Showing posts with label UK. Show all posts
Showing posts with label UK. Show all posts

Wednesday, 27 November 2019

Private 4G / 5G Cellular Networks and Bring Your Own Spectrum


With 4G maturing, private cellular networks are finally getting the attention that they deserve and has been promised for quite a while. In a Industry Analyst event, Nokia announced that they are running 120+ private networks including transportation, Energy, Public sector, Smart cities, manufacturing and logistics, etc. (tweet below). The Enterprise Business division is now accounting for 5% of the revenue.
Ray Le Maistre, Editor-in-Chief at Light Reading, in an opinion on Telecoms.com pointed out:

One of the more immediate revenue stream opportunities right now is wireless private networks, and the good news is that this opportunity doesn’t require 5G. Instead, the potential looks set to be enhanced by the availability of a full set of 5G standards (including the yet-to-be concluded core network specs) and the maturity of associated technology.

In the meantime, 4G/LTE has already been the cellular foundation for an increasingly thriving wireless private networks sector that, according to ABI Research, will be worth $16.3 billion by 2025

Another market sizing prediction, this time by SNS Telecom & IT, pitches annual spending on private 4G and 5G networks at $4.7 billion by the end of 2020 and almost $8 billion by 2023. 

However this plays out, there’s clear anticipation of growing investment. What’s particularly interesting, though, is which organizations might pocket that investment. That’s because enterprises and/or organizations looking to benefit from having a private wireless network have a number of options once they decide to move ahead with a private network – here are three permutations that look most likely to me:
  1. Build and run it themselves – technology vendors get some sales in this instance
  2. Outsource the network planning, construction and possibly even the day-to-day. management of the network to a systems integrator (SI) – the SI and some vendors get the spoils. It’s possible here, of course, that the SI could be a technology vendor.
  3. Outsource to a mobile network operator – the operator and some vendors will get some greenbacks.
For sure there will be other permutations, but it shows how many different parts of the ecosystem have some skin in the game, which is what makes this sector so interesting.

What’s also interesting, of course, is what the enterprises do with their private networks: Does it enhance operations? Help reduce costs? Create new business opportunities? All of the above?

Let’s not forget the role of the regulators in all of this. In the US the private wireless sector has been given a shot in the arm by the availability of CBRS (Citizens Broadband Radio Service) shared spectrum in the currently unlicensed 3.5 GHz band: This has given rise to numerous trials and deployments in locations such as sports stadiums, Times Square and even prisons.

In Germany, the regulator has set aside 100MHz of 5G spectrum for private, industrial networks has caused a storm and even led to accusations from the mobile operators that the move ramped up the cost of licenses in the spectrum auction held earlier this year.

In the UK, Ofcom is making spectrum available in four bands:
  • the 1800 MHz and 2300 MHz shared spectrum bands, which are currently used for mobile services;
  • the 3.8-4.2 GHz band, which supports 5G services, and
  • the 26 GHz band, which has also been identified as one of the main bands for 5G in the future.
Slide shared by Mansoor Hanif, CTO, Ofcom at TIP Summit 2019

The process to enable companies and organizations (Ofcom has identified manufacturers, business parks, holiday/theme parks and farms as potential users) in the UK to apply for spectrum will go live before the end of this year, with Ofcom believing that thousands of private networks could be up and running in the coming years.

Dean Bubley from Disruptive Analysis recently spoke about BYOSpectrum – Why private cellular is a game-changer at TAD Summit. The talk is embedded below and is definitely worth listening:



TelecomPaper reported:

The German Federal Ministry for Economic Affairs and Energy said that companies can start to apply to use 5G frequencies in the 3.7-3.8 GHz range on industrial campuses. Local frequencies enable firms to build their own private networks, rather than rely on telecommunications providers to build networks. 

The Automotive Industry Association (VDA) and other industry associations including the VCI, VDMA and ZVEI have welcomed the allocation of frequencies for industrial campuses. According to VDA, several dozen companies have already registered their interest in such frequencies with the Federal Network Agency. 

The firms believe that 5G can replace existing networks, including WLAN, provide improved coverage of entire company premises, enable full control over company data and reduce disruption to public mobile networks.

The spectrum licences will be allocated based on the applicant's geographic footprint and use of a certain area. Prices also take account the area covered by the network, as well as the amount of bandwidth used and duration of the licence.

The formula for the prices is very interesting as shown in the tweet below



In Japan, NTT Docomo is working in co-operation with industry partners to help them to create their own private 5G networks. More announcements on this are expected at MWC next year.



Finally, I am running an Introduction to Private 4G /5G Networks Workshop with Dean Bubley on 04 Feb 2020. If this is an area of interest, consider attending it.



