Showing posts with label 4G. Show all posts
Showing posts with label 4G. Show all posts

Tuesday, 21 January 2020

How MOCN RAN-Sharing Works


Shared RAN deployment scenarios are an excellent opportunity for mobile network operators to lower their investments on both, network hardware and operational costs by sharing resources.

The MORAN approach where each operator continues to have its dedicated spectrum (= radio network cells) is easy to understand.

However, the Multi-Operator Core Network (MOCN) is a bit more complex, especially if one of the involved operators asks for service assurance KPIs that apply to its - and only its - subscribers. In this case it is a prerequisite to find out which "call" belongs to which core network operator to enable further KPI correlation and aggregation.

The figure below illustrates how this works:

(click on picture for larger version)

In the System Information Block (SIB) 1 of the cell a list of PLMN-IDs is broadcasted followed by a single Tracking Area Code (which can be combined each of the PLMN-IDs to get multiple TAIs) and a single Cell Identity.

Encoding is specified in 3GPP 36.331 (RRC) as follows:

SystemInformationBlockType1 ::=     SEQUENCE {
    cellAccessRelatedInfo              SEQUENCE {
       plmn-IdentityList                 PLMN-IdentityList,
       trackingAreaCode                  TrackingAreaCode,
       cellIdentity                      CellIdentity,

The spec further defines that the ECGI is the CellIdentiy combined with the first (!!!) PLMN-ID from the PLMN-ID List:

CellGlobalIdEUTRA field descriptions
cellIdentity
Identity of the cell within the context of the PLMN.
plmn-Identity
Identifies the PLMN of the cell as given by the first PLMN entry in the plmn-IdentityList in SystemInformationBlockType1.

So there is one and only 1 ECGI per radio cell in the network, but multiple PLMN-IDs and hence, multiple TAI, one fore each core network operator, are broadcasted.

During RRC establishement a particular UE signals on behalf on the selected PLMN-ID information element in the RRC Connection Setup Complete message to which core network operator shall be used.

This information is "translated" by the eNB into ECGI and TAI with different PLMN-IDs. While the ECGI displays the PLMN-ID of the operator that owns the RAN equipment the TAI shows the selected PLMN-ID of the UE's core network operator. 

Monday, 2 December 2019

Guest Post: Exploring Network Convergence of Mobile, Broadband and Wi-Fi

This is a guest post by Ben Toner, Founder and Director, Numerous Networks


Are multiple networks better than one?

How many articles have you read with a title similar to "Which technology is better, 5G or Wi-Fi6?" If, like me, you regularly use Wi-Fi and cellular (I still use 4G though) then you might find it hard to take sides.

Enter Network Convergence - the concept of bringing multiple networks together to get the best of them all. Imagine, as an end user, not having to decide which network to use but instead feeling satisfied that your data was traversing the best combination of networks at that moment in time.

Imagine a business traveler being connected to Wi-Fi which is slow or busy while trying to take that all important conference call while sitting in an airport. Because you are roaming you want to use that Wi-Fi but you do not want to compromise the video call quality. If your network and device could work together to use just enough cellular data to supplement the slow Wi-Fi so that you stayed within your daily roaming quota but never lost a moment in the video call - then you would probably be very happy with that service. Better still, as you start walking off, if the call transitioned from Wi-Fi to cellular with no dropouts or hangup then you might be delighted!

Earlier I underlined best because that in itself is somewhat complicated.  The example above is easy to desribe but quite hard for to achieve within a framework where all possible scenarios are handled that well, for every user. The common questions which need to be factored into any such choice are:
  • What do I as the end user want? 
  • What performance can each network deliver. 
  • How important is the transfer of content at that time and 
  • How much am I willing to pay for it (how many MB of my data plan am I willing to use?). 

This is one of the challenges that we cannot easily solve today, but technology is being developed to help in that process. The operators and device vendors are working within standardisation to develop technology which can provide such a converged service. However at this time there is still a rules mechanism behind it all which does not really describe how user input and preference is going to be captured.

In the last 10 years I have witnessed many battles within service providers when deciding what "one size fits all" service to offer everyone when deciding how to make service provider Wi-Fi available to their customers; all fuelled by my points above.

A lot of concepts are well designed and somewhat mature but deciding exactly what will be implemented in standards is currently ongoing.

In the following slides and video I introduce this whole concept of Network Convergence. The following content introduces the concept and then takes a detailed look at the ATSSS; technology being defined in 3GPP. I also have highlighted the technologoies you can get hold of today to try out network convergence.

I encourage you all to download the example technologies and try convergence for yourself. I'm eager to hear opinions of what technologies work best for each of you. And better still, what is not being provided which you think should be...

Looking forward to your feedback and answering your questions...





Ben Toner
Founder and Director, Numerous Networks


Related Posts:

Wednesday, 27 November 2019

Private 4G / 5G Cellular Networks and Bring Your Own Spectrum


With 4G maturing, private cellular networks are finally getting the attention that they deserve and has been promised for quite a while. In a Industry Analyst event, Nokia announced that they are running 120+ private networks including transportation, Energy, Public sector, Smart cities, manufacturing and logistics, etc. (tweet below). The Enterprise Business division is now accounting for 5% of the revenue.
Ray Le Maistre, Editor-in-Chief at Light Reading, in an opinion on Telecoms.com pointed out:

One of the more immediate revenue stream opportunities right now is wireless private networks, and the good news is that this opportunity doesn’t require 5G. Instead, the potential looks set to be enhanced by the availability of a full set of 5G standards (including the yet-to-be concluded core network specs) and the maturity of associated technology.

In the meantime, 4G/LTE has already been the cellular foundation for an increasingly thriving wireless private networks sector that, according to ABI Research, will be worth $16.3 billion by 2025

Another market sizing prediction, this time by SNS Telecom & IT, pitches annual spending on private 4G and 5G networks at $4.7 billion by the end of 2020 and almost $8 billion by 2023. 

However this plays out, there’s clear anticipation of growing investment. What’s particularly interesting, though, is which organizations might pocket that investment. That’s because enterprises and/or organizations looking to benefit from having a private wireless network have a number of options once they decide to move ahead with a private network – here are three permutations that look most likely to me:
  1. Build and run it themselves – technology vendors get some sales in this instance
  2. Outsource the network planning, construction and possibly even the day-to-day. management of the network to a systems integrator (SI) – the SI and some vendors get the spoils. It’s possible here, of course, that the SI could be a technology vendor.
  3. Outsource to a mobile network operator – the operator and some vendors will get some greenbacks.
For sure there will be other permutations, but it shows how many different parts of the ecosystem have some skin in the game, which is what makes this sector so interesting.

What’s also interesting, of course, is what the enterprises do with their private networks: Does it enhance operations? Help reduce costs? Create new business opportunities? All of the above?

Let’s not forget the role of the regulators in all of this. In the US the private wireless sector has been given a shot in the arm by the availability of CBRS (Citizens Broadband Radio Service) shared spectrum in the currently unlicensed 3.5 GHz band: This has given rise to numerous trials and deployments in locations such as sports stadiums, Times Square and even prisons.

In Germany, the regulator has set aside 100MHz of 5G spectrum for private, industrial networks has caused a storm and even led to accusations from the mobile operators that the move ramped up the cost of licenses in the spectrum auction held earlier this year.

In the UK, Ofcom is making spectrum available in four bands:
  • the 1800 MHz and 2300 MHz shared spectrum bands, which are currently used for mobile services;
  • the 3.8-4.2 GHz band, which supports 5G services, and
  • the 26 GHz band, which has also been identified as one of the main bands for 5G in the future.
Slide shared by Mansoor Hanif, CTO, Ofcom at TIP Summit 2019

The process to enable companies and organizations (Ofcom has identified manufacturers, business parks, holiday/theme parks and farms as potential users) in the UK to apply for spectrum will go live before the end of this year, with Ofcom believing that thousands of private networks could be up and running in the coming years.

Dean Bubley from Disruptive Analysis recently spoke about BYOSpectrum – Why private cellular is a game-changer at TAD Summit. The talk is embedded below and is definitely worth listening:



TelecomPaper reported:

The German Federal Ministry for Economic Affairs and Energy said that companies can start to apply to use 5G frequencies in the 3.7-3.8 GHz range on industrial campuses. Local frequencies enable firms to build their own private networks, rather than rely on telecommunications providers to build networks. 

