Showing posts with label GSMA. Show all posts
Showing posts with label GSMA. Show all posts

Tuesday, 23 May 2023

Top 10 New (2022) Security Standards That You Need to Know About!

I had been meaning to add this session to the blog for a while. Some security researchers may find these useful. 

At RSA Conference 2022, Bret Jordan, CTO, Emerging Technologies, Broadcom and Kirsty Paine, Advisor - Technology & Innovation, EMEA, Splunk Inc. presented a talk covering what they described as the most important, interesting and impactful technical standards, hot off the press and so 2022. From the internet and all its things, to the latest cybersecurity defenses, including 5G updates and more acronyms than one can shake a stick at. 

The video is embedded below and the slides are available here.

Related Posts

Wednesday, 4 January 2023

How Many People are Still Unconnected in 2023 and Why?

I hear in many presentations that half the world is still unconnected so we need a solution XYZ. In this post I will explore how many people are really unconnected and why.

GSMA produces an annual report called "The State of Mobile Internet Connectivity Report". The latest issue from Nov 2022 explains the number of people that are still unconnected because of coverage gap or the usage gap. Quoting from the report:

(click to expand the image)

By the end of 2021, 4.3 billion people were using mobile internet, representing 55% of the world’s population, up from 31% in 2014 (see Figure 1). This translates into almost 300 million people coming online in the past year. Most of the people who started using mobile internet in 2021 came from LMICs (low and middle-income countries), where 94% of the unconnected population live.

By the end of 2021, the share of the world’s population living in areas without mobile broadband coverage stood at 5%, meaning that 400 million people are still not covered by a mobile broadband network. Since 2018, this coverage gap has reduced by only 1 pp a year (see Figure 1), highlighting how the remaining uncovered communities – which are predominantly rural, poor and sparsely populated – are the most challenging to reach in a financially sustainable manner. For example, in least developed countries (LDCs) almost 30% of people living in rural areas are still not covered by a mobile broadband network.

A much larger proportion of the unconnected live in areas already covered by mobile broadband networks. By the end of 2021, 40% of the world’s population (3.2 billion people) were living within the footprint of a mobile broadband network but not using mobile internet. While this usage gap remained relatively unchanged between 2014 and 2019, it declined by 300 million people (or 5 pp) over the past two years. However, the usage gap remains substantial and is now almost eight times the size of the coverage gap. It is worth noting that these numbers are for the total population, some of whom would never be expected to use the internet (e.g. young infants). Indeed, taking adults (18 years old and above) only, the usage gap stands at 25%, a much smaller though still significant gap.

The report further expands the reasons for usage gap as shown below:

(click to enlarge)

As can be seen, the reasons have been grouped in 5 major categories as follows:

  • Literacy and digital skills
    • I do not know how to access the internet on a mobile phone
    • I have difficulties with reading and writing
    • I find it difficult to use a mobile in general (calling, texting or mobile internet)
    • I do not have time to learn how to use the internet on a mobile phone
    • There is nobody to teach or help me to use mobile internet
  • Relevance
    • There is not enough in my own language on the internet
    • I do not find the internet relevant enough for me (not useful or not interesting)
  • Affordability
    • The cost of buying a mobile phone that can access the internet is too high for me
    • The cost of buying data to use the internet on my mobile is too high for me
  • Safety and security
    • I am concerned that I would receive unwanted contact from people online (e.g. scam emails or unwanted messages)
    • I am concerned that it might expose myself or my family to harmful content
    • I am concerned that my identity or other private information will be stolen or misused
  • Access
    • There is limited or no coverage to access the internet in my area
    • Using the internet on my mobile phone is too slow (e.g. connection speeds)
    • My family does not approve of me using the internet on a mobile phone
    • It is hard to find a mobile phone agent or representative to buy mobile internet data from
    • Using the internet on my mobile phone uses too much battery
    • I cannot borrow or pay to use internet on another person’s phone
    • It is hard to find somewhere to buy a mobile phone which is able to connect to the internet

There are many reports of blackmail and extortion cases in India that are linked to mobile phones and internet. You can read about them here and here. These also discourage a lot of people to embrace smartphones, especially women.  

Although women account for close to half the world's population, according to a UN report on gender digital divide, 259 million fewer women have access to the Internet than men in 2022. 

I hope that the next time presenters are talking about the number of unconnected people, they put things in context and mention the connectivity and the usage gap. 

Finally, here is a webinar recording from M4D discussing the latest trends in global connectivity from The State of Mobile Internet Connectivity Report 2022:

Related Posts

Tuesday, 2 August 2022

GSMAi Webinar: Is the Industry Moving Fast Enough on Standalone 5G?

I recently participated in a webinar, discussing one of my favourite topics, 5G Standalone (5G SA). If you do not know about 5G SA, you may want to quickly watch my short and simple video on the topic here.

Last year I blogged about GSA's 5G Standalone webinar here. That time we were discussing why 5G SA is taking time to deliver, it was sort of a similar story this time. Things are changing though and you will see a lot more of these standalone networks later this year and even early next year. 

The slides of the webinar are available here and the video is embedded below:

Here are some of my thoughts on why 5G SA is taking much longer than most people anticipated:

  • 5G SA will force operators to move to 5G core which is a completely new architecture. The transition to this is taking much longer than expected, especially if there are a lot of legacy services that needs to be supported.
  • Many operators are moving towards converged core with 4G & 5G support to simply the core. This transition is taking long.
  • For taking complete advantage of 5G architecture, cloud native implementation is required. Some operators have already started the transition to cloud native but others are lagging.
  • 5G SA speeds will be lower than NSA speeds hence some operators who don't have a lot of mid-band spectrum are delaying their 5G SA rollouts.
  • Many operators have managed to reduce their latency as they start to move to edge datacentres, hence the urgency for 5G standalone has reduced.
  • Most operators do not see any new revenue opportunities because of 5G SA, hence they want to be completely ready before rolling out 5G SA
  • Finally, you may hear a lot about not enough devices supporting 5G SA but that's not the device manufacturers views.  See this tweet from GSA ðŸ‘‡

Do you agree with my reasoning? If not, please let me know in the comments.

Related Posts

Monday, 6 June 2022

2G/3G Shutdown may Cost Lives as 4G/5G Voice Roaming is a Mess

You have probably heard me a complaining about the pace of VoLTE rollout, 2G/3G shutdowns, 4G Voice roaming, etc. This post highlights all these issues coming together in a dangerous way. People often ask me why is it that it's always just me highlighting the issues. The answer is that there are other people but their voice may not reach you. In this post, I am highlighting presentations by Rudolf van der Berg, Project and programme manager at Stratix Consulting.

Let's start with Rudolf's post from LinkedIn:

Stop the shutdown of 2G and 3G networks to save lives. This is the urgent call I make today and I hope you can help me spread it! Please call on people you know in politics, regulators and emergency services to demand a stop! Call on anyone you know in the GSMA, 3GPP, handset makers (Apple, Samsung, Qualcomm, MediaTek), network builders (Ericsson, Nokia, Huawei) to re-engineer VoLTE to an interoperable standard.

Emergency calls (112, 911) should work anywhere in the world on any phone. For GSM and 3G voice calling it did. You could fly anywhere and call emergency services and in the EU we have the roaming regulation that demands calling like at home. Voice over 4G and 5G hasn't been properly standardized and isn't interoperable between networks, devices, chipsets and firmware. People need to be able to make and receive telephone calls around the world, to each other and to emergency services. Unfortunately even according to sector itself emergency services are at risk from VoLTE. A consumer today can't know whether a phone they bought will make VoLTE calls at home or abroad, nor whether it can reach emergency services. That can't be right!

So please help EENA 112 and me share this message! Thank you #eena2022 (Slide 4 contains a mistake, T-Mo USA hasn't decided on 2G shutdown yet. that is good for availability of 911, though fundamental point remains. Apologies.)

The video and slides are embedded below:

The slides contain many useful references and links, you can download directly from here.

Back in April, iBASIS hosted a VoLTE and 5G Roaming Roundtable. You can watch the video here and download the presentation and whitepaper as well. It contains talks from Kaleido Intelligence, iBASIS, KPN, Bouygues Telecom and Telus. 

The slide from Dutch MNO KPN above highlights the VoLTE Roaming issues they are observing. Other operators will face this issue sooner or later as well. 

The Regulators, GSMA and 3GPP have to come together to fix this important issue for once and all so no lives are lost because of this. Hopefully someone is listening!

Related Posts

Monday, 9 May 2022

Transitioning from eCall to NG-eCall and the Legacy Problem

eCall (an abbreviation of "emergency call") is an initiative by the European Union, intended to bring rapid assistance to motorists involved in a collision anywhere within the European Union. The aim is for all new cars to incorporate a system that automatically contacts the emergency services in the event of a serious accident, sending location and sensor information. eCall was made mandatory in all new cars sold within the European Union as of April 2018.

In UK, the National Highways have a fantastic summary of the eCall feature here. The following video explains how this feature works:

Last year, ETSI hosted the Next Generation (NG) eCall webinar and Plugtests. The presentations from the event are available here. The presentations from GSMA, Qualcomm and Iskratel have a fantastic summary of many of the issues and challenges  with eCall and transitioning to NG eCall.

From the Qualcomm presentation:

The eCall standardisation began in 2004 when 2G networks were prevalent and 3G was being deployed. The chosen solution was in-band modem and Circuit Switched (CS) 112 call. The in-band modem was optimised for GSM (2G) and UMTS (3G) as the standard completed in 2008.

eCall for 4G (NG eCall) standardisation was started in 2013 and completed in 2017. As there is no CS domain in 4G/5G, IMS emergency calling will replace circuit switched emergency call. Next generation (NG) eCall provides an extension to IMS emergency calls and support for 5G (NR) has since been added.

The picture above from GSMA presentation highlights the magnitude of the problem if NG eCall deployment is delayed. GSMA is keen for the mobile operators to switch off their 2G/3G networks and only keep 4G/5G. There are problems with this approach as many users and services may be left without connectivity. Fortunately the European operators and countries are leaving at least one previous generation of technology operational for the foreseeable future.

GSMA's presentation recommends the following:

  • New technology neutral eCall Regulation (type approval and related acts) to be amended, adopted by European Commission and enter into force by end 2022 the latest.
  • OEMs to start installing NG eCall /remotely programable/exchangeable modules by end 2022; by end 2024 all new vehicles sold in the market should be NG eCall only
  • New vehicle categories to start with NG eCall only by 2024
  • MNOs have initiated to phase out 2G/3G between 2020 and 2025 , whereas the optimal transition path of their choice beyond this date will depend on market and technology specifics, and may require alignment with NRAs.
  • By 2022 , the industry will develop solutions for the transition period that need to be implemented country by country, which will also assess the amount of needed public funding to be economically feasible.
  • Retrofitting to be acknowledged, completed and formalised as a process by end 2024; standards should already be available in 2022.
  • Aftermarket eCall solution to be completed (including testing) and formalised by end 2024; standards should already be available in 2022.
  • The European Commission to make available public funding to support OEMs and alternative solutions to legacy networks starting from 2022 , under the RRF/ recovery package (or other relevant instruments)
  • Legacy networks availability until 2030 at the latest. By then deployment of all alternative solutions simultaneously would have ensured that the remaining legacy fleet will continue to have access to emergency services through NG eCall.

EENA, the European Emergency Number Association, is a non-governmental organisation whose mission is to contribute to improving people’s safety & security. One of the sessions at the EENA 2021 Conference was on eCall. The video from that is embedded below and all information including agenda and presentations are available here.

Related Posts:

Monday, 7 March 2022

GSMA Releases Mobile Economy Report 2022

The GSMA Mobile Economy report series provides the latest insights on the state of the mobile industry worldwide. Produced by GSMA's in-house research team, GSMA Intelligence, these reports contain a range of technology, socio-economic and financial datasets, including forecasts out to 2025. The global version of the report is published annually at MWC Barcelona, while regional editions are published throughout the year.

The Infographic above (PDF) shows the latest update from 2022. The PDF of report is available here.

Selective extract from the executive summary as follows:

The mobile industry has been instrumental in extending connectivity to people around the world. In 2021, the number of mobile internet subscribers reached 4.2 billion people globally. Operators’ investments in network infrastructure over the last decade have helped to shrink the coverage gap for mobile broadband networks from a third of the global population to just 6%. But although the industry continues to invest in innovative solutions and partnerships to extend connectivity to still underserved and far-flung communities, the adoption of mobile internet services has not kept pace with the expansion of network coverage. This has resulted in a significant usage gap. In 2021, the usage gap stood at 3.2 billion people, or 41% of the global population. 

The reasons for the usage gap are multifaceted and vary by region, but they generally relate to a lack of affordability, relevance, knowledge and skills, in addition to safety and security concerns. Furthermore, the barriers to mobile internet adoption are particularly acute among certain segments of the population, including women, the elderly, those in rural areas and persons with disabilities – or a combination thereof. Addressing the usage gap for these key groups will extend the benefits of the internet and digital technology to more people in society, and will require concerted efforts by a broad range of stakeholders working together with mobile operators and other ecosystem players, such as device manufacturers and digital content creators.

5G adoption continues to grow rapidly in pioneer markets, with the total number of connections set to reach 1 billion in 2022. Momentum has been boosted by a number of factors, including the economic recovery from the pandemic, rising 5G handset sales, network coverage expansions and overall marketing efforts by mobile operators. Meanwhile, a new wave of 5G rollouts in large markets with modest income levels (such as Brazil, Indonesia and India) could further incentivise the mass production of more affordable 5G devices, which in turn could further bolster subscriber growth. By the end of 2025, 5G will account for around a quarter of total mobile connections and more than two in five people around the world will live within reach of a 5G network.

4G still has room to grow in most developing markets, particularly in SubSaharan Africa, where 4G adoption is still below a fifth of total connections and operators are stepping up efforts to migrate existing 2G and 3G customers to 4G networks. However, rising 5G adoption in leading markets, such as China, South Korea and the US, means that 4G adoption on a global level is beginning to decline. Globally, 4G adoption will account for 55% of total connections by 2025, down from a peak of 58% in 2021.

By the end of 2021, 5.3 billion people subscribed to mobile services, representing 67% of the global population. In a growing number of markets, most adults now own a mobile phone, meaning that future growth will come from younger populations taking out a mobile subscription for the first time. Over the period to 2025, there will be an additional 400 million new mobile subscribers, most of them from Asia Pacific and Sub-Saharan Africa, taking the total number of subscribers to 5.7 billion (70% of the global population). 

In 2021, mobile technologies and services generated $4.5 trillion of economic value added, or 5% of GDP, globally. This figure will grow by more than $400 billion by 2025 to nearly $5 trillion as countries increasingly benefit from the improvements in productivity and efficiency brought about by the increased take-up of mobile services. 5G is expected to benefit all economic sectors of the global economy during this period, with services and manufacturing experiencing the most impact.

You can download all reports from here.

For anyone interested in keeping a track of which 2G/3G networks are undergoing sunset, you can follow my Twitter thread that lists all the networks I become aware of 

Related Posts

Monday, 13 December 2021

5G & AI Powered Smart Hospitals

5G Telehealth has been one of the main driving use cases for upgrading the infrastructure. While some use cases definitely make sense, some others like remote surgery will most likely never happen, at least the way it's depicted today.

At the GSMA Mobile 360 APAC - 5G Industry Community Summit, Michael Fung, Chief Information Officer from CHUK Medical Centre presented a nice talk detailing how they see 5G & AI powered hospitals of the future. The video of his talk is embedded at the bottom of this post.

There have also been some other discussions on 5G & healthcare recently. Here are the links if you want to explore this topic further:

The US FDA recently published a one pager looking at how Service level agreements (SLAs) can enable 5G-enabled medical device use cases by documenting how a medical device communication requirement is met by the unique characteristics of 5G networks and the roles and responsibilities of the stakeholders involved in offering safe and effective 5G-enabled healthcare to patients.

IEEE Access has a detailed paper on this topic by the same authors. Quoting from the abstract:

Service level agreements (SLAs) can enable 5G-enabled medical device use cases by documenting how a medical device communication requirements are met by the unique characteristics of 5G networks and the roles and responsibilities of the stakeholders involved in offering safe and effective 5G-enabled healthcare to patients. However, there are gaps in this space that should be addressed to facilitate the efficient implementation of 5G technology in healthcare. Current literature is scarce regarding SLAs for 5G and is absent regarding SLAs for 5G-enabled medical devices. This paper aims to bridge these gaps by identifying key challenges, providing insight, and describing open research questions related to SLAs in 5G and specifically 5G-healthcare systems. This is helpful to network service providers, users, and regulatory authorities in developing, managing, monitoring, and evaluating SLAs in 5G-enabled medical systems.

Here is the video from GSMA 5G Industry Community Summit Part 2:

Related Posts:

Monday, 4 October 2021

Are there 50 Billion IoT Devices yet?

Detailed post below but if you are after a quick summary, it's in the picture above.

Couple of weeks back someone quoted that there were 50 billion devices last year (2020). After challenging them on the number, they came back to me to say that there were over 13 billion based on GSMA report. While the headline numbers are correct, there are some finer details we need to look at.

It all started back in 2010 when the then CEO of Ericsson announced that there will be 50 Billion IoT Devices by 2020. You could read all about it here and see the presentation here. While it doesn't explicitly say, it was expected that the majority of these will be based on cellular technologies. I also heard the number 500 Billion by 2030, back in 2013.

So the question is how many IoT devices are there today and how many of these are based on mobile cellular technologies?

The headline number provided by the GSMA Mobile Economy report, published just in time for MWC 2021, is 13.1 billion in 2020. It does not provide any further details on what kind of connectivity these devices use. I had to use my special search skills to find the details here.

As you can see, only 1.9 billion of these are based on cellular connections, of which 0.2 billion are based on licensed Low Power Wide Area (licensed LPWA, a.k.a. LTE-M and NB-IoT) connections. 

Ericsson Mobility Report, June 2021, has a much more detailed breakdown regarding the numbers as can be seen in the slide above. As of the end of 2020, there were 12.4 billion IoT devices, of which 10.7 billion were based on Short-range IoT. Short-range IoT is defined as a segment that largely consists of devices connected by unlicensed radio technologies, with a typical range of up to 100 meters, such as Wi-Fi, Bluetooth and Zigbee.

Wide-area IoT, which consists of segment made up of devices using cellular connections or unlicensed low-power technologies like Sigfox and LoRa had 1.7 billion devices. So, the 1.6 billion cellular IoT devices also includes LPWAN technologies like LTE-M and NB-IoT.

I also reached out to IoT experts at analyst firm Analysys Mason. As you can see in the Tweet above, Tom Rebbeck, Partner at Analysys Mason, mentioned 1.6 billion cellular (excluding NB-IoT + LTE-M) and 220 million LPWA (which includes NB-IoT, LTE-M, as well as LoRa, Sigfox etc.) IoT connections.

I also noticed this interesting chart in the tweet above which shows the growth of IoT from Dec 2010 until June 2021. Matt Hatton, Founding Partner of Transforma Insights, kindly clarified that the number as 1.55 billion including NB-IoT and LTE-M.

As you can see, the number of cellular IoT connections are nowhere near 50 billion. Even if we include all kinds of IoT connectivity, according to the most optimistic estimate by Ericsson, there will be just over 26 billion connections by 2026.

Just before concluding, it is worth highlighting that according to all these cellular IoT estimates, over 1 billion of these connections are in China. GSMA's 'The Mobile Economy China 2021' puts the number as 1.34 billion as of 2020, growing to 2.29 billion by 2025. Details on page 9 here.

Hopefully, when someone wants to talk about Internet of Thing numbers in the future, they will do a bit more research or just quote the numbers from this post here.

Related Posts

Tuesday, 10 November 2020

Network Slicing Tutorials and Other Resources

I have received quite a few requests to do a 5G Network Slicing tutorial but have still not got around to doing it. Luckily there are so many public resources available that I can get away with not doing one on this topic. 


This Award Solutions webinar by Paul Shepherd (embedded below) provides good insights into network slicing, what it is, how it efficiently enables different services in 5G networks, and the architectural changes in 5G required to support it.

Then there is also this myth about 3 slices in the network. The GSMA slice template is a good starting point for an operator looking to do network slicing in their 5G networks. The latest version is 3.0, available here.


As this picture (courtesy of Phil Kendall) shows, it's not a straightforward task.  

Alistair URIE from Nokia Bell Labs points out some common misconceptions people have with Network Slicing:

  1. Multiple slices may share the same cell and the same RU in each slice
  2. Single UE may have up to 8 active slices but must have a single CU-CP instance to terminate the common RRC 
  3. Slicing supports more than 3 slices 

Back in March, China Mobile, Huawei, Tencent, China Electric Power Research Institute, and Digital Domain have jointly released the Categories and Service Levels of Network Slice White Paper to introduce the industry’s first classification of network slice levels. The new white paper dives into the definitions, solutions, typical scenarios, and evolution that make up the five levels of network slices. It serves as an excellent reference to provide guidance in promoting and commercializing network slicing, and lays a theoretical foundation for the industry-wide application of network slicing.

The whitepaper describes the different phases as:

Phase 1 (ready): As mentioned above, the 5G transport network and 5G core network support different software-based and hardware-based isolation solutions. On the 5G NR side, 5QIs (QoS scheduling mechanism) are mainly used to achieve software-based isolation in WAN scenarios. Alternatively, campus-specific 5G NR (including micro base stations and indoor distributed base stations) is used to implement hardware-based isolation in LAN scenarios. In terms of service experience assurance, 5QIs are used to implement differentiated SLA assurance between slices. In terms of slice OAM capabilities, E2E KPIs can be managed in a visualized manner. This means that from 2020 on, Huawei is ready to deliver commercial use of E2E slicing for common customers and VIP customers of the public network and common customer of general industries (such as UHD live broadcast and AR advertisement).

Phase 2 (to be ready in 2021): In terms of isolation, the 5G NR side supports the wireless RB resource reservation technology (including the static reservation and dynamic reservation modes) to implement E2E network resource isolation and slicing in WAN scenarios. In terms of service experience assurance, features such as 5G LAN and 5G TSN are enhanced to implement differentiated and deterministic SLA assurance between different slices. In terms of slice OAM, on the basis of tenant-level KPI visualization, the limited self-service of the industry for rented slices can be further supported. In this phase, operators can serve VIP customers in common industries (such as AR/VR cloud games and drone inspection), dedicated industry customers (such as electric power management information region, medical hospital campus, and industrial campus), and dedicated industry customers (such as electric power production control region and public security).

Phase 3 (to be ready after 2022): In this phase, 5G network slicing supports real dynamic closed-loop SLAs based on AI and negative feedback mechanism, implementing network self-optimization and better serving industries (such as 5G V2X) with high requirements on mobility, roaming, and service continuity. In addition, industry-oriented comprehensive service capabilities will be further enhanced and evolved.

A more technical presentation from Nokia is available here. The video below shows how innovations in IP routing and SDN work together to implement network slicing in the transport domain.

If you know some other good resources and tutorials worth sharing, add them in the comments below.

Related Posts:

Thursday, 3 September 2020

Two Types of SMS in 5G


GSMA recently published updated "5G Implementation Guidelines: SA Option 2". It explains the two types of SMS in 5G, the same way there were 2 types of SMS in LTE.

Within 5GC, SMS Function (SMSF) supports SMS over NAS (SMSoNAS) defined in 3GPP TS 23.501. Besides, SMSoIP can also be considered as IMS based SMS solution under 5G network. SMSoIP can be deployed simultaneously with voice service over IMS to provide both voice and short message service. It is recommended to use SMSoNAS solution if voice services over IMS is not supported or for a 5G data card/Machine Type Communications (MTC)/Non-IMS device without voice service. The network architecture of SMSoIP and SMSoNAS is shown in Figure.
Mpirical explains it in the video as embedded below:


You may also find "5G SMS is Very Real and Here to Stay" by William Dudley useful. It covers a lot of technical details and signalling. It's available here.

Related  posts:

Tuesday, 9 June 2020

5G Roaming with SEPP (Security Edge Protection Proxy)

SEPP (Security Edge Protection Proxy) is part of the roaming security architecture as shown in the figure above. Ericsson's article, "An overview of the 3GPP 5G security standard" describes the use of SEPP as follows:

The use of SBA has also pushed for protection at higher protocol layers (i.e. transport and application), in addition to protection of the communication between core network entities at the internet protocol (IP) layer (typically by IPsec). Therefore, the 5G core network functions support state-of-the-art security protocols like TLS 1.2 and 1.3 to protect the communication at the transport layer and the OAuth 2.0 framework at the application layer to ensure that only authorized network functions are granted access to a service offered by another function.

The improvement provided by 3GPP SA3 to the interconnect security (i.e. security between different operator networks) consists of three building blocks:

  • Firstly, a new network function called security edge protection proxy (SEPP) was introduced in the 5G architecture (as shown in figure 2). All signaling traffic across operator networks is expected to transit through these security proxies
  • Secondly, authentication between SEPPs is required. This enables effective filtering of traffic coming from the interconnect
  • Thirdly, a new application layer security solution on the N32 interface between the SEPPs was designed to provide protection of sensitive data attributes while still allowing mediation services throughout the interconnect

The main components of SBA security are authentication and transport protection between network functions using TLS, authorization framework using OAuth2, and improved interconnect security using a new security protocol designed by 3GPP.

NG.113 5G Roaming Guidelines v2.0 clarifies:

4.2 Inter PLMN (N32) Interface

The Inter-PLMN specification 3GPP TS 29.573 has been produced by 3GPP to specify the protocol definitions and message flows, and also the APIs for the procedures on the PLMN (Public Land Mobile Network) interconnection interface (i.e. N32)

As stated in 3GPP TS 29.573 the N32 interface is used between the SEPPs of a VPLMN and a HPLMN in roaming scenarios. Furthermore, 3GPP has specified N32 to be considered as two separate interfaces: N32-c and N32-f.

N32-c is the Control Plane interface between the SEPPs for performing the initial handshake and negotiating the parameters to be applied for the actual N32 message forwarding. See section 4.2.2 of 3GPP TS 29.573.

Once the initial HTTP/2 handshake is completed the N32-c connection is torn down. This connection is End-to-End between SEPPs and does not involve IPX to intercept the HTTP/2 connection; although the IPX may be involved for IP level routing.

N32-f is the Forwarding interface between the SEPPs, that is used for forwarding the communication between the Network Function (NF) service consumer and the NF service producer after applying the application level security protection. See section 4.2.3 of 3GPP TS 29.573.

N32-f can provide Application Level Security (ALS) as specified in 3GPP TS 33.501 between SEPPs, if negotiated using N32-c. ALS provides the following protection functionalities: -

  • Message protection of the information exchanged between NF service consumer and producer
  • Forwarding of the application layer protected message from a SEPP in one PLMN to another PLMN by way of using IPX providers on the path. The IPX providers on the path may involve the insertion of content modification instructions which the receiving SEPP applies after verifying the integrity of such modification instructions.

The HTTP/2 connection used on N32-f is long lived; and when a SEPP establishes a connection towards another PLMN via IPX, the HTTP/2 connection from a SEPP terminates at the next hop IPX.

N32-f makes use of the HTTP/2 connection management requirements specified in 3GPP TS 29.500. Confidentiality protection shall apply to all IE’s for the JOSE protected message forwarding procedure, such that hop-by-hop security between SEPP and the IPXs should be established using an IPSec or TLS VPN.

If an IPX is not in the path between SEPPs, then an IPSec of Transport Layer Security, TLS VPN will be established directly.

Note: N32-f shall use “http” connections generated by a SEPP, and not “https”

The SEPP will act as a non-transparent Proxy for the NF’s when service based interfaces are used across PLMNs, however inside IPX service providers, an HTTP proxy may also be used to modify information elements (IE’s) inside the HTTP/2 request and response messages.

Acting in a similar manner to the IPX Diameter Proxy used in EPC roaming, the HTTP/2 Proxy can be used for inspection of messages, and modification of parameters. 


The picture in the tweet above shows how SEPP will play a role in Local Break Out (LBO) roaming as well as Home Routed (HR) roaming.

Related Posts:

Tuesday, 2 June 2020

Embedded SIM (eSIM) and Integrated SIM (iSIM)

It's been a while since I wrote detailed posts explaining UICC and SIM cards. Since then the SIM cards have evolved from Mini SIM to Micro SIM and Nano SIM. They are evolving even further, especially for M2M / IoT devices as embedded SIM (eSIM or eUICC) and integrated SIM (iSIM).


Embedded SIMs (eSIMs) or embedded Universal Integrated Circuit Cards (eUICCs) are physical SIMs that are soldered into the device and enable storage and remote management of multiple network operator profiles (remote SIM provisioning). The form factor of eSIM is known as MFF2.

The integrated SIMs (iSIMs) moves the SIM from a separate chip into a secure enclave alongside the application processor and cellular radio on a purpose-built system on a chip (SoC).

We made a short tutorial explaining UICC & SIM and then looking at eSIM, iSIM and how remote SIM provisioning works. The video and slides are embedded below. The slides contain a lot of useful links for further reading.







Related Posts:

Saturday, 4 April 2020

5G eXtended Reality (5G-XR) in 5G System (5GS)


We have been meaning to make a tutorial on augmented reality (AR), virtual reality (VR), mixed reality (MR) and extended reality (XR) for a while but we have only managed to do it. Embedded below is video and slides for the tutorial and also a playlist of different use cases on XR from around the world.

If you are not familiar with the 5G Service Based Architecture (SBA) and 5G Core (5GC), best to check this earlier tutorial before going further. A lot of comments are generally around Wi-Fi instead of 5G being used for indoors and we completely agree. 3GPP 5G architecture is designed to cater for any access in addition to 5G access. We have explained it here and here. This guest post also nicely explains Network Convergence of Mobile, Broadband and Wi-Fi.





XR use cases playlist



A lot of info on this topic is from Qualcomm, GSMA, 3GPP and 5G Americas whitepaper, all of them in the links in the slides.


Related Posts:

Friday, 20 March 2020

Real-life 5G Use Cases for Verticals from China

GSMA have recently published a series of reports related to China. This includes the 'The Mobile Economy China' report as well as reports on ‘Impacts of mmWave 5G in China’, ‘5G use cases for verticals China 2020’ and ‘Powered by SA case studies’. They are all available here.

China currently has 1.65bn subscribers (Excluding licensed cellular IoT) which is expected to grow to 1.73bn in 2025. The report quotes 1.20bn unique mobile subscribers that is expected to grow to 1.26bn by 2025. With a population of 1.44 billion, this would be assuming everyone over 10 years has a smartphone. 2G and 3G is being phased out so only 4G and 5G will be around in 2025. This would be different for IoT.

The 5G Use Cases for Verticals China 2020 report is comprised of 15 outstanding examples of 5G-empowered applications for verticals, ranging from industrial manufacturing, transportation, electric power, healthcare, education, to content creation, and zooms into the practical scenarios, technical features, and development opportunities for the next generation technology. Every use case represents the relentless efforts of 5G pioneers who are open, cooperative, and innovative.

  1. Flexible Smart Manufacturing with 5G Edge Computing (RoboTechnik, China Mobile, Ericsson)
  2. 5G Smart Campus in Haier Tianjin Washing Machine Factory (China Mobile, Haier)
  3. Aircraft Surface Inspection with 5G and 8K at Commercial Aircraft Corporation of China (Comac, China Unicom, Huawei)
  4. Xinfengming Group’s Smart Factory Based on MEC Technology (Xinfengming, China Mobile, ZTE)
  5. SANY Heavy Industry 5G and Smart Manufacturing (Sany, China Mobile, China Telecom, ZTE)
  6. Xiangtan Iron & Steel's 5G Smart Plant (Xisc, China Mobile, Huawei)
  7. The Tianjin 5G Smart Port (Tianjin, China Unicom, ZTE, Trunk)
  8. 5G Intelligent Connected Vehicle Pilot in Wuhan (China Mobile, Huawei, et al.)
  9. 5G BRT Connected Vehicle-Infrastructure Cooperative System (China Unicom, DTmobile, et al.)
  10. 5G for Smart Grid (China Mobile, Huawei, et al.)
  11. Migu's "Quick Gaming" Platform (China Mobile, et al.)
  12. 5G Cloud VR Demonstration Zone in Honggutan, Nanchang, Jiangxi Province (Besttone, China Telecom, Huawei)
  13. 5G Cloud VR Education Application Based on AI QoE (China Telecom, Nokia, et al.)
  14. China MOOC Conference: 5G + Remote Virtual Simulation Experiment (China Unicom, Vive HTC, Dell Technologies, et al.)
  15. 5G-empowered Hospital Network Architecture Standard (CAICT, China Mobile, China Telecom, China Unicom, Huawei, et al.)

They are all detailed in the report here.

I have written about 5G Use Cases in a blog post earlier, which also contains a video playlist of use cases from around the world. Not many from China in there at the moment but should be added as and when they are available and I discover them.


Related Posts: