Showing posts with label IPv6. Show all posts
Showing posts with label IPv6. Show all posts

Friday, 19 October 2012

IPv6 in Mobile Environments

An interesting presentation from Alcatel-Lucent



Related Post



Tuesday, 24 April 2012

LTE and IPv6

A discussion on Linkedin prompted me to add some relevant documents relating to LTE and IPv6. Interesting presentation below by Cisco:
Designing LTE with IPv6
View more presentations from Zahid Ghadialy. Available to download from slideshare here.

There are some other interesting presentations on slideshare you may want to look at:



Monday, 13 December 2010

6LoWPAN: Low power Wireless Personal Area Networks

From Wikipedia: 6lowpan is an acronym of IPv6 over Low power Wireless Personal Area Networks, or (as the "personal" qualification is no longer relevant), IPv6 over LoW Power wireless Area Networks. 6lowpan is the name of a working group in the internet area of the IETF. The 6lowpan group has defined encapsulation and header compression mechanisms that allow IPv6 packets to be sent to and received from over IEEE 802.15.4 based networks. IPv4 and IPv6 are the work horses for data delivery for local-area networks, metropolitan area networks, and wide-area networks such as the Internet.

There is a book from Wiley entitled "6LoWPAN: The Wireless Embedded Internet", which has a good definition and explanation of 6LoWPAN that I am using below. Wiley has excerpt from the book that details the complete introductory chapter.

As the Internet of routers, servers and personal computers has been maturing, another Internet revolution has been going on – The Internet of Things (see pic below). The vision behind the Internet of Things is that embedded devices, also called smart objects, are universally becoming IP enabled, and an integral part of the Internet. Examples of embedded devices and systems using IP today range from mobile phones, personal health devices and home automation, to industrial automation, smart metering and environmental monitoring systems. The scale of the Internet of Things is already estimated to be immense, with the potential of trillions of devices becoming IP-enabled. The impact of the Internet of Things will be significant, with the promise of better environmental monitoring, energy savings, smart grids, more efficient factories, better logistics, better healthcare and smart homes.


The Internet of Things can be understood as a layer of digital information that covers the physical world. Objects and places become part of the Internet of Things in two ways: First, data and information can be associated with a particular location, using geo-coordinates or a street address. Second with sensors and RFID tags or transmitters installed in these objects allowing then to be accessed via Internet protocols.

Remember, Ericsson has already predicted 50 Billion connected devices by 2050. See here.

The Institute of Electrical and Electronics Engineers (IEEE) released the 802.15.4 lowpower wireless personal area network (WPAN) standard in 2003, which was a major milestone, providing the first global low-power radio standard. Soon after, the ZigBee Alliance developed a solution for ad hoc control networks over IEEE 802.15.4, and has produced a lot of publicity about the applications of wireless embedded technology. ZigBee and proprietary networking solutions that are vertically bound to a link-layer and application profiles only solve a small portion of the applications for wireless embedded networking. They also have problems with scalability, evolvability and Internet integration.

The IEEE 802.15.4 standard released in 2003 was the biggest factor leading to 6LoWPAN standardization. For the first time a global, widely supported standard for lowpower wireless embedded communications was available [IEEE802.15.4]. The popularity of this new standard gave the Internet community the needed encouragement to standardize an IP adaptation for such wireless embedded links.

The ideal use of 6LoWPAN is in applications where:
• embedded devices need to communicate with Internet-based services,
• low-power heterogeneous networks need to be tied together,
• the network needs to be open, reusable and evolvable for new uses and services, and
• scalability is needed across large network infrastructures with mobility.

Connecting the Internet to the physical world enables a wide range of interesting applications where 6LoWPAN technology may be applicable, for example:
• home and building automation
• healthcare automation and logistics
• personal health and fitness
• improved energy efficiency
• industrial automation
• smart metering and smart grid infrastructures
• real-time environmental monitoring and forecasting
• better security systems and less harmful defense systems
• more flexible RFID infrastructures and uses
• asset management and logistics
• vehicular automation

One interesting example application of 6LoWPAN is in facility management, which is the management of large facilities using a combination of building automation, asset management and other embedded systems. This quickly growing field can benefit from 6LoWPAN, is feasible with today’s technology, and has real business demand.

You can read more from the book on Wiley's website here.

More information on purchasing and reviews on Amazon's website below:



Thursday, 26 August 2010

Friday, 19 March 2010

IPv6 transition in cellular networks gaining momentum


IPv6 is good and we all know that. I has been talked for years but practically it hasnt found much success. Verizon made some noise last year but I am not sure of the conclusion.

Just to recap, IPv4 was introduced back in 1982 and IPv6 work started since 1995. IPV4 uses 32 bit (4 bytes) addresses while IPV6 uses 128 bit (16 bytes) addresses. Theoretically we would now have 2^96 times more addresses than in case of IPv4.

Most of network infrastructure manufacturers have their equipment ready for IPv6 as some of the handset manufacturers. The main driver being that someday soon IPv4 addresses would be exhausted (Internet Assigned Numbers Authority will run out of IPv4 addresses in September of 2011, based on current projections) and their equipment would be ready to provide IPv6 addresses without any problems.

Recently, IETF-3GPP Workshop on IPv6 in cellular networks was held in San Francisco, USA on 1 - 2 March, 2010. There are lots of interesting presentations available here for people who want to dig a bit deeper. The concluding report that summarises the presentations and discussions are available here. Here is a brief summary from one of the reports (with links at the end):

Summary
  • Scenarios for IPv6 migration were discussed based on 3GPP Technical Report 23.975
    • The discussion focused on validating the scenarios
  • General IPv6 transition and deployment guidelines were outlined based on input from IETF
  • Solutions for migration and v4-v6 co-existence were presented
    • Solutions included existing RFCs and working group items but also proposals in Internet Drafts
    • Gap analysis wrt transition scenarios was discussed

Conclusions on scenarios
  • Scenarios 1 and 3 based on dual-stack and IPv6-only deployments were generally recognized as valid
  • Scenario 2 was also recognized as valid, addressing two separate problems related to insufficient RFC1918 space and subscriber identification
  • Scenario 4 did not receive wide support from the workshop, largely because it was felt that it addressed a problem already solved by other scenarios
  • Variants of some of these scenarios were brought up during the discussions, conclusions were not reached on these
    • These may need further discussion

Conclusions on solutions
  • It was recognized that necessary support in the network and devices is already available to “switch on” IPv6 in 3GPP networks
    • Some networks reported running dual stack
    • Some networks reported running IPv6-only now
  • Solutions enhancing existing mechanisms for dual stack deployments and new solutions for IPv6-only deployments drew wide support
    • Gateway-initiated Dual Stack Lite
    • Stateful IPv4/IPv6 translation
Next steps: 3GPP
  • IETF and 3GPP are expected to focus further work based on the conclusions of the workshop
    • Note that the workshop itself does not have the mandate to make formal decisions
  • 3GPP is expected to identify possible normative specification impacts, if any, of the preferred solutions
  • A need was identified to provide more operational guidelines about IPv6 deployment to 3GPP operators
    • The best location for these guidelines is FFS (e.g. 3GPP TR 23.975, GSMA, etc)
Next steps: IETF
  • IETF and 3GPP are expected to focus further work based on the conclusions of the workshop
    • Note that the workshop itself does not have the mandate to make formal decisions
  • IETF is encouraged to continue working on stateless and stateful IPv4/IPv6 translation mechanisms
    • These mechanisms are being worked on in IETF BEHAVE group
  • IETF is also encouraged to consider new solutions that are not yet working group items
    • Gateway Initiated DS Lite
    • Per-interface NAT44 bindings addressing IPv4 address shortage
  • Note that the workshop has not set any timelines

Further reading:

Friday, 12 February 2010

M2M will become really big


It seems kind of odd to call a prediction that an industry segment will reach $18.9 billion an understatement, but in this case it may be so.


This week, Juniper Research pegged the mobile and embedded M2M industry at that amount worldwide by 2014. The press release says that consumer and commercial telematics – vehicle-bound M2M -- will represent more than a third of the total.

Nineteen billion dollars is a lot of money. But even that pot of gold pales in comparison to the promise of M2M. M2M covers smart grid, telematics and a mind-boggling number of other consumer and business services and applications. Indeed, the specter of M2M -- thousands of gadgets talking to millions of widgets -- is one of the reasons that Internet Protocol version 6 is being pushed so hard in some quarters.

Another example of the potential size of the market comes from Berg Insight. The firm says the European M2M module market will grow from 2.3 million last year to 22 million in 2014. Systems under surveillance – alarm systems and tracking devices watched from a monitoring center – will grow from 10 million to 34 million during the same period. The site goes into some detail on the composition of the market.



M2M provides a deeper look into smart meters, the element of the smart grid industry that has been around the longest. The story quotes ABI Research numbers that 76 million smart meters were deployed worldwide by the end of last year. That number will jump to 212 million by 2014. Lux Research, the story says, predicts that the value of the smart grid market overall will grow from $4.5 billion now to $15.8 billion in 2015. The advanced metering infrastructure and smart meters will represent more than $5 billion of that.

The only thing that is certain is that growth will be significant. The dangers of making precise predictions are evident in the recent findings: Juniper says that the mobile and embedded M2M market will reach $18.9 billion by 2014, while Lux says the smart grid market alone will finish 2015 only $3.1 billion short of that figure. One thing that these firms would agree on, however, is that this is a giant opportunity.

You can also read Juniper Research's paper, 'M2M ~ Rise of the Machines' here.

Sunday, 14 June 2009

Verizon's bold step towards IPv6


Verizon is taking bold step of mandating the devices that connect to its LTE Network support IPv6. The following is from Telecom Asia via Network World:

According to device requirements Verizon released earlier this year, any device that hooks onto the LTE network currently being built on the 700MHz band "shall support IPv6" and further states that "the device shall be assigned an IPv6 address whenever it attaches to the LTE network." The requirements make support for IPv4 optional and state that any device supporting IPv4 "shall be able to support simultaneous IPv6 and IPv4 sessions."

IPv6 is a long-anticipated upgrade to the Internet's main communications protocol, which is known as IPv4.

As CircleID blogger and Pennsylvania State University senior systems programmer Derek Morr notes, the adoption of IPv6 is going to be particularly important for wireless carriers that are expecting a surge in mobile data traffic in the next few years, as they will need a fresh batch of Internet addresses to handle the multitude of wireless devices that will hook onto their networks.
"The problem, of course, is that we're running out of IPv4 addresses," Morr writes. "The IANA pool will most likely be depleted by the end of 2010. This has led many people to wonder if LTE deployments will require IPv6. Now we have an answer: Yes."

Verizon is planning to launch its LTE services commercially in 25 to 30 U.S. markets in 2010. The network will be the first mobile broadband network in the United States to be based on the LTE standard, which is the latest variation of Global Systems for Mobile Communications (GSM) technology that is used for 3G High-Speed Packet Access (HSPA) networks. AT&T and T-Mobile have also announced plans to commercially launch LTE networks after 2010, while Sprint has already commercially launched its high-speed mobile WiMAX network.

One of the biggest drivers for carriers upgrading their mobile data networks to 4G technologies is the expected explosion in demand for mobile video services. A recent Cisco study on Internet traffic trends projects that 64% of mobile data traffic will be for video by 2013, vs. 19% for data services, 10% for peer-to-peer and 7% for audio. The study also says that the projected video traffic will increase four-fold between now and 2012

You may also want to read my post on the case for early LTE in USA.

Thursday, 6 March 2008

IPv6! One small step for man, one giant leap for mankind


3G Americas has published a whitepaper urging wireless service providers to start making a transition plan asap.


Anyone who has studied TCP/IP in their studies would know the basic problem with IPv4 is that the address is only 32 bits long and this allows a theoretical maximum of 2^32 addresses. Ofcourse practically the number would be far less because some of the address are either reserved or wasted due to the way the networks are designed (Subnets, etc).

To overcome this sometime in the beginning of 1990's IPv6 was formulated with 128 bit address. This would mean unique IP address to every street lamp is possible without us worrying about depletion of the addresses. Ofcourse the human nature is such that they dont change their behaviour untill forced to and this is the same reason IPv6 is not been used popularly.

When 3G was being standardised one of the main goals was also to use IPv6 exclusively but then everyone chickened out citing various problems and continuity of services.

Anyway, this new 3G Americas paper has laid down a plan and possible pitfalls that would be encountered when transitioning to IPv6. The following is a self explanatory summary for the report:

To transition to IPv6 or not? A critical question for many service providers is when to transition to IPv6. As pointed out earlier, IPv6 has several benefits which will result in a simpler, more powerful and more efficient network. The sooner a service provider achieves these benefits, the sooner it will be at a competitive advantage compared to service providers who delay transition. The risks of delaying the transition are the following:

 Managing a dwindling IPv4 address space will become increasingly expensive. Address
allocation requires careful planning; previously assigned address blocks may need to be
recovered, which is a complex process; and the management of additional devices such as
Network Address Translation (NAT) devices add to the cost.

 The service provider that delays transition to IPv6 may not be able to deliver the same
services as service providers that have made the transition to IPv6. The ability to support
always-on and peer-to-peer services is impaired when traffic has to traverse NAT devices.
For example, always-on services require that a user is always reachable and therefore
cannot share a pool of public addresses with other devices. This can be mitigated through
address and port translation, but also that has its limitations.

 At some point, a service provider who has not made the transition to IPv6 may become
unattractive as a roaming partner to service providers who have made the transition. The
same may be true in retail/wholesale relationships.

On the other hand, transitioning to IPv6 at an early stage also has certain risks. The transitioning process is complex. It requires a significant investment in planning and training. During the transition period, the service provider must run both IPv4 and IPv6 systems concurrently, which leads to an increase in operational expenses. Furthermore, there is a risk of service interruption, customer dissatisfaction and penalties. All service providers will need to go through this, but an early adopter may run into problems which later adopters could avoid.

In the end, we believe that service providers don’t have the option to delay IPv6 introduction. The exhaustion of IPv4 addresses will force a transition to IPv6, and as pointed out earlier, address exhaustion may become a reality within the next five years. From that point on, service providers will face an increase in operations cost, if not because of introduction of IPv6, then due to the complexity of running an IPv4-only network with a diminishing pool of addresses.

With careful planning, the risk of early adoption can be mitigated significantly.