The Automotive Industry Association (VDA) and other industry associations including the VCI, VDMA and ZVEI have welcomed the allocation of frequencies for industrial campuses. According to VDA, several dozen companies have already registered their interest in such frequencies with the Federal Network Agency. 

The firms believe that 5G can replace existing networks, including WLAN, provide improved coverage of entire company premises, enable full control over company data and reduce disruption to public mobile networks.

The spectrum licences will be allocated based on the applicant's geographic footprint and use of a certain area. Prices also take account the area covered by the network, as well as the amount of bandwidth used and duration of the licence.

The formula for the prices is very interesting as shown in the tweet below



In Japan, NTT Docomo is working in co-operation with industry partners to help them to create their own private 5G networks. More announcements on this are expected at MWC next year.



Finally, I am running an Introduction to Private 4G /5G Networks Workshop with Dean Bubley on 04 Feb 2020. If this is an area of interest, consider attending it.



Related Posts:

Tuesday, 22 October 2019

From traditional RAN to Open RAN - O-RAN: Goals and Challenges


My Open RAN tutorial has recently gained popularity with recent announcements from Altiostar, Mavenir, Parallel Wireless, Telefonica and Vodafone. With TIP Summit in few weeks time, I am hoping for a lot more curious people to discover that blog post and video.

Olivier Simon, Director, Radio Innovation, Orange spoke about "O-RAN: Goals and Challenges" at Open Networking Summit Europe 2019. In his presentation, he explained how O-RAN will trigger more intelligence and openness in the RAN domain. He talked about which use cases will require this new architecture and why O-RAN is coming at the right time. Major architectural change are necessary in the next years in order to improve E2E latency and benefit from the flexibility of virtualized network functions. O-RAN will provide the right framework in order to perform this transformation in an open manner and keeping at the same time economies of scale thanks to a global adoption.


The presentation also touches on O-RAN Software Community. The O-RAN Alliance recently partnered with the Linux Foundation to establish the O-RAN-Software Community (O-RAN-SC), to provide that open source software application layer to the RAN. O-RAN-SC will foster development of an open source infrastructure platform for running 5G RAN solutions.

The key aspects of ORAN-SC are:
  • New Open Community focused on RAN Software in collaboration with O-RAN Alliance
  • Set up for collaboration across OPNFV, ONAP, Akraino and other Open Source projects

Here is the video of the conference embedded below:



Related Posts:

Tuesday, 24 September 2019

When does your 5G NSA Device Show 5G Icon?


After I wrote about the 5G Icon Display back in February, I received lots of other useful and related materials, mostly from 3GPP standards delegates. Based on this updated information, I created a presentation and video called 'The 5G Icon Story'. Only recently did I realize that I didn't add it to the blog. So here it is.

And for people who are impatient and directly want to jump to the main point, it's UpperLayerIndication in SIB 2 as can be seen above.

The slides and video is embedded below.





Related Posts:



Thursday, 5 September 2019

Opinion: What is "Real 5G" or "True 5G"


I made another opinion piece couple of weeks back. While it was shared already as part of some channels, here is it on the blog with serves as a permanent link. Video and slides below.





As always, I welcome your opinions, comments & suggestions below.


Related Posts:

Friday, 23 August 2019

The Politics of Standalone vs Non-Standalone 5G & 4G Speeds


A short video (and slides) discussing the operator dilemma of standalone (SA) vs non-standalone (NSA) 5G deployment, frequency refarming and why 4G speeds will start reducing once SA 5G starts to be deployed.

Video




Slides



Related Posts:

Monday, 29 April 2019

Evolution of Security from 4G to 5G


Dr. Anand Prasad, who is well known in the industry, not just as CISO of Rakuten Mobile Networks but also as the Chairman of 3GPP SA3, the mobile communications security and privacy group, recently delivered a talk on '4G to 5G Evolution: In-Depth Security Perspective'.


The video of the talk is embedded below and the slides are available here.



