Showing posts with label 3GPP. Show all posts
Showing posts with label 3GPP. Show all posts

Tuesday, 18 January 2022

3GPP 5G Non Terrestrial Networks (NTN) Standardization Update

We have looked at 5G Non Terrestrial Networks (NTN) in many different posts in our blogs. If you are new to this topic then this tutorial with a video is a good place to start or just follow this IEEE Comsoc article or this short update from R&S here.

Nicolas Chuberre is the rapporteur of the NR_NTN_solutions work item (TSG RAN) and of the FS-5GET study item (WG SA1) from Thales Alenia Space. In the October 2021 issue of 3GPP Highlights newsletter, he along with Munira Jaffar, Lead delegate representing EchoStar and Hughes Standards in ESOA (EMEA Satellite Operators Association) Standards Working Group, wrote a summary of 'Status of NTN & Satellite in 3GPP Releases 17 & 18'.

Quoting from the article:

The approval of normative activities on Non-Terrestrial Networks (NTN) in Rel-17 has generated growing interest in the topic. The Rel-17 NTN work items are supported by a wide range of vendors (terminal, chipset, network), as well as service providers from both the mobile and space industries and vertical user groups including ESOA.

The Rel-17 NTN and satellite work items in Technical Specification Group (TSG) RAN and TSG SA have been progressing towards the goal of satellite inclusion in 3GPP technical specifications. The focus is on transparent payload architecture with FDD systems where all UEs are assumed to have GNSS capabilities. The normative phase includes adaptation to the physical & access layer aspects, radio access network and system architecture, radio resource management, and RF requirements for targeted satellite networks operating at LEO, MEO or GEO orbits.

With an expected completion date of March 2022, the 3GPP Rel-17 specifications will support New Radio (NR) based satellite access deployed in FR1 bands serving handheld devices for global service continuity. Equally exciting, the 3GPP Rel-17 specification will support NB-IoT and eMTC based satellite access to address massive Internet of Things (IoT) use cases in areas such as agriculture, transport, logistics and many more. 

This joint effort between mobile and satellite industries will enable the full integration of satellite in the 3GPP ecosystem and define a global standard for future satellite networks. This will address the challenges of reachability and service continuity in unserved/underserved areas, enhance reliability through connectivity between various access technologies, and improve network resilience and dependability in responding to natural and manmade disasters.

Upon completion of Rel-17 the long-awaited standard for satellite networks serving handheld devices should be in place by 2022, with commercial product availability expected sometime in 2024. Including satellite as part of the 3GPP specifications will support the promise of worldwide access to 5G services and drive explosive growth in the satellite industry. 

Looking ahead, ESOA members and other NTN stakeholders have started discussions during the 3GPP Rel-18 June workshop and are continuing to work on a further list of enhancements for both NR-NTN and IoT-NTN to be considered in Rel-18. Plans are also underway to further define the enablers for NR based satellite access in bands above 10 GHz to serve fixed and moving platforms (e.g., aircraft, vessels, UAVs) as well as building- mounted devices (e.g., businesses and premises). The goal of these efforts is to further optimize satellite access performance, address new bands with their specific regulatory requirements, and support new capabilities and services as the evolution of 5G continues.

At Mobile Korea 2021, Nicolas Chuberre gave a talk on '3GPP NTN standardization: past, current and future'. The talk nicely summarizes Release-17 progress and the features planned for 3GPP Release-18. His talk is embedded below:

Related Posts:

Tuesday, 23 November 2021

3GPP Presentations from CEATEC Japan 2021

3GPP and its Japanese Organizational Partners TTC (Telecommunication Technology Committee) and ARIB (Association of Radio Industries and Businesses) hosted a “3GPP Summit” online workshop at CEATEC 2021, back in October. The event was co-located with the Japanese Ministry of Internal Affairs and Communications (MIC) and 5G Mobile Communications Promotion Forum (5GMF) 5G day at the event. Here is a summary of the event from 3GPP news:

The “3GPP Summit” featured all three Technical Specification Group (TSG) Chairs and one Japanese leader from each group. After the presentations, they exchanged their views and expectations for 3GPP work – as the industry starts to look at research beyond 5G. The event attracted almost 700 people, keen to understand what is going on in 3GPP.

The first session covered Release 17 and 18 evolution, with each TSG Chair and a domestic leader jointly presenting. Wanshi Chen introduced the latest schedule of each release and potential projects for Release 18 with the result of 3GPP Release 18 workshop held in June. Then, Hiroki Takeda presented some key features on Release 17 such as Redcap, RAN slicing and evolution of duplex.

TSG SA Chair, Georg Mayer introduced the group’s latest activities alongside Satoshi Nagata, covering key Release 17 features, such as enhanced support on Non-public Networks, Industrial IoT and Edge computing.

Next up was the TSG CT Chair, Lionel Morand, presenting the latest activities and roadmap for Core Network evolution from Release 15 to 17. Hiroshi Ishikawa also presented, covering 5G core protocol enhancements and some activities driven by operators.

The second part of the session focused more on activities ‘Beyond 5G’. First, Takaharu Nakamura introduced the latest activities on the topic in Japan. A panel discussion followed, with Satoshi Nagata joining the other 3GPP speakers, to give feedback on 5G developments and future use.