Related Posts:

Thursday, 29 August 2019

LTE / 5G Broadcast Evolution


It's been a while since I last wrote about eMBMS. A report by GSA last month identified:
- 41 operators known to have been investing in eMBMS
- 5 operators have now deployed eMBMS or launched some sort of commercial service using eMBMS
- GSA identified 69 chipsets supporting eMBMS, and at least 59 devices that support eMBMS


BBC R&D are testing the use of 4G/5G broadcast technology to deliver live radio services to members of the public as part of 5G RuralFirst - one of 6 projects funded under the UK Government’s 5G Phase 1 testbeds and trials programme (link).

A press release by Samsung Electronics back in May announced that it has signed an expansion contract with KT Corporation (KT) to provide public safety (PS-LTE) network solutions based on 3GPP standard Release 13 for 10 major metropolitan regions in South Korea including Seoul by 2020. One of the features of PS-LTE that the PR listed was LTE Broadcast (eMBMS): A feature which allows real time feeds to hundreds of devices simultaneously. It enables thousands of devices to be connected at once to transfer video, images and voice simultaneously using multicast technology

Dr. Belkacem Mouhouche – Samsung Electronics Chief Standards Engineer  and Technical Manager of 5G projects: 5G-Xcast and 5G-Tours Presented an excellent overview on this topic at IEEE 5G Summit Istanbul, June 2019. His presentation is embedded below.



5G-Xcast is a 5GPPP Phase II project focused on Broadcast and Multicast Communication Enablers For the Fifth Generation of Wireless Systems.

They have a YouTube channel here and this video below is an introduction to project and the problems it looks to address.




Further Reading:

Related posts:

Thursday, 18 July 2019

5G SpeedTests and Theoretical Max Speeds Calculations


Right now, Speed Tests are being described as 5G killer apps.



A good point by Benedict Evans



Everyone is excited and want to see how fast 5G networks can go. If you use Twitter, you will notice loads and loads of speed tests being done on 5G. An example can be seen above.


I recently heard Phil Sheppard, Director of Strategy & Architecture, '3 UK' speak about their 5G launch that is coming up soon. Phil clearly mentioned that because they have a lot more spectrum (see Operator Watch blog post here and here) in Capacity Layer, their 5G network would be faster than the other UK operators. He also provided rough real world Peak Speeds for Three and other operators as can be seen above. Of course the real world speeds greatly depend on what else is going on in the network and in the cell so this is just a guideline rather than actual advertised speeds.


I have explained multiple times that all 5G networks being rolled out today are Non-Stand Alone (NSA) 5G networks. If you don't know what SA and NSA 5G networks are, check this out. As you can see, the 5G NSA networks are actually 4G Carrier Aggregated Networks + 5G Carrier Aggregated Networks. Not all 4G spectrum will be usable in 5G networks but let's assume it is.

To calculate the theoretical maximum speed of 5G NSA networks, we can calculate the theoretical maximum 4G Network speeds + theoretical maximum 5G Network speeds.

I have looked at theoretical calculation of max LTE Carrier Aggregated Speeds here. Won't do calculation here but assuming 3CA for any network is quite possible.

I also looked at theoretical calculation of 5G FDD New Radio here but then found a website that helps with 5G NR calculation here.

If we calculate just the 5G part, looking at the picture from Three, we can see that they list BT/EE & O2 speeds as 0.61 Gbps or 610 Mbps, just for the 5G part.

Looking at the calculation, if we Input Theoretical max values in this equation:

Calculating just for DL

J - number of aggregated component carriers,
maximum number (3GPP 38.802): 16
input value: 1

v(j)Layers - maximum number of MIMO layers ,
3GPP 38.802: maximum 8 in DL, maximum 4 in UL
input value: 8

Q(j)m modulation order (3GPP 38.804)
For UL and DL Q(j)m is same (QPSK-2, 16QAM-4, 64QAM-6, 256QAM-8)
input value: 8 (256QAM)

f(j) Scaling factor (3GPP 38.306)
input value: 1

FR(j) Frequency Range 3GPP 38.104:
FR1 (450 MHz – 6000 MHz) и FR2 (24250 MHz – 52600 MHz)
input value: FR1

µ(j) -value of carrier configuration (3GPP 38.211)
For DL and UL µ(j) is same (µ(0)=15kHz, µ(1)=30kHz, µ(2)=60kHz, µ(3)=120kHz)
input value: 0 (15kHz)

BW(j)- band Bandwidth, MHz (3GPP 38.104),
should be selected with Frequency Range and µ(i) configuration:
input value: BW:40MHz FR1 µ:15kHz:

Enter a PRB value (if other)
default: 0

Rmax (if you don't know what is it, don't change)
Value depends on the type of coding from 3GPP 38.212
(For LDPC code maximum number is 948/1024 = 0.92578125)
default: 0.92578125

*** Only for TDD ***
Part of the Slots allocated for DL in TDD mode,
where 1 = 100% of Slots (3GPP 38.213, taking into account Flexible slots).
Calculated as: the number of time Slots for DL divided by 14
default value: 0.857142

Part of the Slots allocated for UL in TDD mode,
where 1 = 100% of Slots (3GPP 38.213, taking into account Flexible slots).
Calculated as: 1 minus number of Slots for DL
default value: 0.14285800000000004

Calculated 5G NR Throughput, Mbps: 1584


As you may have noticed, BTE/EE has 40 MHz spectrum while Vodafone in UK have 50 MHz of spectrum.

Changing
BW(j)- band Bandwidth, MHz (3GPP 38.104),
should be selected with Frequency Range and µ(i) configuration:
input value: BW:50MHz FR1 µ:15kHz:

Calculated 5G NR Throughput, Mbps: 1982

Now Three UK has 100 MHz, immediately available for use. So changing

µ(j) -value of carrier configuration (3GPP 38.211)
For DL and UL µ(j) is same (µ(0)=15kHz, µ(1)=30kHz, µ(2)=60kHz, µ(3)=120kHz)
input value: 1 (30kHz)

BW(j)- band Bandwidth, MHz (3GPP 38.104),
should be selected with Frequency Range and µ(i) configuration:
BW:100MHz FR1 µ:30kHz:


Calculated 5G NR Throughput, Mbps: 4006

In theory, a lot of speed is possible with the 100 MHz bandwidth that Three will be able to use. We will have to wait and see who can do a theoretical max SpeedTest. In the meantime remember that a 1Gbps speed test will use over 1 GB of data.



Related Posts:

Sunday, 17 March 2019

Update on UK's Emergency Services Network (ESN) from #BAPCO2019


I have discussed about the UK's Emergency Services Network (ESN) multiple times but I manged to hear about the progress first hand this week. Bryan Clark, ESN Programme Director, Home Office gave a keynote address at BAPCO on Day 2 and the title of his presentation was "2019: The year vision becomes reality"

British APCO or BAPCO Annual Conference and Exhibition 2019 was going to be a big launchpad for the ESN network. The ESN LinkedIn post said "Representatives from ESN and EE will be on hand to discuss coverage and ESN Assure. See an installation of the ESN Gateway solution within a police car, plus a live demonstration showing how ESN coverage can be extended from a vehicle into a building. We’ll also have a ‘Motorola Zone’ where you can watch demos of Kodiak and the ESN self-service portal – and a large touchscreen demo of the Samsung ESN Galaxy"


Bryan started by cracking a joke about people referring to 'ESN' as 'ES When' programme because it has been delayed multiple times. He said straight in the beginning that he going to talk about what the ESN programme is doing now and what comes next.

He started with this short video, embedded below but detailed info available on this LinkedIn post

x

So here is a short summary of the talk:
  • There are roughly 350,000 customers of this service
  • There are 137 separate organizations that will take advantage of this new this new technology. 
  • There are couple of vehicles in the display area (pic on the top and video below) and roughly 50,000 vehicles that need to have a kit
  • Over 100 aircraft need to have an air network access that currently isn't there. 
  • There are nearly 30 direct suppliers to the program and that doesn't include the whole supply chain through each of those suppliers.
  • Looking at the coverage, there is a commitment to providing a signal along half a million (0.5 million) kilometers of roads in England, Scotland & Wales. It extends 12 nautical miles out to sea and 10,000 feet in the air right across England, Scotland & Wales.
  • In London alone there are over 400 kilometres of tunnels that were actually almost finished cabling out.
  • 300 masts are being built as part of the ESN programme to extend services into remote areas.
  • EE has extended their network by adding 700 additional masts. 
  • Thousands of special locations will need to have effective access to ESN network
  • ESN is a large programme so it's hardly surprising that it's very late. It's Bryan's job over the past 10 months to work out how to get it back on track. 
  • People are going through quite a detailed review of where ESN has got to in terms of next steps. 
  • The programme now has a very clear and approved plan to complete the technical element of the work, most of it should be done by late summer next year.
  • One of the first products, Assure, is a way of testing the effectiveness of the network in the field. 
  • A demonstration of Push-To-Talk (PTT) on a 4G network will be demoed within 3 weeks.
  • This is the first generation end-to-end solution
  • Emergency services is critical national infrastructure so any new solution can only replace the legacy once we are absolutely confident that we've got an effective replacement
  • Even though the technical piece is quite challenging, when you compare it to the business change that follows, the technical part looks pretty simple. 
  • To ensure that everything works effectively operationally, plans are in place but more detailed plans are going to follow in the coming three to four months.
  • Individual components are already being tested in the field
  • Programme deployment should start by the end of 2019 in terms of having basically completed laying the core components and a clear plan will be in place for how to test in an operational context. 
  • The ESN programme is not only responsible for the replacement solution but also for operations to date based on the Airwave contract with Motorola currently
  • The number one priority is to provide critical voice communications of sufficient quality that people can rely on in the field and enable them to move away from the TETRA technology that served them so well. So we aren't going anywhere until we've got rock solid critical voice communications. It's our number one priority, simply because people's lives depend on it.
The following are various videos from the ESN demo area. The Gateway device (which is a mobile small cell) is supplied by Parallel Wireless*.



In case you missed BAPCO, Ken Rehbehn, a very well known Industry Analyst who works as a Principal Analyst at Critical Communications Insights and is also Montgomery County Firefighter/EMT, shared his observations and reflections from conference. Very grateful for his interview which is embedded below



Further Reading:




Related posts:

*Full Disclosure: I work for Parallel Wireless as a Senior Director in Strategic Marketing. This blog is maintained in my personal capacity and expresses my own views, not the views of my employer or anyone else. Anyone who knows me well would know this.

Friday, 29 September 2017

Smartphone Wi-Fi Analytics for Travel Route Optimisations

Transport for London (TFL), the local government body responsible for transport in London, which also runs the London Underground (known as Tubes) has been using smartphone Wi-Fi data to work out how people travel on the stations.

They did the trial and collected data in 2016 and have also openly talked about it (see this talk for example), they have now published their findings which is available here. One of the interesting findings for example is that 18 different routes taken by customers between King's Cross St Pancras and Waterloo - and many people don't use the shortest route changing Tube lines

Its interesting to think that because many people do not have their Wi-Fi switched on while outside and many others who put their phone in plane more while in the underground (no mobile coverage, in case you are wondering), this data is probably not as detailed as it could have been.

Nevertheless, there is a talk of bringing Mobile connectivity into the underground network. Once its there, the combination of data could be far more valuable.

Sunday, 11 June 2017

Theoretical calculation of EE's announcement for 429Mbps throughput


The CEO of UK mobile network operator EE recently announced on twitter that they have achieved 429 Mbps in live network. The following is from their press release:

EE, the UK’s largest mobile network operator and part of the BT Group, has switched on the next generation of its 4G+ network and demonstrated live download speeds of 429Mbps in Cardiff city centre using Sony’s Xperia XZ Premium, which launched on Friday 2 June. 
The state of the art network capability has been switched on in Cardiff and the Tech City area of London today. Birmingham, Manchester and Edinburgh city centres will have sites upgraded during 2017, and the capability will be built across central London. Peak speeds can be above 400Mbps with the right device, and customers connected to these sites should be able to consistently experience speeds above 50Mbps. 
Sony’s Xperia XZ Premium is the UK’s first ‘Cat 16’ smartphone optimised for the EE network, and EE is the only mobile network upgrading its sites to be able to support the new device’s unique upload and download capabilities. All devices on the EE network will benefit from the additional capacity and technology that EE is building into its network. 
... 
The sites that are capable of delivering these maximum speeds are equipped with 30MHz of 1800MHz spectrum, and 35MHz of 2.6GHz spectrum. The 1800MHz carriers are delivered using 4x4 MIMO, which sends and receives four signals instead of just two, making the spectrum up to twice as efficient. The sites also broadcast 4G using 256QAM, or Quadrature Amplitude Modulation, which increases the efficiency of the spectrum.

Before proceeding further you may want to check out my posts 'Gigabit LTE?' and 'New LTE UE Categories (Downlink & Uplink) in Release-13'

If you read the press release carefully, EE are now using 65MHz of spectrum for 4G. I wanted to provide a calculation for whats possible in theory with this much bandwidth.

Going back to basics (detailed calculation for basics in slideshare below), in LTE/LTE-A, the maximum bandwidth possible is 20MHz. Any more bandwidth can be used with Carrier Aggregation. So as per the EE announcement, its 20 + 10 MHz in 1800 band and 20 + 15 MHz in 2600 band

So for 1800 MHz band:

50 resource blocks (RBs) per 10MHZ, 150 for 30MHz.
Each RB has 12x7x2=168 symbols per millisecond in case of normal modulation support cyclic prefix (CP).
For 150 RBs, 150 x 168 = 25200 symbols per ms or 25,200,000 symbols per second. This can also be written as 25.2 Msps (Mega symbols per second)
256 QAM means 8 bits per symbol. So the calculation changes to 25.2 x 8 = 201.6 Mbps. Using 4 x 4 MIMO, 201.6 x 4 = 806.4Mbps
Removing 25% overhead which is used for signalling, this gives 604.80 Mbps


Repeating the same exercise for 35MHz of 2600 MHz band, with 2x2 MIMO and 256 QAM:

175 x 168 = 29400 symbols per ms or 29,400,000 symbols per second. This can be written as 29.4 Msps
29.4 x 8 = 235.2 Mbps
Using 2x2 MIMO, 235.2 x 2 = 470.4 Mbps
Removing 25% overhead which is used for signalling, this gives 352.80 Mbps

The combined theoretical throughput for above is 957.60 Mbps

For those interested in revisiting the basic LTE calculations, here is an interesting document:




Further reading:

Saturday, 8 April 2017

The Iconic British Red Phone Boxes

Source: BBC

Brits love their red phone boxes. Even with mobiles prevalent today, we don't want to get rid of the phone boxes. The BBC estimates that there are 46,000 phones boxes in use today, including 8,000 red ones.

Some of these phone boxes are being put to other interesting uses too. One of them has become 'world's smallest museum', another has been converted into a coffee shop, yet another one is a salad bar and another one in Cumbria is hosting life saving medical equipment. This is all thanks to BT that has encouraged adoption of some of these much loved icons for as little as £1.



Two British Phonebox enthusiasts, Prof. Nigel Linge and Prof. Andy Sutton have written a very well researched and comprehensive book on this topic looking at the history and evolution of the humble phone boxes through all of its major models, including those that were introduced by organisations such as the emergency services. The British Phonebox is available to purchase from Amazon and other popular bookshops.


In addition to the book, they have also written an article in 'The Journal' that gives a taster of whats in the book. Its available to download here.

5 interesting facts from the little reading that I did on this topic:

  • The model K1 (K stand for Kiosk) was very unpopular and hence a competition was held to find the best possible design. The winning design by Sir Giles Gilbert Scott became K2 that was rolled out in 1926
  • Sir Giles had suggested silver colour with blue and green interior. This was changed to red for making it easy to spot
  • The latest model is called KX100+
  • The most popular and loved model is the K6 that was designed to celebrate King George V’s Silver Jubilee, though he died before any of them were actually installed.
  • Before Queen Elizabeth came along, a vague representation of the Tudor crown was used on the telephone boxes. Wanting to put her stamp on things after she ascended to the throne in 1952, QEII had all of the crowns changed to St. Edward's Crown, the crown actually used in coronations. Scotland opted to keep the Crown of Scotland on theirs, and so all K6 boxes manufactured after 1955 had to be made with a slot in the top to insert the plate with the correct crown depending on the location of the booth.

Related Links:

Sunday, 19 March 2017

Latest on 5G Spectrum - March 2017

In an earlier post I mentioned that there will be three different types of spectrum that would be needed for 5G; coverage layer, capacity layer and high throughput layer. There is now a consensus within the industry for this approach.


In a 5G seminar, back in Jan, there were a few speakers who felt that there is an informal agreement about the frequencies that will be used. One such slide from Ofcom could be seen in the picture above. Ofcom has also recently released a report expanding on this further.


Analysys Mason has nicely summarized the bands suggested by Ofcom and possibly available in the UK for 5G in the picture above.

Global mobile Suppliers Association (GSA) has also nicely summarised the bands under investigations and trials as follows:

Coverage Layer600 MHz, 700 MHz, 800 MHz, 900 MHz, 1.5 GHz, 2.1 GHz, 2.3 GHz and 2.6 GHz

Capacity Layer:

Europe                     3400 – 3800 MHz (awarding trial licenses)

China                       3300 – 3600 MHz (ongoing trial), 4400 – 4500 MHz, 4800 – 4990 MHz

Japan                       3600 – 4200 MHz and 4400-4900 MHz

Korea                       3400 – 3700 MHz

USA                          3100 – 3550 MHz (and 3700 – 4200 MHz)

High Throughput Layer:

USA:      27.5 – 28.35 GHz and 37 – 40 GHz pre-commercial deployments in 2018

Korea:   26.5 – 29.5 GHz trials in 2018 and commercial deployments in 2019

Japan:   27.5 – 28.28 GHz trials planned from 2017 and potentially commercial deployments in 2020

China:    Focusing on 24.25 – 27.5 GHz and 37 – 43.5 GHz studies

Sweden: 26.5 – 27.5 GHz awarding trial licenses for use in 2018 and onwards

EU:        24.25 – 27.5 GHz for commercial deployments from 2020

Finally, as a reminder, list of bands originally approved for IMT-2020 (5G) as follows:


Another potential band, not being mentioned above is the 66-76GHz spectrum. This band is adjacent to the 60 GHz Wi-Fi (57 GHz - 66 GHz). Lessons learned from that band can be applied to the 5G band too.

Related links:



Friday, 24 February 2017

Connecting Rural Scotland using Airmasts and Droneways


This week EE has finally done a press release on what they term as Airmasts (see my blog post here). Back in Nov. last year, Mansoor Hanif, Director of Converged Networks and Innovation BT/EE gave an excellent presentation on connecting rural Scottish Islands using Airmasts and Droneways at the Facebook TIP Summit. Embedded below are the slides and video from that talk.





In other related news, AT&T is showing flying COWs (Cell On Wheels) that can transmit LTE signals


Their innovation blog says:

It is designed to beam LTE coverage from the sky to customers on the ground during disasters or big events.
...
Here’s how it works. The drone we tested carries a small cell and antennas. It’s connected to the ground by a thin tether. The tether between the drone and the ground provides a highly secure data connection via fiber and supplies power to the Flying COW, which allows for unlimited flight time.  The Flying COW then uses satellite to transport texts, calls, and data. The Flying COW can operate in extremely remote areas and where wired or wireless infrastructure is not immediately available. Like any drone that we deploy, pilots will monitor and operate the device during use.

Once airborne, the Flying COW provides LTE coverage from the sky to a designated area on the ground.  

Compared to a traditional COW, in certain circumstances, a Flying COW can be easier to deploy due to its small size. We expect it to provide coverage to a larger footprint because it can potentially fly at altitudes over 300 feet— about 500% higher than a traditional COW mast.  

Once operational, the Flying COW could eventually provide coverage to an area up to 40 square miles—about the size of a 100 football fields. We may also deploy multiple Flying COWs to expand the coverage footprint.

Nokia on the other hand has also been showcasing drones and LTE connectivity for public safety at D4G Award event in Dubai


Nokia's Ultra Compact Network provides a standalone LTE network to quickly re-establish connectivity to various mission-critical applications including video-equipped drones. Drones can stream video and other sensor data in real time from the disaster site to a control center, providing inputs such as exact locations where people are stranded and nature of the difficulty of reaching the locations.

Related Posts:



Friday, 1 July 2016

EE's vision of Ultra-Reliable Emergency Network


Many of my readers would be aware that UK is probably the first country to have decided to move its emergency services network from an existing TETRA network to a commercial LTE network operated by EE.

While some people have hailed this as a very bold move in the right direction, there is no shortage of critics. Around 300,000 emergency services users will share the same infrastructure used by over 30 million general users.

The following is from an article in Wireless Magazine:

Steve Whatson, deputy director Delivery, Emergency Services Mobile Communications Programme (ESMCP) – the organisation within the UK Home Office procuring ESN – assured delegates that ESN will match the existing dedicated Airwave emergency services communication network in terms of coverage for roads, outdoor hand portable devices and marine coverage. Air to ground (A2G) will extend its reach from 6,000ft to 12,000ft.

Whatson also pointed out that coverage is not one single piece, but will comprise a number of different elements, which all need to mesh into one seamless network run by the ESN Lot 3 Mobile Services (main 4G network) provider – EE.

This includes: EE’s main commercial 4G network; Extended Area Services (hard-to-reach areas of the UK where new passive sites are to be built under a separate contract and then equipped with EE base stations); air-to-ground; London Underground; Crossrail; marine coverage (to 12 nautical miles); and special coverage solutions.

EE is currently rolling out new 4G sites – it will eventually have some 19,500 sites – and is upgrading others with 800MHz spectrum, which propagates over longer distances and is better at penetrating buildings than its other 4G spectrum holdings. Crucially for ESN, it is also switching on a Voice over LTE (VoLTE) capability, starting with the UK’s main cities.
...
Mission critical networks must be always available and have levels of resilience far in excess of commercial networks. Speaking exclusively to Wireless in early May, Tom Bennett, group director Technology Services, Architecture & Devices at EE, said: ‘We already achieve a very high availability level, but what the Home Office was asking for effectively was about a 0.3% increase against our existing commercial availability levels.

‘Now for every 0.1% increase in availability there is a significant investment because you are at the extreme top end of the curve where it is harder and harder to make a noticeable difference.’

There are very specific requirements for coverage and availability of the ESN network for the UK road system. Bennett says: ‘Mobile is based on a probability of service. No more than 1% of any constabulary’s roads are allowed to be below 75% availability, and on major roads it is 96% availability. A coverage gap in this context is no more than 1km.’

The current Airwave network has approximately 4,000 sites, many with back-up generators on site with fuel for seven days of autonomous running if the main power is cut, along with a range of resilient backhaul solutions.

Bennett says that out of EE’s 18,500 sites it has about the same number of unique coverage sites (ie. no overlapping coverage) – around 4,000. ‘As part of our investment programme, those unique coverage sites will need a significant investment in the causes of unavailability – ie. resilient backhaul and back-up batteries.’

He explains that EE has undertaken a lot of analysis of what causes outages on its network, and it has combined that data with the Home Office’s data on where the natural disasters in the UK have occurred over the past 10 years.

From this, EE is able to make a reasonable assessment of which sites are likely to be out of action due to flooding or other disasters for more than three or four days. ‘For those sites – and it is less than 4,000 – you need generators too, because you may not be able to physically access the sites for some days,’ says Bennett.

For obvious reasons, the unique coverage sites are mostly in rural areas. But as Bennett points out, the majority of cases where the emergency services are involved is where people are – suburban and urban areas.

‘In these areas EE has overlapping coverage from multiple sites to meet the capacity requirements, so if a site goes down, in the majority of cases we have compensation coverage. A device can often see up to five tower sites in London, for example,’ he says.

Having adequate backhaul capacity – and resilient backhaul at that – is vital in any network. Bennett says EE is installing extra backhaul, largely microwave and fibre, but other solutions will also be used including satellite and LTE relay from base station to base station – daisy chaining. On 9 May 2016, EE announced a deal with satellite provider Avanti to provide satellite backhaul in some areas of the UK.

Additional coverage and resilience will be offered by RRVs (rapid response vehicles), which EE already has in its commercial network today, for example, to provide extra capacity in Ascot during the racing season.

‘We would use similar, although not exactly the same technology for disaster recovery and site/service recovery, but with all the backhaul solutions,’ says Bennett. ‘Let’s say we planned some maintenance or upgrade work that involved taking the base station out for a while.

‘We’d talk to the chief inspector before the work commences. If he says, there’s no chance of doing that tonight, we can put the RRV there, and provided we maintain coverage, we can carry out the work. RRVs are a very good tool for doing a lot of things.’

At the British APCO event, Mansoor Hanif, director of Radio Access Networks at EE said it was looking at the possibility of using ‘airmasts’ to provide additional coverage. Meshed small cells, network in a box and repeater solutions are becoming available for these ‘airmasts’, which will provide coverage from balloons, or UAVs – tethered drones with power cables and optical fibre connected to them.

Mansoor Hanif, Director of RAN at EE gave a presentation on this at Critical Communications World 2016 and has also given an interview. Both are embedded below.






Feel free to let me know if you believe this will work or not and why.

Friday, 17 June 2016

History: 30 years of the mobile phone in the UK


In January 1985 the UK launched its first mobile networks. Now, thirty years on, many people and companies in the UK have been celebrating this enormous achievements and advances that have been made since then and which have seen the mobile evolve from a humble telephone into the multimedia pocket computer which has become such an essential part of modern life. It was simply not possible in 1985 to envisage a country that would be able to boast more active mobile phones than people or to have along the way clocked up several world firsts, and be now leading on the deployment of 4G and shaping the future 5G technologies.

Below is a series of talks in an event organised by University of Salford,



The following talks are part of playlist:

1. Launch of Vodafone – Nigel Linge, on behalf of Vodafone
2. Launch of Cellnet - Mike Short, O2
3. The emergence of GSM - Stephen Temple, 5GIC
4. The launch of Mercury one2one and Orange - Graham Fisher, Bathcube Telecoms
5. From voice to data - Stuart Newstead, Ellare
6. Telepoint - Professor Nigel Linge, University of Salford
7. 3G - Erol Hepsaydir, 3 UK
8. Handset evolution and usage patterns - Julian Divett, EE
9. 4G and onwards to 5G – Professor Andy Sutton, EE  and University of Salford.

For anyone interested in reading about the history of mobile phones in UK, read this book below with more facts and figures


If you have any facts to share, please feel free to add in the comments below.

Sunday, 5 July 2015

A tale of two Smart Cities

Over the last few months I heard quite a few talks about Smart Cities. Here are two that I thought its worth posting and a very good TEDx talk at the bottom



I think we all agree that more and more people will move from rural to urban areas and the cities will not only grow in population but also in size. The infrastructure will have to grow to be able to cope with the influx of people and increased demand on services.



I guess in most developed nations we have the 1.0 Era Digital City which is long way away from the 3.0 Era Smart City.



To be a full fledged 3.0 Smart City, every aspect of our life may need to evolve into "Smart". Anyway, here is the complete presentation:





While IoT would be important, access, big data, applications, etc. all will have a role to play.



If you want to find out more about the Milton Keynes smart city, also see this video on Youtube. There are driverless pods and other autonomous cars which may be considered as initial step towards smart cities, see this interesting video here.

Finally here is the TEDx talk about designing these smart cities for future:


Saturday, 28 March 2015

Report on Spectrum Usage and Demand in the UK


Last week at work, we released a report titled "UK Spectrum Usage & Demand". The only time most people hear about spectrum is when there are some auctions going on. Often a small chunk of spectrum gets sold off for billion(s) of dollars/pounds and these surely make a headline. As I recently found out, 50% of spectrum in UK is shared and 25% is license exempt.

Anyway, this first edition of the report focuses on Public Mobile, Utilities, Business Radio and Space/Satellites. Space is becoming an important area of focus here as it is a significant contributor to the UK economy.

Anyway, the report is embedded below and is available to download from here:



Sunday, 19 May 2013

Is the Global Mobile Roaming model broken?

Yesterday, I noticed some heavyweights discussing roaming prices on Twitter. It is embedded below using the new Twitter embed feature:


Those who follow me on Twitter may have noticed me ranting about the roaming prices recently so I thought that this is a perfect opportunity to put my thoughts down.

As being discussed above, I went on the websites of two UK operators and found out about their roaming rates to India and The USA and they are as follows:


 It should be noted that there is a better rate available with some kind of bundle opt-in from both the operators and I have not shown about the other UK operators but they offer a similar sort of rate so I am not trying to single out O2 and/or Vodafone.

Since LTE is 'All-IP' network my interest is more from Data point of view rather than the voice point of view. A colleague who went to India recently decided that enough is enough and he bought a SIM in India locally. Apparently is just a bit too difficult to get SIM in India if you are not an Indian resident, nevertheless he somehow managed it. The rates as shown below was INR 24 for 100 MB of data.


Rs. 24 is something like $0.50 or £0.35. You see my problem regarding the data rates? People may be quick to point out here that India has the cheapest data rates in the world. On the other hand we look at US, the rates are as follows:

Even if we assume $15 / 1GB data, its far cheaper than the roaming rate which may be something like,  £3/MB = £3000/GB or £6/MB = £6000/GB.

I blogged about all the interesting developments that have been happening in LTE World Summit regarding the roaming solutions but what is the point of having all these solutions if the operators cant work out a way to reduce these costs. Or is it that they do not want to reduce these costs as they are a good source of income?

The operators complain that the OTT services are taking business away from them and turning them into dumb data pipes but to a lot of extent its their fault. People like me who travel often dont want to spend loads of cash on data and have worked out a way around it. Most of the places I visit have WiFi, most of my work is not urgent enough and I can wait till I am in a WiFi coverage area. In some parts of the world, still I have to buy an expensive WiFi access but compared to the roaming rates, its still cheap so I have stopped complaining about it. My decision to book a hotel depends of reviews, free breakfast and free WiFi. Some of our clients who give us their phone to use abroad strictly inform us that data should not be turned on unless its a matter of life and death.

If the operators dont change their strategies and work out a better solution for the roaming rates I am afraid that their short term gains will only lead to long term pains.

Do you have an opinion? I am interested in hearing.

Wednesday, 12 September 2012

UK: Spectrum, Operators, Vendors and LTE

So LTE (or '4G') is about to be launched in the UK as announced yesterday. Its going to be branded as 4GEE.

Here is a summary of the Spectrum in the UK that will be used for LTE and would be auctioned by Ofcom.


Here is the current allocation of Spectrum in the UK

The above pics are from a presentation by Ofcom in LTE World Summit 2012 in Barcelona, available here.



The last table is from an Ofcom document here. Its very interesting read. For example I didnt know that The L-band was the first major part of Ofcom spectrum awards programme relevant to mobile services. It consists of 40MHz between 1452MHz and 1492MHz. The auction took place in May 2008, in which Qualcomm won the entirety of the available spectrum.

Here is the summary of the operators working on LTE:


Everything Everywhere (EE = Orange + T-Mobile) - They are calling their '4G' service as EE, covering up to 70% of the UK by the end of 2013. Network kit provided by Huawei.

Three - Samsung will provide the Radio Access Network, and the core infrastructure, for Three's LTE (4G) network. That includes the base stations, and radio core. 3 UK has agreed to purchase 2 x 15 MHz of 1800 MHz spectrum from Everything everywhere, and plans commercial launch of LTE service in 2013.

Telefonica (O2) trial network - Equipment supplied by Nokia Siemens Networks (NSN) for both the Radio and Core network elements. Backhaul for the 4G trial network has been provided using Microwave Radio Equipment from Cambridge Broadband Networks Limited, NEC and Nokia Siemens Networks.

Updated 13/09/12 - 11:25

UK Broadband rolled out the first commercial TD-LTE network in London back in February (available to customers since May 2012). The equipment is provided by Huawei. They have 40MHz in Band 42 (3.5GHz) and 84MHz in band 43 (3.6GHz).

Vodafone - No news.


Anything else I missed?

Wednesday, 18 July 2012

Real Life Pictures of Small Cells Deployments in London

Visitors of this blog seemed to like the last set of deployment pictures I put up. As a result here is another set of pictures from the same Telefonica presentation by Robert Joyce. See also my earlier post on the same topic here.