An article on similar topic by Anand Prasad, et al. is also available on 3GPP website here.


Related posts and articles:

Sunday, 10 February 2019

Theoretical Throughput Calculation of FDD 5G New Radio (NR)


A nice video by Peter Clarke on 5G NR throughput calculation for FDD. Right now it's only in the video form but will hopefully be available as a tool on his excellent website here. A tool for 4G throughput calculation is available here.




Related Links:

Tuesday, 4 December 2018

Can KaiOS accelerate the transition from 2G / 3G to 4G?


The GSMA Mobile Economy 2018 report forecasts that 2G will still be around in 2025 and the dominant technology will be 3G in Africa. GSMA Intelligence Global Mobile Trends highlighted similar numbers but North Africa was missing in that report. As you can see in the picture below, 3G devices will make up 62% of the total number of devices in Sub-Saharan Africa and 37% in MENA.

Similar information was provided by Navindran Naidoo, Executive, Network Planning & Design, MTN Group in TIP Summit 2017 and Babak Fouladi, Technology and Information System (Group CTIO) , MTN Group in TIP Summit 2018. In fact Babak had a slide that showed 3G devices would make up 61%  of total devices in 2025 in Africa. Rob Shuter, Group President and CEO, MTN Group said at AfricaCom 2018 that Africa lags 7 years behind the Western countries in mobile technologies. Though this may not be universally true, its nevertheless a fact in many areas of the Continent as can be seen from the stats.

In my blog post "2G / 3G Switch Off: A Tale of Two Worlds", I said operators in many developing countries that maybe forced to switch off a technology would rather switch 3G off as they have a big base of 2G users and 3G devices can always fall back on 2G.

So what are the main reasons so many users are still on 2G devices or feature phones? Here are some that I can think off the top of my head:
  • Hand-me-downs
  • Cheap and affordable
  • Given as a gift (generally because its cheap and affordable)
  • 2G has better coverage than 3G and 4G in many parts of the world
  • Second/Third device, used as backup for voice calls
  • Most importantly - battery can last for a long time
This last point is important for many people across different parts of the world. In many developing countries electricity is at a premium. Many villages don't have electricity and people have to take a trip to a market or another village to get their phones charged. This is an expensive process. (Interesting article on this here and here). In developed countries, many schools do not allow smartphones. In many cases, the kids have a smartphone switched off in their bag or left at home. For parents to keep in touch, these kids usually have a feature phone too. 

While all feature phones that were available until couple of years ago were 2G phones, things have been changing recently. In an earlier tweet I mentioned that Reliance Jio has become a world leader in feature phones:


I also wrote about Jio phone 2 launch, which is still selling very well. So what is common between Jio phones and Nokia 8110 4G, a.k.a. Banana phone

They both use a new mobile operating system called KaiOS. So what is KaiOS?

KaiOS originates from the Firefox OS open-source project which started in 2011 and has continued independently from Mozilla since 2016. Today, KaiOS is a web-based operating system that enables a new category of lite phones and other IoT devices that require limited memory, while still offering a rich user experience through leading apps and services. KaiOS is a US-based company with additional offices in France, Germany, Taiwan, India, Brazil, Hong Kong, and mainland China. You can find a list of KaiOS powered devices here. In fact you can see the specifications of all the initial devices using KaiOS here.

Here is a video that explains why we need KaiOS:



There are couple of really good blog posts by Sebastien Codeville, CEO of KaiOS:

There is so much information in both these articles that I will have to copy and paste the entire articles to do them justice. Instead, I want to embed the presentation that Sebastien delivered at AfricaCom below:



I like the term 'smart feature phone' to distinguish between the smartphones and old dumb feature phones.

Finally, it should be mentioned that some phone manufacturers are using older version of Android to create a feature phone. One such phone is "Reinvent iMi" that is being billed as 'Slimmest Smart 3G Feature Phone' in India. It uses Android 4.1. See details here. Would love to find out more about its battery life in practice.

My only small concern is about security of old Android OS. As Android is extensively used, new vulnerabilities keep getting discovered all the time. Google patches them in newer versions of the software or sometimes releases a separate patch. All updates to the Android OS stops after 3 years. This means that older versions of Android can be hacked quite easily. See here for example.

Anyway, feature phones or 'smart feature phones' are here to stay. Better on 4G than on 2G.

Wednesday, 10 October 2018

Automated 4G / 5G HetNet Design


I recently heard Iris Barcia, COO of Keima speak after nearly 6 years at Cambridge Wireless CWTEC 2018. The last time I heard her, it was part of CW Small Cells SIG, where I used to be a SIG (special interest group) champion. Over the last 6 years, the network planning needs have changed from planning for coverage to planning for capacity from the beginning. This particular point started a little debate that I will cover in another post, but you can sneak a peek here 😉.

Embedded below is the video and presentation. The slides can be downloaded from SlideShare.





Related posts:

Saturday, 16 June 2018

Summary and Analysis of Ericsson Mobility Report 2018

Ericsson Mobility reports always make a fantastic reading. Its been a while since I wrote anything on this topic so I thought lets summarize it and also provide my personal analysis. Please feel free to disagree as this is just a blog post.

Before we start, the official site for the report is here. You can jump directly to the PDF here. Ericsson will also be holding a webinar on this topic on 19 June, you can register here.

A short summary of some of the highlights are in the table above but lets look at more in detail.

Mobile subscriptions 



  • The total number of mobile subscriptions was around 7.9 billion in Q1 2018.
  • There are now 5.5 billion mobile broadband subscriptions.
  • Global subscription penetration in Q1 2018 was 104 percent.
  • The number of LTE subscriptions increased by 210 million during the quarter to reach a total of 2.9 billion.
  • Over the same period, GSM/EDGE-only subscriptions declined by 90 million. Other technologies declined by around 32 million.
  • Subscriptions associated with smartphones now account for around 60 percent of all mobile phone subscriptions.

Many things to note above. There is still a big part of the world which is unconnected and most of the connectivity being talked about is population based coverage. While GSM/EDGE-only subscriptions are declining, many smartphone users are still camped on to GSM/EDGE for significant time.

While smartphones are growing, feature phones are not far behind. Surprisingly, Reliance Jio has become a leader of 4G feature phones.

My analysis from the developing world shows that many users are getting a GSM feature phone as a backup for when smartphone runs out of power.


Mobile subscriptions worldwide outlook


  • 1 billion 5G subscriptions for enhanced mobile broadband by the end of 2023, accounting for 12 percent of all mobile subscriptions.
  • LTE subscriptions continues to grow strongly and is forecast to reach 5.5 billion by the end of 2023
  • In 2023, there will be 8.9 billion mobile subscriptions, 8.3 billion mobile broadband subscriptions and 6.1 billion unique mobile subscribers.
  • The number of smartphone subscriptions is forecast to reach 7.2 billion in 2023.

The report describes "A 5G subscription is counted as such when associated with a device that supports NR as specified in 3GPP Release 15, connected to a 5G-enabled network." which is a good approach but does not talk about 5G availability. My old question (tweet below) on "How many 5G sites does an operator have to deploy so that they can say they have 5G?" is still waiting for an answer.


5G device outlook



  • First 5G data-only devices are expected from the second half of 2018.
  • The first 3GPP smartphones supporting 5G are expected in early 2019.
  • From 2020, when third-generation chipsets will be introduced, large numbers of 5G devices are forecast.
  • By 2023, 1 billion 5G devices for enhanced mobile broadband are expected to be connected worldwide.

Qualcomm has made a good progress (video) on this front and there are already test modems available for 5G. I wont be surprised with the launch. It would remain to be seen what will be the price point and demand for these 5G data-only devices. The Register put it quite bluntly about guinea pigs here. I am also worried about the misleading 5G claims (see here).


Voice over LTE (VoLTE) outlook



  • At the end of 2017, VoLTE subscriptions exceeded 610 million.
  • The number of VoLTE subscriptions is projected to reach 5.4 billion by the end of 2023.
  • VoLTE technology will be the foundation for enabling 5G voice calls.
  • New use cases in a 5G context are being explored, such as augmented reality (AR) and virtual reality (VR).

Back in 2011, I suggested the following (tweet below)
Looks like things haven't changed significantly. There are still many low end devices that do not support VoLTE and many operators dont support VoLTE on BYOD. VoLTE has been much harder than everyone imagined it to be.


Mobile subscriptions worldwide by region



  • Globally, mobile broadband subscriptions now make up 68 percent of all mobile subscriptions.
  • 5G subscriptions will be available in all regions in 2023.
  • In 2023, 48 percent of subscriptions in North America and 34 percent in North East Asia are expected to be for 5G.

I think that for some regions these predictions may be a bit optimistic. Many operators are struggling with finance and revenue, especially as the pricing going down due to intense competition. It would be interesting to see how these numbers hold up next year.

While China has been added to North-East Asia, it may be a useful exercise to separate it. Similarly Middle East should be separated from Africa as the speed of change is going to be significantly different.


Mobile data Traffic Growth and Outlook

  • In Q1 2018, mobile data traffic grew around 54 percent year-on-year.
  • The quarter-on-quarter growth was around 11 percent.
  • In 2023, 20 percent of mobile data traffic will be carried by 5G networks.
  • North America has the highest monthly usage of mobile data per smartphone at 7.2 gigabytes (GB), anticipated to increase to 49GB in 2023.
  • Total mobile data traffic is expected to increase by nearly eight times by the end of 2023.
  • In 2023, 95 percent of total mobile data traffic is expected to be generated by smartphones, increasing from 85 percent today.
  • North East Asia has the largest share of mobile data traffic – set to reach 25EB per month in 2023.

This is one of the toughest areas of prediction as there are a large number of factors affecting this from pricing to devices and applications.

Quiz question: Do you remember which year did data traffic overtake voice traffic? Answer here (external link to avoid spoilers)


Mobile traffic by application category



  • In 2023, video will account for around 73 percent of mobile data traffic.
  • Traffic from social networking is also expected to rise – increasing by 31 percent annually over the next 6 years.
  • The relative share of social networking traffic will decline over the same period, due to the stronger growth of video.
  • Streaming videos in different resolutions can impact data traffic consumption to a high degree. Watching HD video (720p) rather than standard resolution video (480p) typically doubles the data traffic volume, while moving to full HD (1080p) doubles it yet again.
  • Increased streaming of immersive video formats would also impact data traffic consumption.

It would have been interesting if games were a separate category. Not sure if it has been lumped with Video/Audio or in Other segments.


IoT connections outlook


  • The number of cellular IoT connections is expected to reach 3.5 billion in 2023. This is almost double our last forecast, due to ongoing large-scale deployments in China.
  • Of the 3.5 billion cellular IoT connections forecast for 2023, North East Asia is anticipated to account for 2.2 billion.
  • New massive cellular IoT technologies, such as NB-IoT and Cat-M1, are taking off and driving growth in the number of cellular IoT connections.
  • Mobile operators have commercially launched more than 60 cellular IoT networks worldwide using Cat-M1 and NB-IoT.

It is important to look at the following 2 definitions though.

Short-range IoT: Segment that largely consists of devices connected by unlicensed radio technologies, with a typical range of up to 100 meters, such as Wi-Fi, Bluetooth and Zigbee. This category also includes devices connected over fixed-line local area networks and powerline technologies

Wide-area IoT: Segment consisting of devices using cellular connections, as well as unlicensed low-power technologies, such as Sigfox and LoRa

The Wide-area IoT in the table above includes cellular IoT. If you are a regular reader of this blog, you will know that I think LoRa has a bright future and my belief is that this report ignores some of the reasons behind the popularity of LoRa and its growth story. 


Network coverage

  • In 2023, more than 20 percent of the world’s population will be covered by 5G.
  • 5G is expected to be deployed first in dense urban areas to support enhanced mobile broadband.
  • Another early use case for 5G will be fixed wireless access.
  • Today, 3GPP cellular networks cover around 95 percent of the world’s population.

A lot of work needs to be done in this area to improve coverage in rural and remote locations.

I will leave this post at this point. The report also contains details on Network Evolution, Network Performance, Smart Manufacturing, etc. You can read it from the report.

Sunday, 25 March 2018

5G Security Updates - March 2018


Its been a while since I wrote about 5G security in this fast changing 5G world. If you are new to 3GPP security, you may want to start with my tutorial here.

3GPP SA3 Chairman, Anand R. Prasad recently mentioned in his LinkedIn post:

5G security specification finalized! Paving path for new business & worry less connected technology use.

3GPP SA3 delegates worked long hours diligently to conclude the specification for 5G security standard during 26 Feb.-2 Mar. Several obstacles were overcome by focussed effort of individuals & companies from around the globe. Thanks and congrats to everyone!

All together 1000s of hours of work with millions of miles of travel were spent in 1 week to get the work done. This took 8 meetings (kicked off Feb. 2017) numerous on-line meetings and conference calls.

Excited to declare that this tremendous effort led to timely completion of 5G security specification (TS 33.501) providing secure services to everyone and everything!

The latest version of specs is on 3GPP website here.

ITU also held a workshop on 5G Security in Geneva, Switzerland on 19 March 2018 (link). There were quite a few interesting presentations. Below are some slides that caught my attention.

The picture in the tweet above from China Mobile summarises the major 5G security issues very well. 5G security is going to be far more challenging than previous generations.

The presentation by Haiguang Wang, Huawei contained a lot of good technical information. The picture at the top is from that presentation and highlights the difference between 4G & 5G Security Architecture.


New entities have been introduced to make 5G more open.


EPS-AKA vs 5G-AKA (AKA = Authentication and Key Agreement) for trusted nodes


EAP-AKA' for untrusted nodes.


Slice security is an important topic that multiple speakers touched upon and I think it would continue to be discussed for a foreseeable future.

Dr. Stan Wing S. Wong from King’s College London has some good slides on 5G security issues arising out of Multi-Tenancy and Multi-Network Slicing.

Peter Schneider from Nokia-Bell Labs had good slides on 5G Security Overview for Programmable Cloud-Based Mobile Networks

Sander Kievit from TNO, a regular participant of working group SA3 of 3GPP on behalf of the Dutch operator KPN presented a view from 3GPP SA3 on the Security work item progress (slides). The slide above highlights the changes in 5G key hierarchy.

The ITU 5G Security Workshop Outcomes is available here.

ETSI Security Week 2018 will be held 11-15 June 2018. 5G security/privacy is one of the topics.

There is also 5GPPP Workshop on 5G Networks Security (5G-NS 2018), being held in Hamburg, Germany on August 27-30, 2018.

In the meantime, please feel free to add your comments & suggestions below.


Related Posts & Further Reading:

Tuesday, 12 December 2017

5G Patents Progress

More than 23,500 patents have been declared essential to the GSM & 3G as shown in the picture above. I am assuming this includes 4G as well. Anyway, its been a while I looked into this subject. The last time I was looking, 4G patent pools were beginning to form.

For LTE, indeed there is no one-stop shop for licensing. The only company that has tried is VIA Licensing, with their patent pool, but they don’t have licenses for the big players like Ericsson, Qualcomm, Huawei, ZTE, Samsung, etc. The same will probably apply for 5G.


This old picture and article from Telecom TV (link) is an interesting read on this topic.



This official WIPO list shows ZTE, Huawei, and Qualcomm at the top of the list for international patent filers worldwide in 2016 [PDF].

Back in 2015, NGMN alliance was also looking for creation of some kind of patent pool but it probably didn't go anywhere (link)

(Can't recall the source for this one) In March, Ericsson announced plans to license 5G for $5 per device and possibly as low as $2.50 in emerging markets. In November, Qualcomm announced plans to license 5G IP at the same rates established by the NDRC for 4G/LTE phones sold into China: 2.275% for single mode essential patents / 4.0% for the entire portfolio or 3.25% for multimode essential patents / 5.0% for the entire portfolio. All rates are based on the wholesale price of the phone.

Qualcomm also announced that the previously undisclosed $500 price cap will apply to all phones. Qualcomm also announce a rate of less than $5 for 5G for automotive applications and $0.50 for NB-IoT based IoT applications.

Ericsson has filed patent application for its end-to- end 5G technology. Ericsson has incorporated its numerous 5G and related inventions into a complete architecture for the 5G network standard. The patent application filed by the leading telecom vendor combines the work of 130 Ericsson inventors.

Dr. Stefan Parkvall, Principal Researcher at Ericsson, said, “The patent application contains Ericsson’s complementary suite of 5G inventions.” Stefan added, “It contains everything you need to build a complete 5G network. From devices, the overall network architecture, the nodes in the network, methods and algorithms, but also shows how to connect all this together into one fully functioning network. The inventions in this application will have a huge impact on industry and society: they will provide low latency with high performance and capacity.

This will enable new use cases like the Internet of Things, connected factories and self-driving cars.” Ericsson is involved with leading mobile operators across the world for 5G and Pre-5G research and trials. The patent application is likely to further strengthen its position in the 5G race.

More details on E/// 5G patents on their official website here.

Mobile world live has some good details on Qualcomm 5G NR royalty terms.

Smartphone vendors will have to pay as much as $16.25 per device to use Qualcomm’s 5G New Radio (NR) technology under new royalty guidelines released by the company.

Qualcomm said it will implement a royalty rate of 2.275 per cent of the selling price for single-mode 5G handsets and a higher rate of 3.25 per cent for multi-mode smartphones with 3G, 4G and 5G capabilities.

So for a $200 multi-mode device, for instance, Qualcomm noted a vendor would have to pay $6.50 in royalties per device. Royalties are capped at a $500 device value, meaning the maximum amount a smartphone vendor would have to pay would be $16.25 per handset.

The company added it will also offer access to its portfolio of both cellular standard essential patents and non-essential patents at a rate of 4 per cent of the selling price for single-mode devices and 5 per cent for multi-mode devices.

Qualcomm’s rates are notably higher than those announced by Ericsson in March. The Swedish company said it would charge a flat royalty fee of $5 per 5G NR multimode handset, but noted its fee could go as low as $2.50 per device for handsets with low average selling prices.

The official Qualcomm 5G royalty terms [PDF] are available here.

Further reading:


Thanks to Mike Saji for providing inputs on 4G patent landscape. Thanks to Keith Dyer for interesting tweets on this topic.

Thursday, 9 November 2017

Quick tutorial on Mobile Network Sharing Options


Here is a quick tutorial on mobile network sharing approaches, looking at site/mast sharing, MORAN, MOCN and GWCN. Slides with video embedded below. If for some reason you prefer direct link to video, its here.



See also:

Saturday, 7 October 2017

2G / 3G Switch Off: A Tale of Two Worlds

Source: Wikipedia

2G/3G switch off is always a topic of discussion in most conferences. While many companies are putting their eggs in 4G & 5G baskets, 2G & 3G is not going away anytime soon.

Based on my observations and many discussions that I have had over the past few months, I see a pattern emerging.

In most developed nations, 2G will be switched off (or some operators may leave a very thin layer) followed by re-farming of 3G. Operators will switch off 3G at earliest possible opportunity as most users would have moved to 4G. Users that would not have moved to 4G would be forced to move operators or upgrade their devices. This scenario is still probably 6 - 10 years out.



As we all know that 5G will need capacity (and coverage) layer in sub-6GHz, the 3G frequencies will either be re-farmed to 4G or 5G as 2G is already being re-farmed to 4G. Some operators may choose to re-balance the usage with some lower frequencies exchanged to be used for 5G (subject to enough bandwidth being available).


On the other hand, in the developing and less-developed nations, 3G will generally be switched off before 2G. The main reason being that there are still a lot of feature phone users that rely on 2G technologies. Most, if not all, 3G phones support 2G so the existing 3G users will be forced onto 2G. Those who can afford, will upgrade to newer smartphones while those who cant will have to grudgingly use 2G or change operators (not all operators in a country will do this at the same time).

Many operators in the developing countries believe that GSM will be around until 2030. While it may be difficult to predict that far in advance, I am inclined to believe this.

For anyone interested, here is a document listing 2G/3G switch off dates that have been publicly announced by the operators.



Let me know what you think.

Further reading: