With high speed data transfer and signalling, these devices can create an instantaneous attack on a very large scale and generating signalling storm that can take a network down in no time.

Giuseppe TARGIA, Nokia presented an excellent summary of some of these issues at the iDate Digiworld Summit 2016. His talk is embedded below:



You can check out many interesting presentations from the iDate Digiworld Summit 2016 on Youtube and Slideshare.

Related posts:


Sunday, 22 May 2016

QCI Enhancements For Mission Critical Communications

Its been quite a while since I posted about QCI and end-to-end bearer QoS in EPC. In LTE Release-12 some new QCI values were added to handle mission critical communications.


This picture is taken from a new blog called Public Safety LTE. I have discussed about the Default and Dedicated bearers in an earlier post here (see comments in that post too). You will notice in the picture above that new QCI values 65, 66, 69 & 70 have been added. For mission critical group communications new default bearer 69 would be used for signalling and dedicated bearer 65 will be used for data. Mission critical data would also benefit by using QCI 70.


LTE for Public Safety that was published last year provides a good insight on this topic as follows:

The EPS provides IP connectivity between a UE and a packet data network external to the PLMN. This is referred to as PDN connectivity service. An EPS bearer uniquely identifies traffic flows that receive a common QoS treatment. It is the level of granularity for bearer level QoS control in the EPC/E-UTRAN. All traffic mapped to the same EPS bearer receives the same bearer level packet forwarding treatment. Providing different bearer level packet forwarding treatment requires separate EPS bearers.

An EPS bearer is referred to as a GBR bearer, if dedicated network resources related to a Guaranteed Bit Rate (GBR) are permanently allocated once the bearer is established or modified. Otherwise, an EPS bearer is referred to as a non-GBR bearer.

Each EPS bearer is associated with a QoS profile including the following data:
• QoS Class Identifier (QCI): A scalar pointing in the P-GW and eNodeB to node-specific parameters that control the bearer level packet forwarding treatment in this node.
• Allocation and Retention Priority (ARP): Contains information about the priority level, the pre-emption capability, and the pre-emption vulnerability. The primary purpose of the ARP is to decide whether a bearer establishment or modification request can be accepted or needs to be rejected due to resource limitations.
• GBR: The bit rate that can be expected to be provided by a GBR bearer.
• Maximum Bit Rate (MBR): Limits the bit rate that can be expected to be provided by a GBR bearer.

Following QoS parameters are applied to an aggregated set of EPS bearers and are part of user’s subscription data:
• APN Aggregate Maximum Bit Rate (APN-AMBR): Limits the aggregate bit rate that can be expected to be provided across all non-GBR bearers and across all PDN connections associated with the APN.
• UE Aggregate Maximum Bit Rate (UE-AMBR): Limits the aggregate bit rate that can be expected to be provided across all non-GBR bearers of a UE. The UE routes uplink packets to the different EPS bearers based on uplink packet filters assigned to the bearers while the P-GW routes downlink packets to the different EPS bearers based on downlink packet filters assigned to the bearers in the PDN connection.

Figure 1.5 above shows the nodes where QoS parameters are enforced in the EPS system.

Related links:



Saturday, 12 December 2015

LTE-Advanced Pro (a.k.a. 4.5G)

3GPP announced back in October that the next evolution of the 3GPP LTE standards will be known as LTE-Advanced Pro. I am sure this will be shortened to LTE-AP in presentations and discussions but should not be confused with access points.

The 3GPP press release mentioned the following:

LTE-Advanced Pro will allow mobile standards users to associate various new features – from the Release’s freeze in March 2016 – with a distinctive marker that evolves the LTE and LTE-Advanced technology series.

The new term is intended to mark the point in time where the LTE platform has been dramatically enhanced to address new markets as well as adding functionality to improve efficiency.

The major advances achieved with the completion of Release 13 include: MTC enhancements, public safety features – such as D2D and ProSe - small cell dual-connectivity and architecture, carrier aggregation enhancements, interworking with Wi-Fi, licensed assisted access (at 5 GHz), 3D/FD-MIMO, indoor positioning, single cell-point to multi-point and work on latency reduction. Many of these features were started in previous Releases, but will become mature in Release 13.

LTE-evolution timelinea 350pxAs well as sign-posting the achievements to date, the introduction of this new marker confirms the need for LTE enhancements to continue along their distinctive development track, in parallel to the future proposals for the 5G era.


Some vendors have been exploring ways of differentiating the advanced features of Release-13 and have been using the term 4.5G. While 3GPP does not officially support 4.5G (or even 4G) terminology, a new term has been welcomed by operators and vendors alike.

I blogged about Release-13 before, here, which includes a 3GPP presentation and 4G Americas whitepaper. Recently Nokia (Networks) released a short and sweet video and a whitepaper. Both are embedded below:



The Nokia whitepaper (table of contents below) can be downloaded from here.


Sunday, 4 October 2015

Updates from the 3GPP RAN 5G Workshop - Part 2

I have finally got round to having a look at some more presentations on 5G from the recently concluded 3GPP RAN 5G Workshop. Part 1 of the series is here.
Panasonic introduced this concept of Sub-RAT's and Cradle-RAT's. I think it should be obvious from the picture above what they mean but you can refer to their presentation here for more details.


Ericsson has provided a very detailed presentation (but I assume a lot of slides are backup slides, only for reference). They have introduced what they call as "NX" (No compatibility constraints). This is in line to what other vendors have referred to as well that above 6GHz, for efficiency, new frame structures and waveforms would serve best. Their slides are here.



Nokia's proposal is that in the phase 1 of 5G, the 5G Access point (or 5G NodeB) would connect to the 4G Evolved Packet Core (EPC). In phase 2, both the LTE and the 5G (e)NodeB's would connect to the 5G core. Their presentation is available here.

Before we move on to the next one, I should mention that I am aware of some research that is underway, mostly by universities where they are exploring an architecture without a centralised core. The core network functionality would be distributed and some of the important data would be cached on the edge. There will be challenges to solve regarding handovers and roaming; also privacy and security issues in the latter case.
I quite like the presentation by GM research about 5G in connected cars. They make a very valid point that "Smartphones and Vehicles are similar but not the same. The presentation is embedded below.



Qualcomm presented a very technical presentation as always, highlighting that they are thinking about various future scenarios. The picture above, about phasing is in a way similar to the Ericsson picture. It also highlights what we saw in part 1, that mmW will arrive after WRC-19, in R16. Full presentation here.


The final presentation we are looking is by Mitsubishi. Their focus is on Massive MIMO which may become a necessity at higher frequencies. As the frequency goes higher, the coverage goes down. To increase the coverage area, beamforming can be used. The more the antennas, the more focused the beam could be. They have also proposed the use of SC-FDMA in DL. Their presentation is here and also embedded below.



Tuesday, 21 July 2015

TDD-FDD Joint Carrier Aggregation deployed


As per Analysis Mason, of the 413 commercial LTE networks that have been launched worldwide by the end of 2Q 2015, FD-LTE accounts for 348 (or 84%) of them, while TD-LTE accounts for only 55 (or 13%). Having said that, TD-LTE will be growing in market share, thanks to the unpaired spectrum that many operators secured during the auctions. This, combined with LTE-A Small Cells (as recently demoed by Nokia Networks) can help offload traffic from hotspots.

Light Reading had an interesting summary of TD-LTE rollouts and status that is further summarised below:
  • China Mobile has managed to sign up more than 200 million subscribers in just 19 months, making it the fastest-growing operator in the world today. It has now deployed 900,000 basestations in more than 300 cities. From next year, it is also planning to upgrade to TDD+ which combines carrier aggregation and MIMO to deliver download speeds of up to 5 Gbit/s and a fivefold improvement in spectrum efficiency. TDD+ will be commercially available next year and while it is not an industry standard executives say several elements have been accepted by 3GPP. 
  • SoftBank Japan has revealed plans to trial LTE-TDD Massive MIMO, a likely 5G technology as well as an important 4G enhancement, from the end of the year. Even though it was one of the world's first operators to go live with LTE-TDD, it has until now focused mainly on its LTE-FDD network. It has rolled out 70,000 FDD basestations, compared with 50,000 TDD units. But TDD is playing a sharply increasing role. The operator expects to add another 10,000 TDD basestations this year to deliver additional capacity to Japan's data-hungry consumers. By 2019 at least half of SoftBank's traffic to run over the TDD network.

According to the Analysis Mason article, Operators consider TD-LTE to be an attractive BWA (broadband wireless access) replacement for WiMAX because:

  • most WiMAX deployments use unpaired, TD spectrum in the 2.5GHz and3.5GHz bands, and these bands have since been designated by the 3GPP as being suitable for TD-LTE
  • TD-LTE is 'future-proof' – it has a reasonably long evolution roadmap and should remain a relevant and supported technology throughout the next decade
  • TD-LTE enables operators to reserve paired FD spectrum for mobile services, which mitigates against congestion in the spectrum from fixed–mobile substitution usage profiles.

For people who may be interested in looking further into migrating from WiMAX to TD-LTE, may want to read this case study here.


I have looked at the joint FDD-TDD CA earlier here. The following is from the 4G Americas whitepaper on Carrier Aggregation embedded here.

Previously, CA has been possible only between FDD and FDD spectrum or between TDD and TDD spectrum. 3GPP has finalized the work on TDD-FDD CA, which offers the possibility to aggregate FDD and TDD carriers jointly. The main target with introducing the support for TDD-FDD CA is to allow the network to boost the user throughput by aggregating both TDD and FDD toward the same UE. This will allow the network to boost the UE throughput independently from where the UE is in the cell (at least for DL CA).

TDD and FDD CA would also allow dividing the load more quickly between the TDD and FDD frequencies. In short, TDD-FDD CA extends CA to be applicable also in cases where an operator has spectrum allocation in both TDD and FDD bands. The typical benefits of CA – more flexible and efficient utilization of spectrum resources – are also made available for a combination of TDD and FDD spectrum resources. The Rel-12 TDD-FDD CA design supports either a TDD or FDD cell as the primary cell.

There are several different target scenarios in 3GPP for TDD-FDD CA, but there are two main scenarios that 3GPP aims to support. The first scenario assumes that the TDD-FDD CA is done from the same physical site that is typically a macro eNB. In the second scenario, the macro eNB provides either a TDD and FDD frequency, and the other frequency is provided from a Remote Radio Head (RRH) deployed at another physical location. The typical use case for the second scenario is that the macro eNB provides the FDD frequency and the TDD frequency from the RRH.

Nokia Networks were the first in the world with TDD-FDD CA demo, back in Feb 2014. In fact they also have a nice video here. Surprisingly there wasnt much news since then. Recently Ericsson announced the first commercial implementation of FDD/TDD carrier aggregation (CA) on Vodafone’s network in Portugal. Vodafone’s current trial in its Portuguese network uses 15 MHz of band 3 (FDD 1800) and 20 MHz of band 38 (TDD 2600). Qualcomm’s Snapdragon 810 SoC was used for measurement and testing.

3 Hong Kong is another operator that has revealed its plans to launch FDD-TDD LTE-Advanced in early 2016 after demonstrating the technology on its live network.

The operator used equipment supplied by Huawei to aggregate an FDD carrier in either of the 1800 MHz or 2.6 GHz bands with a TDD carrier in the 2.3 GHz band. 3 Hong Kong also used terminals equipped with Qualcomm's Snapdragon X12 LTE processor.

3 Hong Kong already offers FDD LTE-A using its 1800-MHz and 2.6-GHz spectrum, and is in the midst of deploying TD-LTE with a view to launching later this year.

The company said it expects devices that can support hybrid FDD-TDD LTE-A to be available early next year "and 3 Hong Kong is expected to launch the respective network around that time."

3 Hong Kong also revealed it plans to commercially launch tri-carrier LTE-A in the second half of 2016, and is working to aggregate no fewer than five carriers by refarming its 900-MHz and 2.1-GHz spectrum.

TDD-FDD CA is another tool in the network operators toolbox to help plan the network and make it better. Lets hope more operators take the opportunity to deploy one.

Sunday, 8 March 2015

LTE Category-0 low power M2M devices


While we have talked about different LTE categories, especially higher speeds, we have not yet discussed Category-0 or Cat-0 for M2M.

A recent news report stated the following:

CAT-1 and CAT-0 are lower speed and power versions of the LTE standard which dramatically extend the addressable market for carriers and chip makers alike. They introduce new IoT targeted features, extend battery operation and lower the cost of adding LTE connectivity.
“While chipsets supporting these lower categories are essential for numerous applications, including wearable devices, smart home and smart metering, there has been an industry development gap that we had anticipated two years ago,” said Eran Eshed, co-founder and vice president of marketing and business development at Altair. “We’ve worked hard to address this gap by being first to market with true CAT-1 and 0 chipsets featuring a power/size/cost combination that is a massive game-changer.”
Ericsson has an interesting presentation that talks about LTE evolution for cellular IoT. While Rel-12 Cat-0 would use the normal allocated bandwidth (upto 20MHz), Rel-13 plans further enhancements to save even more power by reducing the bandwidth to 1.4Mhz. Another possible saving of power comes from the use of Half Duplex (but its optional). There is a very interesting presentation from Mstar semiconductors on half duplex that I have blogged about here. Anyway, the presentation from Ericsson is here:



When we talk about 50 billion M2M devices, a question that I regularly ask is how many of them will be using cellular and how many will use other technologies. Its good to see that my skepticism is shared by others as well, see the tweet below.

Click on the pic.twitter.com/Z7s6wqxkBM to see the actual media.

Nokia has also got an interesting whitepaper on this topic which talks about optimizing LTE and the architectural evolution that will lead cellular LTE to become a compelling technology so that it can be widely adopted. That paper is embedded as well below.



Tuesday, 3 February 2015

5G: A 2020 Vision


I had the pleasure of speaking at the CW (Cambridge Wireless) event ‘5G: A Practical Approach’. It was a very interesting event with great speakers. Over the next few weeks, I will hopefully add the presentations from some of the other speakers too.

In fact before the presentation (below), I had a few discussions over the twitter to validate if people agree with my assumptions. For those who use twitter, maybe you may want to have a look at some of these below:







Anyway, here is the presentation.

 

Friday, 11 January 2013

The four C's of Release-12 enhancements

Mid last year, I did a post on the LTE Rel-12 workshop and later another post on the progress.  Late last year, 3GPP posted a news item that the Rel-12 will be available by June 2014 and the main areas of focus will be as follows:


Exploiting new business opportunities

  • Public Safety and Critical Communications 
    — Group Communications (GCSE_LTE)
  • Proximity Services, including both Public Safety and Commercial aspects (ProSe)
  • Machine Type Communications 
    — UE Power Consumption, Small Data and Device Triggering (MTCe_UEPCOPMTCe_SDDTE )

WiFi integration

  • Network Selection aspects (WLAN_NS)
  • S2a Mobility with GTP for WLAN (FS_SaMOG)
  • Optimized Offloading to WLAN in 3GPP-RAT mobility (FS_WORM)

System capacity and stability

  • User plane congestion (UPCON)
  • Core Network Overload (FS_CNO)
In addition to those three areas, other features can still be considered for completion in the Release 12 timeframe. The SA2 Working Group - responsible for Architecture - will produce time budgets to see whether further priority could be put on;
  • Pure IMS features that can run in parallel with key items
  • Policy and Charging Control for supporting fixed broadband access networks, PCC for fixed terminals (P4C BB1 and BB2)
  • Application Based Charging (FS_ABC)
  • User Monitoring Control Enhancements (FS_UMONC)
  • LIPA Mobility and SIPTO at the Local Network (LIMONET)
  • Operator Policies for IP Interface Selection (OPIIS)
Working Group SA2 will provide time budgeting information, for the selected features, at the next Plenary meeting - TSG#59, in March 2013.


Nokia Siemens Networks (NSN) has published their own whitepaper on 'LTE Release 12 and Beyond' (available on Slideshare here).

The following is their take on the four C's:


Release 12 enhancements focus on the four areas of Capacity, Coverage, Coordination (between cells), and Cost. Improvements in these areas are based on using several technology enablers: small cell enhancements, macro cell enhancements, New Carrier Type (NCT) and Machine-Type Communications (MTC). These enablers are described in this paper.

Customer experience, capacity and coverage will be improved with small cell enhancements, based on inter-site Carrier Aggregation, LTE-WLAN integration and macro cell enhancements. Small cell enhancements are also known as enhanced local access.

NCT helps achieve the required changes in the physical layer and initially provides base station energy savings, flexibility in deployment and ways to reduce interference in heterogeneous networks (HetNets).

Improvements in capacity and a more robust network performance are achieved by 3D Beamforming/MIMO (Multiple Input Multiple Output), advanced user equipment (UE) receivers and evolved Coordinated Multipoint (CoMP) techniques, as well as through Self-Organizing Networks for small cell deployments.

Finally, new spectrum footprint and new business will be opened up by optimizing the system for Machine-Type Communications, as well as by, for example, using LTE for public safety.


The whitepaper is available on Slideshare here.