You can download the PPT of presentations from 3GPP site here or get the PDF from 3G4G page here.

Please feel free to add your thoughts as comments below.

Related Posts

Tuesday, 26 October 2021

An Early View of 3GPP Release-18 5G-Advanced Topics

5G is hot at the moment. While the operators are busy rolling out the networks based on Release-15/16 features, 3GPP is working on finalising Release-17 specifications and laying the foundations for Rel-18.

The latest issue of 3GPP Highlights magazine (I prefer the PDF) contains a lot of valuable technical content, in addition to many other articles. The technical content includes:

  • An early view of the RAN Topics for 5G-Advanced
  • 5G Advanced in the Making – The TSG SA approach to Release 18
  • Application Enablement Standards in 3GPP – Maximizing the potential of 5G!
  • RAN3 flourishing in this time of change
  • Enhanced support of Industrial IoT in the 5G System (Rel-17)
  • Autonomous Network standardization in WG SA5
  • Rel-17 Edge Computing and Network Slicing charging (WG SA 5)
  • Media Production over 5G NPN

While I am not going into too much detail here, I want to highlight the 5G-Advanced topics that will be under discussion over the next couple of months. The final list will be approved by 3GPP TSGs SA, RAN and CT in December 2021.

Dr. Wanshi Chen, 3GPP TSG RAN Chair provided an early view of the RAN topics for 5G-Advanced. 

Topics Under Discussion

As well as taking a tentative decision on an 18-month duration for Release 18, the RAN workshop endorsed a list of topics for subsequent email discussions. Some of the topics in the following list also have a set of example areas, serving as a starting point for further refinement:

  • Evolution for downlink MIMO, with the following example areas:
    • Further enhancements for CSI (e.g., mobility, overhead, etc.)
    • Evolved handling of multi-TRP (Transmission Reception Points) and multi-beam
    • CPE (customer premises equipment) -specific considerations
  • Uplink enhancements, with the following example areas:
    • >4 Tx operation
    • Enhanced multi-panel/multi-TRP uplink operation
    • Frequency-selective precoding
    • Further coverage enhancements
  • Mobility enhancements, with the following example areas:
    • Layer 1/layer 2 based inter cell mobility
    • DAPS (Dual Active Protocol Stack)/CHO (Conditional HandOver) related improvements
    • FR2 (frequency range 2)-specific enhancements
  • Additional topological improvements (IAB and smart repeaters), with the following example areas:
    • Mobile IAB (Integrated Access Backhaul)/Vehicle mounted relay (VMR)
    • Smart repeater with side control information
  • Enhancements for XR (eXtended Reality), with the following example areas:
    • KPIs/QoS, application awareness operation, and aspects related to power consumption, coverage, capacity, and mobility
      • Note: only power consumption/coverage/mobility aspects specific to XR
  • Sidelink enhancements (excluding positioning), with the following example areas:
    • SL enhancements (e.g., unlicensed, power saving enhancements, efficiency enhancements, etc.)
    • SL relay enhancements
    • Co-existence of LTE V2X & NR V2X
  • RedCap evolution (excluding positioning), with the following example areas:
    • New use cases and new UE bandwidths (5MHz?)
    • Power saving enhancements
  • NTN (Non-Terrestrial Networks) evolution
    • Including both NR & IoT (Internet of Things) aspects
  • Evolution for broadcast and multicast services
    • Including both LTE based 5G broadcast and NR MBS (Multicast Broadcast Services)
  • Expanded and improved Positioning, with the following example areas:
    • Sidelink positioning/ranging
    • Improved accuracy, integrity, and power efficiency
    • RedCap positioning
  • Evolution of duplex operation, with the following example areas:
    • Deployment scenarios, including duplex mode (TDD only?)
    • Interference management
  • AI (Artificial Intelligence)/ML (Machine Learning), with the following example areas:
    • Air interface (e.g., Use cases to focus, KPIs and Evaluation methodology, network and UE involvement, etc.)
    • NG-RAN
  • Network energy savings, with the following example areas:
    • KPIs and evaluation methodology, focus areas and potential solutions
  • Additional RAN1/2/3 candidate topics, Set 1:
    • UE power savings
    • Enhancing and extending the support beyond 52.6GHz
    • CA (Carrier Aggregation)/DC (Dual-Connectivity) enhancements (e.g., MR-MC (Multi-Radio/Multi-Connectivity), etc.)
    • Flexible spectrum integration
    • RIS (Reconfigurable Intelligent Surfaces)
    • Others (RAN1-led)
  • Additional RAN1/2/3 candidate topics, Set 2:
    • UAV (Unmanned Aerial Vehicle)
    • IIoT (Industrial Internet of Things)/URLLC (Ultra-Reliable Low-Latency Communication)
    • <5MHz in dedicated spectrum
    • Other IoT enhancements/types
    • HAPS (High Altitude Platform System)
    • Network coding
  • Additional RAN1/2/3 candidate topics, Set 3:
    • Inter-gNB coordination, with the following example areas:
      • Inter-gNB/gNB-DU multi-carrier operation
      • Inter-gNB/gNB-DU multi-TRP operation
      • Enhancement for resiliency of gNB-CU
    • Network slicing enhancements
    • MUSIM (Multiple Universal Subscriber Identity Modules)
    • UE aggregation
    • Security enhancements
    • SON (Self-Organizing Networks)/MDT (Minimization of Drive Test)
    • Others (RAN2/3-led)
  • Potential RAN4 enhancements

Dr. Georg Mayer, 3GPP TSG SA Chair provides the TSG SA approach to 3GPP Release-18

The candidate items for Rel-18 include:

  • Immersive Media and Virtual/Artificial/Extended Reality (XR) Media support in Working Group (WG) SA4 and WG SA2.
  • New work areas for Internet of Things (e.g. passive IoT (WG SA2) and application capability exposure for IoT platforms (WG SA6)).
  • Proposals to for Artificial Intelligence and Machine Learning Services Transport and Management (WGs SA2, SA5).
  • Concepts for integration and migration of existing vertical infrastructure, e.g. for railway networks (WG SA6).
  • Examples for proposed enhancements to existing 3GPP services and functionalities include:
    • Network Slicing (WGs SA2, SA5)
    • Edge Computing (WGs SA2, SA5, SA6)
    • Autonomous Networks (WG SA5)
    • Service Based Architecture (WGs SA2, SA5)
    • Northbound APIs (WG SA6)
    • Non-Public Networks (WG SA2)
    • Satellite 5G Networks (WG SA2)
    • Drone support (WG SA2)
    • 5G Multicast and Broadcast (WG SA2)
    • Location Services (WG SA2, SA6)
    • Management Data Analytics (WG SA5)
    • Mission Critical Services (WG SA6)

None of these features are final but we will know in the next few months what will be included as part of Rel-18 and what won't. In the meantime, do check out the latest issue of 3GPP Highlights here.

Related Posts

Wednesday, 20 October 2021

5G NR-Unlicensed (NR-U)

I have been talking about unlicensed LTE since 2013. With all the debate around LTE-U and LAA now non-existent, the technology has evolved with every new release. As can be seen from this picture by Ericsson above, 5G NR-U in Release-16 supports:

  • License-exempt Downlink (DL)
  • License-exempt scheduled Uplink (UL)
  • License-exempt autonomous UK
  • Standalone license-exempt operation

The Release-16 work item summary details the following deployment scenarios for NR-based access to unlicensed spectrum:

  • Scenario A: Carrier aggregation between NR in licensed spectrum (PCell) and NR in shared spectrum (SCell);
    • A.1: SCell is not configured with UL (DL only); 
    • A.2: SCell is configured with UL (DL+UL). 
  • Scenario B: Dual connectivity between LTE in licensed spectrum and NR in shared spectrum (PSCell);
  • Scenario C: NR in shared spectrum (PCell);
  • Scenario D: NR cell in shared spectrum and uplink in licensed spectrum;
  • Scenario E: Dual connectivity between NR in licensed spectrum (PCell) and NR in shared spectrum (PSCell)

5G New Radio Unlicensed: Challenges and Evaluation, available on arXiv here provides a lot of useful information on different kind of operations within the unlicensed band and the challenges of co-existence with Wi-Fi

Finally, Qualcomm has quite a few resources on this topic. Last year, they hosted a webinar on the topic, "How does unlicensed spectrum with NR-U transform what 5G can do for you?". The slides from that are available here and a video of that is available here. RCR Wireless also has this short article from one of the webinar presenters here.

Related Posts

Monday, 27 September 2021

Maritime Communication (MARCOM) Services over 3GPP system


Maritime Communication Services over 3GPP System is one of the topics listed in the 3GPP Release-16 summary that I summarised here.

Maritime domain, one of 5G vertical domains in 3GPP, started to be considered since 2016 to enable 3GPP systems to play the role of mobile communication platform necessary for the digitalization and mobilization of the maritime domain that bring about the Fourth Industrial Revolution of the maritime businesses as well as maritime safety.

Compared to other vertical domains, the maritime domain has the radio communication environment that 3GPP hasn’t considered in detail, which means that maritime related issues and features were not in the scope of 3GPP standardization and some of existing 3GPP enabling technologies or solutions are not able to fully support the optimized performances required by the maritime domain in a way that has been guaranteed for on-land communication. In addition, on-board mobile users in a vessel would like to experience the same rich mobile communication services as they enjoy on land.

Furthermore, it is of the view that the capacity and rate for data transmission based on legacy maritime radio communication technologies are indeed not enough for e-Navigation described in IMO Strategy Implementation Plan (SIP) or Maritime Autonomous Surface Ships (MASS), which the International Maritime Organization (IMO), a United Nations specialized agency, have been working to provide to ship.

Considering that the maritime domain is one of 5G vertical domains that 3GPP take into account in order for 5G to be able to provide enhanced mobile broadband services or massive machine-type communication services etc. everywhere anytime in the world, it is desirable to study use cases and requirements for maritime communication services over 3GPP system so that 3GPP system can be a good candidate of innovative tools to help address the information gap between users on land and users at sea as well as the maritime safety and vessel traffic management etc. that IMO intends to achieve especially in 5G era.

3GPP TR 22.819, Feasibility Study on Maritime Communication Services over 3GPP system concluded in 2018 and a report is available here. The scope of the document says:

The present document aims to support the maritime communication services between users ashore and at sea or between vessels at sea over 3GPP system that are targeted to improve maritime safety, protect the maritime environment and promote the efficiency of shipping by reducing maritime casualty caused by human error, in particular, involving small ships and fishing vessels. In addition, the outcome of the technical report is expected to narrow the information gap between mobile users on land and shipboard users on vessels at sea by making it possible to provide the mobile broadband services.

The document describes use cases and potential requirements for services between shore-based users such as authorities and shipboard users in the maritime radio communication environment over 3GPP system. In addition, it deals with use cases to support Mission Critical Services between authorities on land and authorities at sea (e.g. maritime police) as well as use cases to support the interworking between 3GPP system and the existing/future maritime radio communication system for the seamless service of voice communication and data communication between users ashore and at sea or between vessels at sea.

Analysis is also made on which legacy services and requirements from the existing 3GPP system need to be included and which potential requirements need additional work for new functions to support maritime communication services over 3GPP system.

The first 3GPP Technical Specification (TS) 22.119 covering service requirements (Stage 1) is specified for the support of maritime communication (MARCOM) over 3GPP systems.

The maritime domain, one of the 5G vertical domains in 3GPP, is moving forward with the digitalisation and mobilisation of commercial as well as safety fields. Legacy 3GPP-based technologies and solutions can be beneficial to the digitalisation and mobilisation of the maritime domain though some of the legacy 3GPP enabling technologies and solutions may not be able to fully support the performances required by the maritime domain. The maritime radio environment was not originally considered by 3GPP when the technical specifications and solutions were standardised for LTE and 5G. 

However, most of the legacy mobile services and IoT services based on capabilities of EPS and 5GS specified in 3GPP specifications are applicable to maritime usage for the support of mobile broadband services, and for the support of IoT services or machine-type communication services in a vessel at sea. 

In addition, there are service scenarios and requirements specified in 3GPP specifications based on requirements of other related vertical domains (e.g. public safety domain, automotive domain, factory automation domain, and satellite industrial domain). Some requirements derived by service scenarios from these related vertical domains are applicable to the maritime domain. Thus, it is beneficial to use 3GPP enabling technologies developed to satisfy those requirements for the maritime domain in terms of the economy of scale.

For example, satellite access is one of the 3GPP radio access networks supported over the 5G system, so it is possible to provide seamless maritime mobile services by integrating multiple access technologies including satellite access depending on the service scenarios. In addition, Vertical LAN that can replace Ethernet-based access are applicable to indoor maritime mobile services inside a vessel.

Mission Critical (MC) Services specified in 3GPP specifications are applicable to commercial and maritime safety fields. Some similarities exist between the public safety domain and the maritime domain in terms of service scenarios that are essentially the same. For example, in some situations, mobile communication services are supported in spite of disconnected networks, i.e. off-network mode, or under isolated conditions. 

However, the maritime domain also has specific situations that do not happen in other vertical domains or in the legacy ICT industrial domain. New 3GPP enabling technologies dedicated to the maritime domain can be used to address such specific situations based on requirements derived from maritime use cases. Other vertical domains may benefit from such new 3GPP enabling technologies that consider maritime domain scenarios and may need more robust technologies or solutions than those that currently exist for those vertical domains.

The following specifications are relevant for MARCOM:

  • 3GPP TS 22.119, Maritime communication services over 3GPP system
  • 3GPP TS 22.179, Mission Critical Push to Talk (MCPTT); Stage 1
  • 3GPP TS 22.280, Mission Critical (MC) services common requirements
  • 3GPP TS 22.281, Mission Critical (MC) video
  • 3GPP TS 22.282, Mission Critical (MC) data

Related Posts

Tuesday, 14 September 2021

3GPP Release 16 Description and Summary of Work Items


Someone reached out recently asking for a summary of Release 16 features. For people who are involved in standards, they already know of a few ways you can get this quickly. 

The first is to go to the Releases page here: https://www.3gpp.org/specifications/releases 

Here you can see the status of current releases as well as at the bottom of the page you can jump to the individual releases. 

A full Release Description is produced by the Work Plan manager at the completion of the work. This has been available since Release-14 onwards. You can go and get the latest version of the following technical reports:  

The following is the summary of features listed in 3GPP TR 21.916 for Release-16: 

  1. Enhancement of Ultra-Reliable and Low Latency Communications (URLLC)
    1. Enhancement of URLLC support in the 5G Core network
    2. Physical Layer Enhancements for NR Ultra-Reliable and Low Latency Communication (URLLC)
    3. Support of NR Industrial Internet of Things
  2. Support of LAN-type services
    1. NR-based access to unlicensed spectrum
    2. LAN support in 5G
    3. 5GS Enhanced support of Vertical and LAN Services
  3. Cellular Internet of Things (IoT)
    1. Cellular IoT support and evolution for the 5G System
    2. Additional enhancements for NB-IoT
    3. Additional MTC enhancements for LTE
  4. Advanced V2X support
    1. Improvement of V2X service Handling
    2. Architecture enhancements for 3GPP support of advanced V2X services
    3. Application layer support for V2X services
    4. 5G V2X with NR sidelink
  5. Northbound APIs related items
    1. Usage of CAPIF for xMB API
    2. Enhancement of 3GPP Northbound APIs
    3. Enhancements for Common API Framework for 3GPP Northbound APIs
    4. Service Enabler Architecture Layer for Verticals
    5. Other APIs-related items
  6. Coexistence with Non-3GPP systems
    1. Wireless and Wireline Convergence Enhancement
    2. Access Traffic Steering, Switch and Splitting support in the 5G system architecture
  7. Railways and Maritime
    1. Mobile Communication System for Railways 2
    2. Further performance enhancement for LTE in high speed scenario
    3. NR support for high speed train scenario
    4. Maritime Communication Services over 3GPP System
  8. Mission Critical, Public Warning
    1. Enhancements of Public Warning System
    2. MBMS APIs for Mission Critical Services
    3. Mission Critical Services Security Enhancements
    4. Other Mission critical improvements
      1. MCData File Distribution support over xMB
      2. Enhanced Mission Critical Communication Interworking with Land Mobile Radio Systems
      3. MBMS APIs for Mission Critical Services
      4. Enhancements to Functional architecture and information flows for Mission Critical Data
      5. MC Communication Interworking
      6. Enhanced Mission Critical Push-to-talk architecture phase 2
      7. Other Mission Critical activities
  9. Conversational services, Streaming and TV
    1. Conversational services
      1. Coverage and Handoff Enhancements for Multimedia (CHEM)
      2. Single radio voice continuity from 5GS to 3G
      3. Volume Based Charging Aspects for VoLTE
      4. EVS Floating-point Conformance for Non Bit-Exact
      5. Media Handling Extensions for 5G Conversational Services
      6. VR QoE metrics
      7. Media Handling Aspects of RAN Delay Budget Reporting in MTSI
      8. Removal of H.263 and MPEG-4 Visual from 3GPP Services
    2. 13.2 Streaming
      1. Enhancement of LTE for Efficient delivery of Streaming Service
      2. Enhancements to Framework for Live Uplink Streaming
      3. Media streaming architecture
  10. 5G Location and Positioning Services
    1. 5G positioning services (5G_HYPOS)
    2. Enhancement to the 5GC LoCation Services
    3. NR positioning support
  11. User Identities, Authentication, multi-device
    1. User Identities and Authentication
    2. Multi-device and multi-identity
  12. Slicing
    1. Enhancement of Network Slicing
    2. Enhancement of 3GPP management system for multiple tenant environment support
    3. Business Role Models for Network Slicing
    4. Enhancement of performance assurance for 5G networks including network slicing
  13. UE radio capability signalling optimization
    1. Optimisations on UE radio capability signalling
  14. Other system-wide Features
    1. Enablers for Network Automation Architecture for 5G
    2. Provision of Access to Restricted Local Operator Services by Unauthenticated UEs
    3. Enhancing Topology of SMF and UPF in 5G Networks
    4. Private and Non-Public Network Support for NG-RAN
    5. Service-Based Architecture
      1. Enhancements to the Service-Based 5G System Architecture
      2. SBA aspects of enhanced IMS to 5GC integration
    6. User data interworking, Coexistence and Migration
  15. Radio Features
    1. NR-related Release 16 Features
      1. NR-based access to unlicensed spectrum
      2. 2-step RACH for NR
      3. UE Power Saving in NR
      4. Integrated access and backhaul for NR
      5. Dual Connectivity (EN-DC) with 3 bands DL and 3 bands UL
      6. NR mobility enhancements
      7. Rel-16 NR inter-band CA/Dual Connectivity for 2 bands DL with x bands UL (x=1, 2)
      8. Rel16 NR inter-band Carrier Aggregation for 3 bands DL with 1 band UL
      9. Add support of NR DL 256QAM for frequency range 2 (FR2)
      10. SON (Self-Organising Networks) and MDT (Minimization of Drive Tests) support for NR
      11. Introduction of NR FDD bands with variable duplex and corresponding framework
      12. Cross Link Interference (CLI) handling and Remote Interference Management (RIM) for NR
      13. RF requirements for NR frequency range 1 (FR1)
      14. NR RF requirement enhancements for frequency range 2
      15. NR RRM enhancement
      16. RRM requirement for CSI-RS based L3 measurement in NR
      17. Over the air (OTA) base station (BS) testing TR
    2. Release 16 Features impacting both LTE and NR
      1. Transfer of Iuant interface specifications from 25-series to 37-series
      2. Introduction of GSM, UTRA, E-UTRA and NR capability set(s) (CS(s)) to the multi-standard radio (MSR) specifications
      3. Direct data forwarding between NG-RAN and E-UTRAN nodes for inter-system mobility
      4. eNB(s) Architecture Evolution for E-UTRAN and NG-RAN
      5. High power UE (power class 2) for EN-DC (1 LTE TDD band + 1 NR TDD band)
      6. LTE-NR & NR-NR Dual Connectivity and NR Carrier Aggregation enhancements
      7. 29 dBm UE Power Class for LTE band 41 and NR Band n41
      8. LTE/NR Dynamic Spectrum Sharing (DSS) in band 48/n48 frequency range
    3. LTE-related Release 16 Features
      1. LTE-based 5G terrestrial broadcast
      2. Support for NavIC Navigation Satellite System for LTE
      3. Even further mobility enhancement in E-UTRAN
      4. DL MIMO efficiency enhancements for LTE
      5. Other LTE-only items
  16. All other Release 16 Features
    1. Service Interactivity
    2. RTCP Verification for Real-Time Services
    3. Stage-3 SAE Protocol Development for Rel16
    4. Reliable Data Service Serialization Indication
    5. Shared Data Handling on Nudm and Nudr
    6. New Services and Markets Technology Enablers – Phase 2
    7. Ambient noise test methodology for evaluation of acoustic UE performance
    8. KPI reporting
  17. Telecom Management
    1. Network and Service Management
      1. 5G Management capabilities
      2. Energy Efficiency of 5G
      3. OAM aspects of LTE and WLAN integration
      4. Methodology for 5G management specifications
      5. Closed loop SLS Assurance
      6. Trace Management in the context of Services Based Management Architecture and Streaming Trace reporting
      7. Management of QoE measurement collection
      8. Network Resource Model (NRM) enhancement
    2. Charging Management
      1. Charging Enhancement of 5GC interworking with EPC
    3. Other charging and management items
  18. Other items
    1. Items not (fully) completed in Rel-16
      1. Remote Identification of Unmanned Aerial Systems
      2. 5G message service
      3. Integration of Satellite Access in 5G

If you find them useful then please get the latest document from here.

Related Posts

Tuesday, 7 September 2021

Future Railway Mobile Communication System (FRMCS)


I have been meaning to write on this topic for a very long time. The discussion started back in 2016 when the limitations of GSM-R were obvious and it was recognised that a successor will be needed sooner or later. The International Railway Union (UIC) published a user requirement specification in their paper “Future Railway Mobile Communication System - FRMCS”. This is available on 3GPP server as liaison statement S1-161250.

As 3GPP notes in their article, this was the trigger for them to go ahead and start the studies. Then in Release 16, 3GPP TS 22.289 "Mobile communication system for railways" outlined the requirements for railway communication, beyond the 3GPP Future Railway Mobile Communication System (FRMCS) Phase 1 specs. Details are available on this post here.

Source Tweet

The latest version of 3GPP TR 22.889, Study on Future Railway Mobile Communication System; Stage 1 is from Release 17. The introduction to the document clarifies:

The railway community is considering a successor communication system to GSM-R, as the forecasted obsolescence of the 2G-based GSM-R technology is envisaged around 2030, with first FRMCS trial implementations expected to start around 2020. 

The Future Railway Mobile Communication System (FRMCS) Functional Working Group (FWG) of the International Union of Railways (UIC) have investigated and summarised their requirements for the next generation railway communication system in the Future Railway Mobile Communication User Requirements Specification (FRMCS URS). The present document is based on this input given by the UIC/ETSI TC-RT 

Study on FRMCS Evolution (FS_eFRMCS), available as SP-201038 clarifies:

The UIC FRMCS programme was recently releasing stable version 5.0.0 of the User Requirement Specification, version 2.0.0 of the Functional Use Cases and a new specification item, version 1.0.0 of the Telecom On-Board System - Functional Requirements Specification, as a further step in the evolution of the FRMCS specifications. The UIC FRMCS Programme is developing all the technical conditions for the 5G FRMCS, with the main objective to make available a “FRMCS First Edition” ecosystem available for procurement by Q1 2025.

The UIC FRMCS 3GPP Task Force has been identifying and analyzing impact of this newly released set of FRMCS specifications on existing use cases and requirements collected in TR 22.889. The UIC FRMCS 3GPP Task Force analysis has concluded that refining existing use cases, defining new use cases such as merging railway emergency communications and real-time translation of conversation, and deriving potential new requirements, will be necessary to align FRMCS and 3GPP specifications. The potential impact on normative work is estimated to be limited and much less compared to the study work.

As approved in SA1#90-e (S1-202245), TR 22.889 has now been re-named to TR 22.989 from Rel-18 onwards (latest version is TR 22.989 v18.0.0) to make it visible to the Rail community to be able to follow the 3GPP normative work in line with their needs. It is of most importance for the Rail community that specifications from different organisations (i.e. UIC, 3GPP and ETSI) are all aligned.

Due to the expected 3GPP work overload in Release 18 (SA1 and downstream groups), it is proposed to reduce the scope of the present Rel-18 study to evolution of critical applications related use cases only already identified by UIC – what is really essential for the railways as part of the “FRMCS First Edition” and the migration phase from GSM-R to FRMCS. 

Study of non-essential use cases (e.g. evolution of performance and business use cases) shall be postponed to Rel-19.

This plan is from 2019 so quite likely that it is already outdated. It does provide an idea on different steps and trial plans. Some of this was also covered in the 5G RAN Release 18 for Industry Verticals Webinar detailed here.

Finally, as this image from Arthur D. Little highlights, there is a lot of other interest in addition to FRMCS for 5G in railway. Report here.

Related Posts:

Tuesday, 24 August 2021

3GPP's 5G-Advanced Technology Evolution from a Network Perspective Whitepaper


China Mobile, along with a bunch of other organizations including China Unicom, China Telecom, CAICT, Huawei, Nokia, Ericsson, etc., produced a white paper on what technology evolutions will we see as part of 5G-Advanced. This comes not so long after the 3GPP 5G-Advanced Workshop which a blogged about here.

The abstract of the whitepaper says:

The commercialization of 5G networks is accelerating globally. From the perspective of industry development drivers, 5G communications are considered the key to personal consumption experience upgrades and digital industrial transformation. Major economies around the world require 5G to be an essential part of long-term industrial development. 5G will enter thousands of industries in terms of business, and technically, 5G needs to integrate DOICT (DT - Data Technology, OT - Operational Technology, IT - Information Technology and CT - Communication Technology) and other technologies further. Therefore, this white paper proposes that continuous research on the follow-up evolution of 5G networks—5G-Advanced is required, and full consideration of architecture evolution and function enhancement is needed.

This white paper first analyzes the network evolution architecture of 5G-Advanced and expounds on the technical development direction of 5G-Advanced from the three characteristics of Artificial Intelligence, Convergence, and Enablement. Artificial Intelligence represents network AI, including full use of machine learning, digital twins, recognition and intention network, which can enhance the capabilities of network's intelligent operation and maintenance. Convergence includes 5G and industry network convergence, home network convergence and space-air-ground network convergence, in order to realize the integration development. Enablement provides for the enhancement of 5G interactive communication and deterministic communication capabilities. It enhances existing technologies such as network slicing and positioning to better help the digital transformation of the industry.

The paper can be downloaded from China Mobile's website here or from Huawei's website here. A video of the paper launch is embedded below:

Nokia's Antti Toskala wrote a blog piece providing the first real glimpse of 5G-Advanced, here.

Related Posts

Tuesday, 17 August 2021

'5G RAN Release 18 for Industry Verticals' Webinar Highlights

5G PPP held a virtual workshop on RAN Release 18 for Industry Verticals on June 23rd, 2021. The workshop was organised by 3GPP Market Representation Partners (MRPs): 5G-IA, 5GAA, 5G-ACIA and PSCE.

It features a fireside chat with new 3GPP RAN TSG Chair, Wanshi Chen. In addition to this, the workshop then provides a deep dive on new requirements from verticals, spanning automotive (5GAA), manufacturing (5G-ACIA), critical communications and public safety (TCCA with PSCE), broadcasting and media (5G-MAG), satellite (ESOA), rail (UIC), maritime (IALA) and energy (EUTC).

5G-SOLUTIONS came on board as a 5G PPP project supporting verticals with the 5G-EVE and 5G-VINNI 5G network infrastructures alongside RAN specialists doing standardisation work applicable to multiple verticals.

The video of the webinar is embedded below. In addition, you will find timings of when a particular talk starts and a link to the slides (if shared/available)

Timings:

  • 0:04:21 Fireside chat with Wanshi Chen, Qualcomm and 3GPP RAN TSG Chairman
  • 0:21:00 NTN Requirements in Rel-18 by Nicolas Chuberre, Thales Alenia Space (slides)
  • 0:31:40 Multiple verticals: Andrea Di Giglio, 5G SOLUTIONS (slides)
  • 0:36:35 Media and Broadcasting: David Vargas, BBC and 5G-MAG Chair of CD-T WG, Proposals for 3GPP RAN Rel-18 (slides)
  • 0:43:19 Maritime: Hyounhee Koo, Synctechno and IALA, Maritime Requirements on 3GPP Rel 18 RAN Studies/Works Priorities (slides)
  • 0:46:12 Rail: Ingo Wendler, UIC, NR Narrowband Channel Bandwidth - Railway Use Case (slides)
  • 0:50:02 Utilities: Julian Stafford, EUTC 3GPP RAN Rel-18 Requirements (slides)
  • 0:58:35 Utilities: Erik Guttman, Samsung 5G Smart Energy Infrastructure (slides)
  • 1:05:45 Multiple verticals: Mathew Webb, Huawei and 3GPP RAN 3GPP Release 17 and Release 18 support for industry verticals (slides)
  • 1:15:19 Public Safety/Critical Communications: Tero Pesonen, TCCA Chair, joint presentation with PSCE, 3GPP MRP Mini Workshop: 3GPP Rel 18. Requirements from industry verticals (slides)
  • 1:20:15 Multiple verticals: Thierry Berisot, Novamint and 3GPP RAN, Industry Verticals and Rel-18 RAN (slides)
  • 1:32:56 Manufacturing/IIoT: Michael Bahr, Siemens and 5G-ACIA WG 1Chair and An Xueli, Huawei and 5G-ACIA WG1 Vice Chair 3GPP RAN Rel-18 for Industry Verticals (slides)
  • 1:42:20 Automotive: 5GAA Maxime Flament, CTO Input to RAN 18 Rel-18 Workshop (slides)
  • 1:53:35 Interactive Session 2
  • 2:04:36 Passive IoT for 5G-Advanced, Mathew Webb, Huawei and 3GPP RAN (slides)
  • 2:14:59 Template A for Interactive Session 2
  • 2:20:40 Critical Communications / Public Safety requirements for Release 18 
  • 2:26:00 Closing Remarks

Official page here.

The slide above nicely summarizes 3GPP RAN Verticals up to Release 17.

Related Posts

Monday, 2 August 2021

3GPP's 5G-Advanced Workshop Summary

From 28 June to 02 July 2 2021, 3GPP held its first internal workshop on the radio specific content of Release 18, reviewing over 500 company and partner organization’s presentations, to identify topics for the immediate and longer-term commercial needs for:

  • eMBB (evolved Mobile BroadBand);
  • Non-eMBB evolution;
  • Cross-functionalities for both eMBB and non-eMBB driven evolution.

All the documents related to the workshop can be found on the 3GPP website here. The workshop details is available in RWS-210002 while the summary of the RAN Rel-18 workshop is available in RWS-210659.

The following is from 3GPP's news article on 5G-Advanced workshop:

Wanshi Chen, the TSG RAN Chair, summarized that the example areas under each topic serve as a starting point, each subject to further update or removal during the email discussion period - with additional topics still possible, up to the September e-meeting. That RAN#93-e meeting (13-17 September 2021) will see progress on ‘high-level descriptions’ of the objectives for each topic.

List of Topics:

1. Evolution for downlink MIMO, with the following example areas:
  • Further enhancements for CSI (e.g., mobility, overhead, etc.)
  • Evolved handling of multi-TRP (Transmission Reception Points) and multi-beam
  • CPE(customer premises equipment)-specific considerations
2. Uplink enhancements, with the following example areas:
  • >4 Tx operation
  • Enhanced multi-panel/multi-TRP uplink operation
  • Frequency-selective precoding
  • Further coverage enhancements
3. Mobility enhancements, with the following example areas:
  • Layer 1/layer 2 based inter cell mobility
  • DAPS (Dual Active Protocol Stack)/CHO (Conditional HandOver) related improvements
  • FR2 (frequency range 2)-specific enhancements
4. Additional topological improvements (IAB and smart repeaters), with the following example areas:
  • Mobile IAB (Integrated Access Backhaul)/Vehicle mounted relay (VMR)
  • Smart repeater with side control information
5. Enhancements for XR (eXtended Reality), with the following example areas:
  • KPIs/QoS, application awareness operation, and aspects related to power consumption, coverage, capacity, and mobility (Note: only power consumption/coverage/mobility aspects specific to XR)
6. Sidelink enhancements (excluding positioning), with the following example areas:
  • SL enhancements (e.g., unlicensed, power saving enhancements, efficiency enhancements, etc.)
  • SL relay enhancements
  • Co-existence of LTE V2X & NR V2X
7. RedCap evolution (excluding positioning), with the following example areas:
  • New use cases and new UE bandwidths (5MHz?)
  • Power saving enhancements
8. NTN (Non-Terrestrial Networks) evolution
  • Including both NR & IoT (Internet of Things) aspects
9. Evolution for broadcast and multicast services
  • Including both LTE based 5G broadcast and NR MBS (Multicast Broadcast Services)
10. Expanded and improved Positioning, with the following example areas:
  • Sidelink positioning/ranging
  • Improved accuracy, integrity, and power efficiency
  • RedCap positioning
11. Evolution of duplex operation, with the following example areas:
  • Deployment scenarios, including duplex mode (TDD only?)
  • Interference management
12. AI (Artificial Intelligence)/ML (Machine Learning), with the following example areas:
  • Air interface (e.g., Use cases to focus, KPIs and Evaluation methodology, network and UE involvement, etc.)
  • NG-RAN
13. Network energy savings, with the following example areas:
  • KPIs and evaluation methodology, focus areas and potential solutions
14. Additional RAN1/2/3 candidate topics, Set 1:
  • UE power savings
  • Enhancing and extending the support beyond 52.6GHz
  • CA (Carrier Aggregation)/DC (Dual-Connectivity) enhancements (e.g., MR-MC (Multi-Radio/Multi-Connectivity), etc.)
  • Flexible spectrum integration
  • RIS (Reconfigurable Intelligent Surfaces)
  • Others (RAN1-led)
15. Additional RAN1/2/3 candidate topics, Set 2:
  • UAV (Unmanned Aerial Vehicle)
  • IIoT (Industrial Internet of Things)/URLLC (Ultra-Reliable Low-Latency Communication)
  • <5MHz in dedicated spectrum
  • Other IoT enhancements/types
  • HAPS (High Altitude Platform System)
  • Network coding
16. Additional RAN1/2/3 candidate topics, Set 3:
  • Inter-gNB coordination, with the following example areas:
  • Inter-gNB/gNB-DU multi-carrier operation
  • Inter-gNB/gNB-DU multi-TRP operation
  • Enhancement for resiliency of gNB-CU
  • Network slicing enhancements
  • MUSIM (Multiple Universal Subscriber Identity Modules)
  • UE aggregation
  • Security enhancements
  • SON (Self-Organizing Networks)/MDT (Minimization of Drive Test)
  • Others (RAN2/3-led)
17. Potential RAN4 enhancements 

The latest timeline for Release-17/18 is as shown in the diagram above. 

The official 3GPP Release-18 page is here. This link is better to navigate through features in different 3GPP releases.

Related Posts

Tuesday, 27 July 2021

Introduction to 5G Reduced Capability (RedCap) Devices

Back in 2019, we wrote about Release-17 study item called NR-Lite (a.k.a. NR-Light). After the study started, it was renamed as RedCap or Reduced Capability.

We have now made a video tutorial on RedCap to not only explain what it is but also discuss some of the enhancements being discussed for 3GPP Release-18 (5G-Advanced). For anyone wanting to find out the differences between the baseline 5G devices with RedCap, without wanting to go too much in detail, can see the Tweet image for comparison.

The video and the slides of the tutorial are embedded below:

Related Posts: