Showing posts with label Videos. Show all posts
Showing posts with label Videos. Show all posts

Tuesday, 6 April 2021

A look at 5G Applications, Application Functions & Application Servers

We often get questions about 5G Service Based Architecture. Luckily, we have a tutorial that we can redirect people to. It's available here and the video just crossed 50K views. One of the questions that people often want to understand, is about the Application Function (AF) and how does it fit in the Applications Architecture.

To explain this, we made a tutorial. The slides and videos are embedded below. In that we have used the examples from our XR, V2X and Private Networks tutorials. All links are available at the bottom of this post.

Video:

Slides:

Related Posts:

Monday, 29 March 2021

5G RAN Functional Splits


I have been meaning to write a post on RAN functional splits and even make a video. Recently I came across multiple of these things so I am taking a shortcut by posting them here. 

The first is this basic introductory video from Parallel Wireless where they explain why you need RAN splits providing examples of various functional splits for 4G and 5G mobile networks. It is embedded below:

The next one is slightly detailed video from the book "5G Radio Access Network Architecture: The Dark Side of 5G" by Sasha Sirotkin (Editor). I wrote a review of the book here and Sasha kindly made a video for our channel which is embedded below:

Finally, RCR Wireless published an article looking at the 5G functional splits in detail, by Ankur Sharma, Associate Vice President, Product Management and Strategy, Radisys. The article 'Exploring functional splits in 5G RAN: Tradeoffs and use cases' is available here.

Feel free to suggest other videos, articles, etc. in comments.

Related Posts:

Wednesday, 10 March 2021

Everything you need to know about 5G Security


5G & Security are both big topics on this blog as well as on 3G4G website. We reached out to 3GPP 5G security by experts from wenovator, Dr. Anand R. Prasad & Hans Christian Rudolph to help out audience understand the mysteries of 5G security. Embedded below is video and slides from a webinar they recorded for us.

You can ask any security questions you may have on the video on YouTube

The slides could be downloaded from SlideShare.

Related Posts:

Thursday, 4 March 2021

The Fifth Generation Fixed Network (F5G)


Back in Feb 2020, ETSI announced the launch of a new group dedicated to specifying the fifth generation of Fixed Network (ETSI ISG F5G). The press release said:

We are entering an exciting new era of communications, and fixed networks play an essential role in that evolution alongside and in cooperation with mobile networks. Building on previous generations of fixed networks, the 5th generation will address three main use cases, a full-fiber connection, enhanced fixed broadband and a guaranteed reliable experience.

For home scenarios, emerging services such as Cloud VR (virtual reality) and AR (augmented reality) video streaming or online gaming introduce the necessity for ultra-broadband, extremely low latency and zero packet loss. Business scenarios such as enterprise Cloudification, leased line, or POL (Passive Optical LAN) require high reliability and high security. Other industry sectors have specific requirements on the deployment of fiber infrastructures including environmental conditions such as humidity, temperature or electromagnetic interference.

The ETSI ISG F5G aims at studying the fixed-network evolution required to match and further enhance the benefits that 5G has brought to mobile networks and communications. It will define improvements with respect to previous solutions and the new characteristics of the fifth-generation fixed network. This opens up new opportunities by comprehensively applying fiber technology to various scenarios, turning the Fiber to the Home paradigm into Fiber to Everything Everywhere.

ISG F5G considers a wide range of technologies, and therefore seeks to actively cooperate with a number of relevant standardization groups as well as vertical industrial organizations. ISG F5G will address aspects relating to new ODN technologies (Optical Distribution Network), XG(S)-PON and Wi-Fi 6 enhancements, control plane and user plane separation, smart energy efficiency, end-to-end full-stack slicing, autonomous operation and management, synergy of Transport and Access Networks, and adaptation of the Transport Network, amongst others.

The five work items approved last week deal with:

  • F5G use cases: the use cases include services to consumers and enterprises and will be selected based on their impact in terms of new technical requirements identified.
  • Landscape of F5G technology and standards: this work will study technology requirements for F5G use cases, explore existing technologies, and perform the gap analysis.
  • Definition of fixed network generations: to evaluate the driving forces and the path of fixed network evolution, including transport, access and on-premises networks. It will also identify the principal characteristics demarcating different generations and define them.
  • Architecture of F5G: this will specify the end-to-end network architectures, features and related network devices/elements’ requirements for F5G, including on-premises, Access, IP and Transport Networks.
  • F5G quality of experience: to specify the end-to-end quality of experience (QoE) factors for new broadband services. It will analyze the general factors that impact service performance and identify the relevant QoE dimensions for each service.

Then in May, at Huawei Global Analyst Summit 2020 (#HAS2020), Huawei invited global optical industry leaders to discuss F5G Industry development and ecosystem construction, and launched the F5G global industry joint initiative to draw up a grand blueprint for the F5G era. The press conference video is as follows:

Then in September 2020, ETSI released a whitepaper, "The Fifth Generation Fixed Network: Bringing Fibre to Everywhere and Everything"

Now there are couple of standards available that provides more insights.

ETSI GR F5G 001 - Fifth Generation Fixed Network (F5G); F5G Generation Definition Release #1:

In the past, the lack of a clear fixed network generation definition has prevented a wider technology standards adoption and prevented the creation and use of global mass markets. The success of the mobile and cable networks deployments, supported by clear specifications related to particular technological generations, has shown how important this generation definition is.

The focus of the 5th generation fixed networks (F5G) specifications is on telecommunication networks which consist fully of optical fibre elements up to the connection serving locations (user, home, office, base station, etc.). That being said, the connection to some terminals can still be assisted with wireless technologies (for instance, Wi-Fi®).

The main assumption behind the present document foresees that, in the near future, all the fixed networks will adopt end-to-end fibre architectures: Fibre to Everywhere.

The present document addresses the history of fixed networks and summarizes their development paths and driving forces. The factors that influence the definition of fixed, cable and mobile network generations will be analysed. Based upon this, the business and technology characteristics of F5G will be considered.

This table comparing the different generations of fixed networks is interesting too


ETSI GR F5G 002 - Fifth Generation Fixed Network (F5G); F5G Use Cases Release #1:

The present document describes a first set of use cases to be enabled by the Fifth Generation Fixed Network (F5G). These use cases include services to consumers and enterprises as well as functionalities to optimize the management of the Fifth Generation Fixed Network. The use cases will be used as input to a gap analysis and a technology landscape study, aiming to extract technical requirements needed for their implementations. Fourteen use cases are selected based on their impact. The context and description of each use case are presented in the present document.


The use cases as described in the present document are driving the three dimensions of characteristics that are specified in the document on generation definitions [i.1], namely eFBB (enhanced Fixed BroadBand), FFC (Full-Fibre Connection), and GRE (Guaranteed Reliable Experience). Figure 2 shows that:

  • depending on the use case, one or more dimensions are particularly important, and
  • all dimensions of the F5G system architecture are needed to implement the use cases.

I will surely be adding more stuff as and when it is available.

Related Posts:

Monday, 22 February 2021

Reducing 5G Device Power Consumption Using Connected-mode Discontinuous Reception (C-DRX)


Back in 2019, when we were still participating in physical event, I heard Sang-Hoon Park, ESVP, Head of Regional Network O&M Headquarter, KT talk about 'KT’s journey to large-scale 5G rollout' at Total Telecom Congress.

South Korea is blessed with three highly competitive MNOs and due to this, the government asked them to launch their 5G networks at the same time in 2018. I have also blogged about how KT is working on reducing the latency of their network here.

Anyway, as you can see in the picture above, using Connected-mode Discontinuous Reception (C-DRX), KT was able to show huge power saving in the 5G Samsung smartphone. They also made a video embedded below:

KT has some more details from their blog post back in 2019 here. Also some more details on RayCat here. Both the sites are in Korean but you can use Google translate to get more details.

What is KT battery saving technology (C-DRX)?

KT's'battery saving technology' is shortened to'Connected Mode Discontinuous Reception' and is called C-DRX. In simple terms, it is one of the technologies that reduces battery usage by periodically switching the communication function of a smartphone to a low power mode while data is connected.

In CDRX technology, the base station and the terminal share CDRX information through RRC setting and reconfiguration, so when there is no packet transmission/reception by the terminal, the terminal transmission/reception terminal can be turned off to reduce battery consumption, and the CDRX setting is optimized to reduce the user's battery consumption. It is possible to increase the available time for related applications.

In order to reduce the battery consumption of the terminal, it is a technology that controls the PDCCH monitoring activity, which is a downlink control channel related to the terminal identifier, through RRC. The base station controls the CDRX through RRC, and how the communication company optimizes and applies this was a big task. Is the first in Korea to optimize this technology and apply it to the national network.

In simple terms, the smartphone is not using communication, but it turns off the power completely and enters the standby state to reduce power consumption. When not in use, it completely turns off the power wasted in transmitting and receiving even during the standby time, thus extending the user's smartphone usage time.

As can be seen from the picture above, battery saving technology saves battery by completely turning off the communication function when there is no data or voice call. If the network does not have the battery saving technology applied, it is always connected to the communication network and waits even when not in use. Then, the battery is always connected to the communication function and the battery saving technology overcomes this part.

When Qualcomm announced their Industry’s First Mobile Platform with Integrated 5G back in 2019, the press release said:

The new integrated Snapdragon 5G mobile platform features Qualcomm® 5G PowerSave technology to enable smartphones with the battery life users expect today. Qualcomm 5G PowerSave builds on connected-mode discontinuous reception (C-DRX, a feature in 3GPP specifications) along with additional techniques from Qualcomm Technologies to enhance battery life in 5G mobile devices – making it comparable to that of Gigabit LTE devices today. Qualcomm 5G PowerSave is also supported in the Snapdragon X50 and X55 5G modems, which are expected to power the first waves of 5G mobile devices introduced this year.

The picture is from the slide deck here. See links in further reading below to learn more about this feature.

Further Reading:

  • All about Wired and Wireless Technology: LTE Connected Mode DRX (link)
  • Netmanias: Future LTE Designed by SK Telecom: ​(2) Application of C-DRX, July 2017 (link)
  • Ericsson: A technical look at 5G mobile device energy efficiency, Feb 2020 (link)
  • ZTE via IEEE Access: Power Saving Techniques for 5G and Beyond, July 2020 (link)

Related Posts:

Monday, 15 February 2021

Open RAN Explanation, Videos, White papers and Other Resources


Couple of years back, just before MWC 2019, we made what I would like to think of as the first proper explanation of Open RAN. I posted it on this blog here and the video has been viewed nearly 45,000 times. At that time, the concept of Open RAN was still quite new and in my day job with Parallel Wireless*, I was spending quite some time explaining what it really means.

Anyway, I think it made the concept of Open RAN so easy to understand that I have seen tens, if not hundreds, of people copy it, but only a few kind people give credit. 

With the Telecom Infra Project (TIP) and O-RAN driving the ecosystem further, I along with my Parallel Wireless colleagues, created a series of videos to explain the concept a bit more in detail. As expected, the introductory videos have been extremely popular while the others have been reasonably popular as well. The concept from these videos have been copied even far and wider than the original one. 

Embedded below is the playlist of all the videos (6 currently but 1 more in works):

In addition to these, I maintain a list of Open RAN whitepapers (publicly available without registration), some good articles, etc. on the 3G4G website here. I try and update the site on a regular basis so feel free to put any resources in the comments of this post and I will add them on the site during the next update.

Related Posts:

*Full Disclosure: I work for Parallel Wireless as a Senior Director, Technology & Innovation Strategy. This blog is maintained in my personal capacity and expresses my own views, not the views of my employer or anyone else. Anyone who knows me well would know this. 

Tuesday, 9 February 2021

Free 6G Training

Last year we announced the launch of Free 5G Training. It was successful beyond our imagination. While we have just over 1,300 Twitter followers, on LinkedIn, we have over 30,000. The 5G for Absolute Beginners Udemy course already has over 6,000 students. This was a good enough motivation for us to launch a 6G equivalent with world's first 6G training course.

Back in November, we soft-launched the Free 6G Training website/blog along with Twitter and LinkedIn. The initial engagement and following are already very encouraging. 

We also created 'An Introduction to 6G Training Course' here. 6G Candidate technologies, that require most details and is the main area of focus for 6G will be added as and when I find time and have enough material.

There is also a new 6G Wireless R&D LinkedIn group that has been started to share information and discuss doubts, etc. I am hoping many people will be able to join.

If you are a 6G expert or researcher or have ideas on how I can do better or want to contribute with articles, presentations, videos, etc., please feel free to get in touch on LinkedIn.

One final thing, along with all this, the 3G4G page has a section on '6G and Beyond-5G Wireless Technology'. I add links to all publicly available whitepapers and other good material out there. 

It may also be useful to know that the 3G4G page has a search box on top that searches across all our channels and can be helpful in finding information on any mobile technology related topic.

Monday, 11 January 2021

5G for Content Acquisition and Distribution

The Cambridge Wireless (CW) Content Production & Delivery group recently delivered a two part webinar series exploring ‘5G for content acquisition and distribution’ These online events introduced participants to the state of play with 5G for content distribution and production and the path to delivering the benefits 5G.

Aspirational discussion of benefits of 5G for content production and distribution needs to be turned into operational reality. 5G will enhance what is possible to be achieved with current mobile systems and the advantages to distribution and consumption are obvious through bigger pipes and enhanced agility to support ever evolving content and application platforms. The possibilities for content production and acquisition are also exiting but may be less obvious. 5G will allow service and capacity to be delivered where required through use of small cell and potentially highly localised private 5G networks, edge computing and support of a wide range of equipment and applications (not just those use cases directly involved in content acquisition).

The first session on 24 Nov 2020 in the series considers the role of 5G for content distribution and security. It covers the role of 5G for the creation of a more varied and vibrant ecosystem for content and the desire of some content creators for greater focus on security.

Henry Johnson, Director, Plum Consulting, '5G opportunities in the provision of content distribution' - 5G services promise to provide connectivity performance in terms of bandwidth and latency which have hitherto been possible only with fixed network connectivity. This session will look into the capabilities and potential limitations of 5G services once deployed and what that might mean for content delivery to consumers. [PPT presentation]

Malcolm Brew, University of Strathclyde, ‘5G-enabled remote broadcast’ - Malcolm will share some Strathclyde’s insights over the last 10 years in working with BBC and Ofcom on ‘Spectrum Sharing’ and how this has recently been lead to working in an IBC Accelerator Program ‘5G In Remote Production’ [PDF

For limited time, the recording is available here.

The following is the description from session 2, on 2nd Dec 2020:

Join the CW Content Production and Delivery Group’s aspirational discussion of benefits of 5G for content production and distribution needs to be turned into operational reality.

There is no doubt 5G will enhance what is possible to be achieved with current mobile systems and the advantages to distribution and consumption are obvious through bigger pipes and enhanced agility to support ever evolving content and application platforms.

The possibilities for content production and acquisition are also exciting, but may be less obvious. 5G will allow service and capacity to be delivered where required through use of small cell and potentially highly localised private 5G networks, edge computing and support of a wide range of equipment and applications (not just those use cases directly involved in content acquisition).

Ian Wagdin, Senior Technology Transfer Manager, BBC R&D, '5G in Content Production, work in standards and deployments' - A look at what’s here and what’s coming and how 5G may impact broadcast workflows. [PDF]

Paola Sunna, Technology and Innovation Department, EBU, '5G for Content Production' - EBU perspective on 5G for professional content production and challenges/ambitions in the Horizon 2020 project 5G-RECORDS. [PDF

For limited time, the recording is available here.

Other Recent News / Articles / Videos on 4G/5G Broadcast:

  • SoftBank Corp. Showcases 5G-powered Entertainment and Advanced Technologies at Pop Culture Complex (link)
  • 5G TODAY: BAVARIA’S BROADCAST TRIALS (link)
  • Webinar: The role of broadcast and multicast in 5G-TOURS: High-quality video services distribution (link)
  • Delivering Media with 5G Technology: FeMBMS, 5G-Xcast and beyond (link)
  • 5G TODAY: 5G Broadcast trial using FeMBMS (link)
  • 5G Today: On the Road to 5G Broadcast (link)

Related Posts:

Monday, 4 January 2021

Top Videos on 3G4G YouTube Channel

We made quite a few videos last year for our YouTube channel. In fact we crossed over 10K subscribers last year. Here are couple of playlists, one for the Top 5 videos of 2020 and other is Top 10 videos of all time. Hopefully you like them and subscribe to our channel

Top 5 3G4G videos from 2020


Top 10 3G4G videos from all time


 Let us know which ones are your favourite.

Related Posts:

Monday, 7 December 2020

Nokia Lectures in Collaboration with Bangalore University

Nokia recently delivered some lectures virtually to Bangalore University students. The talks covered a variety of talks from LTE to 5G, Security & IMS. The playlist from Nokia is embedded below. The video contains following topics:

Part 1: 5G - General Introduction and IoT Specific Features
Part 2: 5G Overview
Part 3: Network Security Practices and Principles
Part 4: LTE Network Architecture - Interface and Protocols
Part 5: IMS - IP Multimedia Subsystem

Related Posts:

Monday, 23 November 2020

Radio Design Webinar: Optimising Your 700 MHz Deployments

 


Radio Design, the award-winning market leader in the provision of wireless infrastructure sharing solutions and RF filter systems, hosted a webinar last week focused on the deployment of the 700 MHz frequency band. This new 700 MHz spectrum is in great demand across the world, mainly due to its long anticipated use as low band 5G spectrum. The webinar explores the potential of this band, as well as how to prepare for potential challenges when deploying.

For people who are familiar with our trainings, we divide the spectrum into three layers, the coverage layer, the capacity layer and the high-throughput layer. 700 MHz is the most popular coverage layer spectrum worldwide.

The slide above from the webinar talks of the recent Austrian 5G Spectrum auction that we blogged about. See tweet below for details

In the webinar, slides and video embedded below, Radio Design’s founder – Eric Hawthorn – kicks things off by analysing the benefits of deploying the 700 MHz band in the real world, before passing over to Global Engineering Director – Steve Shaw – who explores some of the technical problems which can arise, as well as some of the solutions. Last but not least, COO and co-owner of Keima – Iris Barcia – provides her insight into the benefits of deploying the 700 MHz band.

Related Posts:

Tuesday, 10 November 2020

Network Slicing Tutorials and Other Resources

I have received quite a few requests to do a 5G Network Slicing tutorial but have still not got around to doing it. Luckily there are so many public resources available that I can get away with not doing one on this topic. 


This Award Solutions webinar by Paul Shepherd (embedded below) provides good insights into network slicing, what it is, how it efficiently enables different services in 5G networks, and the architectural changes in 5G required to support it.

Then there is also this myth about 3 slices in the network. The GSMA slice template is a good starting point for an operator looking to do network slicing in their 5G networks. The latest version is 3.0, available here.


As this picture (courtesy of Phil Kendall) shows, it's not a straightforward task.  

Alistair URIE from Nokia Bell Labs points out some common misconceptions people have with Network Slicing:

  1. Multiple slices may share the same cell and the same RU in each slice
  2. Single UE may have up to 8 active slices but must have a single CU-CP instance to terminate the common RRC 
  3. Slicing supports more than 3 slices 

Back in March, China Mobile, Huawei, Tencent, China Electric Power Research Institute, and Digital Domain have jointly released the Categories and Service Levels of Network Slice White Paper to introduce the industry’s first classification of network slice levels. The new white paper dives into the definitions, solutions, typical scenarios, and evolution that make up the five levels of network slices. It serves as an excellent reference to provide guidance in promoting and commercializing network slicing, and lays a theoretical foundation for the industry-wide application of network slicing.

The whitepaper describes the different phases as:

Phase 1 (ready): As mentioned above, the 5G transport network and 5G core network support different software-based and hardware-based isolation solutions. On the 5G NR side, 5QIs (QoS scheduling mechanism) are mainly used to achieve software-based isolation in WAN scenarios. Alternatively, campus-specific 5G NR (including micro base stations and indoor distributed base stations) is used to implement hardware-based isolation in LAN scenarios. In terms of service experience assurance, 5QIs are used to implement differentiated SLA assurance between slices. In terms of slice OAM capabilities, E2E KPIs can be managed in a visualized manner. This means that from 2020 on, Huawei is ready to deliver commercial use of E2E slicing for common customers and VIP customers of the public network and common customer of general industries (such as UHD live broadcast and AR advertisement).

Phase 2 (to be ready in 2021): In terms of isolation, the 5G NR side supports the wireless RB resource reservation technology (including the static reservation and dynamic reservation modes) to implement E2E network resource isolation and slicing in WAN scenarios. In terms of service experience assurance, features such as 5G LAN and 5G TSN are enhanced to implement differentiated and deterministic SLA assurance between different slices. In terms of slice OAM, on the basis of tenant-level KPI visualization, the limited self-service of the industry for rented slices can be further supported. In this phase, operators can serve VIP customers in common industries (such as AR/VR cloud games and drone inspection), dedicated industry customers (such as electric power management information region, medical hospital campus, and industrial campus), and dedicated industry customers (such as electric power production control region and public security).

Phase 3 (to be ready after 2022): In this phase, 5G network slicing supports real dynamic closed-loop SLAs based on AI and negative feedback mechanism, implementing network self-optimization and better serving industries (such as 5G V2X) with high requirements on mobility, roaming, and service continuity. In addition, industry-oriented comprehensive service capabilities will be further enhanced and evolved.

A more technical presentation from Nokia is available here. The video below shows how innovations in IP routing and SDN work together to implement network slicing in the transport domain.

If you know some other good resources and tutorials worth sharing, add them in the comments below.

Related Posts:

Monday, 2 November 2020

Lawful Intercept in 5G Networks

Mats Näslund is a cryptologist at the National Defence Radio Establishment outside Stockholm, an agency under the Swedish dept. of defence. As part of his work, he represents Sweden in technical LI standardization in 3GPP. Mats also has a part time appointment as adjunct professor at KTH. Her recently delivered a HAIC Talk on Lawful Intercept in 5G Networks. HAIC Talks is a series of public outreach events on contemporary topics in information security, organized by the Helsinki-Aalto Institute for Cybersecurity (HAIC).


The following is the description from HAIC website:

Our societies have been prospering, much due to huge technological advances over the last 100 years. Unfortunately, criminal activity has in many cases also been able to draw benefits from these advances. Communication technology, such as the Internet and mobile phones, are today “tools-of-the-trade” that are used to plan, execute, and even hide crimes such as fraud, espionage, terrorism, child abuse, to mention just a few. Almost all countries have regulated how law enforcement, in order to prevent or investigate serious crime, can sometimes get access to meta data and communication content of service providers, data which normally is protected as personal/private information. The commonly used term for this is Lawful Interception (LI). For mobile networks LI is, from a technical standpoint, carried out according to ETSI and 3GPP standards. In this talk, the focus will lie on the technical LI architecture for 5G networks. We will also give some background, describing the general, high-level legal aspects of LI, as well as some current and future technical challenges.

The slides are available here.

Related Posts:

Friday, 23 October 2020

Positioning Techniques for 5G NR in 3GPP Release-16

I realised that I have not looked at Positioning techniques a lot in our blogs so this one should be a good summary of the latest positioning techniques in 5G.

Qualcomm has a nice short summary hereRelease 16 supports multi-/single-cell and device-based positioning, defining a new positioning reference signal (PRS) used by various 5G positioning techniques such as roundtrip time (RTT), angle of arrival/departure (AoA/AoD), and time difference of arrival (TDOA). Roundtrip time (RTT) based positioning removes the requirement of tight network timing synchronization across nodes (as needed in legacy techniques such as TDOA) and offers additional flexibility in network deployment and maintenance. These techniques are designed to meet initial 5G requirements of 3 and 10 meters for indoor and outdoor use cases, respectively. In Release 17, precise indoor positioning functionality will bring sub-meter accuracy for industrial IoT use cases.

I wrote about the 5G Americas white paper titled, "The 5G Evolution: 3GPP Releases 16-17" highlighting new features in 5G that will define the next phase of 5G network deployments across the globe. The following is from that whitepaper:

Release-15 NR provides support for RAT-independent positioning techniques and Observed Time Difference Of Arrival (OTDOA) on LTE carriers. Release 16 extends NR to provide native positioning support by introducing RAT-dependent positioning schemes. These support regulatory and commercial use cases with more stringent requirements on latency and accuracy of positioning.25 NR enhanced capabilities provide valuable, enhanced location capabilities. Location accuracy and latency of positioning schemes improve by using wide signal bandwidth in FR1 and FR2. Furthermore, new schemes based on angular/spatial domain are developed to mitigate synchronization errors by exploiting massive antenna systems.

The positioning requirements for regulatory (e.g. E911) and commercial applications are described in 3GPP TR 38.855. For regulatory use cases, the following are the minimum performance requirements:

  • Horizontal positioning accuracy better than 50 meters for 80% of the UEs.
  • Vertical positioning accuracy better than 5 meters for 80% of the UEs.
  • End-to-end latency less than 30 seconds.

For commercial use cases, for which the positioning requirements are more stringent, the following are the starting-point performance targets

  • Horizontal positioning accuracy better than 3 meters (indoors) and 10 meters (outdoors) for 80% of the UEs.
  • Vertical positioning accuracy better than 3 meters (indoors and outdoors) for 80% of the UEs.
  • End-to-end latency less than 1 second.

Figure 3.11 above shows the RAT-dependent NR positioning schemes being considered for standardization in Release 16:

  • Downlink time difference of arrival (DL-TDOA): A new reference signal known as the positioning reference signal (PRS) is introduced in Release 16 for the UE to perform downlink reference signal time difference (DL RSTD) measurements for each base station’s PRSs. These measurements are reported to the location server.
  • Uplink time difference of arrival (UL-TDOA): The Release-16 sounding reference signal (SRS) is enhanced to allow each base station to measure the uplink relative time of arrival (UL-RTOA) and report the measurements to the location server.
  • Downlink angle-of-departure (DL-AoD): The UE measures the downlink reference signal receive power (DL RSRP) per beam/gNB. Measurement reports are used to determine the AoD based on UE beam location for each gNB. The location server then uses the AoDs to estimate the UE position.
  • Uplink angle-of-arrival (UL-AOA): The gNB measures the angle-of-arrival based on the beam the UE is located in. Measurement reports are sent to the location server.
  • Multi-cell round trip time (RTT): The gNB and UE perform Rx-Tx time difference measurement for the signal of each cell. The measurement reports from the UE and gNBs are sent to the location server to determine the round trip time of each cell and derive the UE position.
  • Enhanced cell ID (E-CID). This is based on RRM measurements (e.g. DL RSRP) of each gNB at the UE. The measurement reports are sent to the location server.

UE-based measurement reports for positioning:

  • Downlink reference signal reference power (DL RSRP) per beam/gNB
  • Downlink reference signal time difference (DL RSTD)
  • UE RX-TX time difference

gNB-based measurement reports for positioning:

  • Uplink angle-of-arrival (UL-AoA)
  • Uplink reference-signal receive power (UL-RSRP)
  • UL relative time of arrival (UL-RTOA)
  • gNB RX-TX time difference

NR adopts a solution similar to that of LTE LPPa for Broadcast Assistance Data Delivery, which provides support for A-GNSS, RTK and OTDOA positioning methods. PPP-PTK positioning will extend LPP A-GNSS assistance data message based on compact “SSR messages” from QZSS interface specifications. UE-based RAT-dependent DL-only positioning techniques are supported, where the positioning estimation will be done at the UE-based on assistance data provided by the location server.


Rohde&Schwarz have a 5G overview presentation here. This picture from that presentation is a good summary of the 3GPP Release-16 5G NR positioning techniques. This nice short video on "Release 16 Location Based Services Requirements" complements it very well. 


Related Posts:

Friday, 16 October 2020

Couple of Tutorials on ETSI NFV MANO


The premises of virtualization is to move physical network functions (PNF in hardware) into software and to design them in a way so that they can be deployed on a NFVI (Network Functions Virtualization Infrastructure, a.k.a. the cloud).

MANagement and Orchestration (MANO) is a key element of the ETSI network functions virtualization (NFV) architecture. MANO is an architectural framework that coordinates network resources for cloud-based applications and the lifecycle management of virtual network functions (VNFs) and network services. As such, it is crucial for ensuring rapid, reliable NFV deployments at scale. MANO includes the following components: the NFV orchestrator (NFVO), the VNF manager (VNFM), and the virtual infrastructure manager (VIM).

NFV MANO is broken up into three functional blocks:

  • NFV Orchestrator: Responsible for onboarding of new network services (NS) and virtual network function (VNF) packages; NS lifecycle management; global resource management; validation and authorization of network functions virtualization infrastructure (NFVI) resource requests.
  • VNF Manager: Oversees lifecycle management of VNF instances; fills the coordination and adaptation role for configuration and event reporting between NFV infrastructure (NFVI) and Element/Network Management Systems.
  • Virtualized Infrastructure Manager (VIM): Controls and manages the NFVI compute, storage, and network resources.

For the NFV MANO architecture to work properly and effectively, it must be integrated with open application program interfaces (APIs) in the existing systems. The MANO layer works with templates for standard VNFs and gives users the power to pick and choose from existing NFVI resources to deploy their platform or element.

Couple of good old tutorials, good as gold, explaining the ETSI NFV MANO concept. The videos are embedded below. The slides from the video are probably not available but there are other slides from ETSI here. If you are new to this, this is a good presentation to start with.

NFV MANO Part 1: Overview and VNF Lifecycle Management: Uwe Rauschenbach | Rapporteur | ETSI NFV ISG covers:

  • ETSI NFV MANO Concepts
  • VNF Lifecycle Management

NFV MANO Part 2: Network Service Lifecycle Management: Jeremy Fuller | Chair, IFA WG | ETSI NFV ISG covers:
  • Network Service Lifecycle Management

If you have any better suggestions for the slides / video, please feel free to add in the comments.

Related Posts:

Friday, 2 October 2020

5G Enhanced URLLC (eURLLC)

One of the interesting features of 5G is Ultra-Reliability and Low-Latency Communication or URLLC. It has been enhanced as part of 3GPP Release-16. A summary of the changes in eURLLC can be seen in the picture above. 


This ATIS webinar that I blogged about last week covered this topic as well. For example L1/L2 changes have been summarised nicely in this Qualcomm slide above while the slide from Intel speaker below looks at redundant transmission and session continuity.

Redundant transmission in the user plane is an extremely useful feature, especially if the packets are mission critical and have to reach from the source to their destination in a guaranteed time / reliability.

Dual connectivity will enable this redundant path when required to meet a guaranteed reliability. 

Here is a short video from the training company Mpirical, explaining the the 5G eURLLC feature: 

Related Posts:

Sunday, 27 September 2020

ATIS Webinar on '5G Standards Developments in 3GPP Release 16 and Beyond'

3GPP Organizational Partner, ATIS (Alliance for Telecommunications Industry Solutions), recently delivered a webinar (video & slides below) titled "5G Standards Developments in 3GPP Release 16 and Beyond". 

3GPP News details:

An expert panel brings you up-to-speed on the current state of 5G standardization. The webinar delivers a broad overview of 3GPP's work and introduces some of the key technology elements. It is suitable for people in technical roles and technical executives who want to understand the current state of 5G standardization.

In Release 16, 3GPP delivered important updates to 5G specifications to broaden their range of commercial applications and improve the efficiency of networks. 3GPP is now further enhancing 5G in Release 17 and starting to plan Release 18. This webinar provides an up-to-date view of the completed 3GPP Release 16 work with a particular focus on how the work is expanding capabilities of 5G and enhancing the technical performance of the mobile system. It also looks ahead to future 3GPP deliverables and their use cases.


The webinar features, Iain Sharp, Principal Technologist at ATIS (Moderator), Greg Schumacher, Global Standards at T-Mobile USA and 3GPP SA and SA1 Vice Chairman, Puneet Jain, Director of Technical Standards at Intel and 3GPP SA2 Chairman and Wanshi Chen, Senior Director, Technology at Qualcomm and 3GPP RAN1 Chairman


Many interesting topics have been covered including the updates on mMTC and URLLC. 


There is also details about new features coming in 3GPP Release-17 and an early look at what 3GPP Release-18 might include, as can be seen in the picture above.

Sunday, 20 September 2020

Reliance Jio and 5G Network Architecture Option 6


Last week I read about Jio looking at 5G Network Architecture Option 6. There were also a few discussions on Twitter with users sounding a bit confused. So here is my attempt to explain what is Option 6. Video and slides embedded below. 

You can also see this original video where Satish Jamadagni, Vice President - Network Planning Engineering, Head of Standards at Reliance Jio talks about the need for Option 6. 

Feel free to leave your thoughts in the comments below.

Related Posts: