Showing posts with label Release 17. Show all posts
Showing posts with label Release 17. Show all posts

Wednesday, 4 May 2022

ATIS Webinar on '5G Standards Development Update in 3GPP Release 17 and 18'

Our blog post on ATIS Release-16 webinar has been one of the popular posts so it's no brainer that people will surely find this Release 17/18 update useful as well. 

The moderator for this webinar was Iain Sharp, Principal Technologist at ATIS. The following were the speakers and the topics they spoke on:

  • Services: Greg Schumacher, Global Standards, T-Mobile USA
  • Systems Architecture and Core Networks: Puneet Jain, Principal Engineer and Director of Technical Standards at Intel Corporation, and 3GPP SA2 Chairman
  • Radio Access Network: Wanshi Chen, Senior Director,Technology at Qualcomm, and 3GPP RAN Chairman

Here is a summary of the webinar:

In Release 17, 3GPP delivered important updates to 5G specifications to broaden their range of commercial applications and improve the efficiency of networks. 3GPP is now starting standardization of Release 18. This webinar provides an up-to-date view of the completed 3GPP Release 17 work with a particular focus on how the work is expanding capabilities of 5G and enhancing the technical performance of the mobile system.

The webinar will cover:

  • The status of 3GPP's work and the organization's roadmap for the future
  • The main themes the delivered Release 17 features in 3GPP specifications
  • How enhancements to 5G are helping the 5G market proposition (e.g., through new service opportunities, or enhanced efficiency of 5G networks)

The webinar will give a technical overview of 3GPP's Release 17 content and its benefits to 5G networks. It is suitable for people in technical roles and technical executives who want to understand the current state of 5G standardization.

The video is embedded below and the slides are available here:

Glad to see that 3GPP Rel-19 work has already started as can be seen in the roadmap below.

(click to enlarge)

Related Posts

Monday, 11 April 2022

3GPP Release-17 5G NR Reaches Completion

In the last week of March 2022, 3GPP Release 17 reached stage 3 functional freeze. Now the ASN work is ongoing and it will be frozen in June 2022. After that point, any changes will need to be submitted to 3GPP as CR (change request) and would have to be agreed by everyone (or unopposed).

Juan Montojo, Vice President, Technical Standards, Qualcomm Technoloigies, in his blog post reminds us:

Release 17 has been completed with its scope largely intact, despite the fact that the entire release was developed in the midst of a pandemic that hit the world, including 3GPP, right after the scope of the Release was approved in December 2019. 3GPP has been operating through electronic means from the latter part of January 2020 and has yet to get back to face-to-face meetings and interactions. The return to face-to-face meetings is not expected before June 2022. Release 17 completion not only marks the conclusion of the first phase of the 5G technology evolution, but it is a testament to the mobile ecosystem’s resiliency and commitment to drive 5G forward. I couldn’t be more proud of 3GPP, and our team, in particular, as Qualcomm Technologies led the efforts across a wide range of projects. Release 17 delivers another performance boost to the 5G system and continues expanding 5G into new devices, applications, and deployments.

The blog post briefly explains the 'New and enhanced 5G system capabilities' as well as features related to 'Expansion to new 5G devices and applications' as shown in the image on the top.

In addition, 3GPP Rel-17 has many other projects as can be seen in the image above. 3GPP TR 21.917: Release 17 Description; Summary of Rel-17 Work Items has a summary of all the items above but it is still undergoing revision.

Juan also did a webinar on this topic with Fierce Wireless, the video is embedded below:

The slides could be obtained from here.

Related Posts

Tuesday, 25 January 2022

3GPP Release-18 Work Moves Into Focus as Release-17 Reaches Maturity

In early December 2021, 3GPP reached a consensus on the scope of 5G NR Release-18. With the 3GPP Rel-17 functional freeze set for March 2022, Release-18 work is moving into focus. This is being billed as a significant milestone marking the beginning of 5G Advanced — the second wave of wireless innovations that will fulfil the 5G vision. Release 18 is expected to build on the solid foundation set by 3GPP Releases 15, 16, and 17, and it sets the longer-term evolution direction of 5G and beyond.

(click on the image to enlarge - PDF here)

The 3GPP Release-18 page has a concise summary of all that you need to know, including the timeline. For anyone interested in going through features one-by-one, start navigating from here, select Rel-18 from the top.

For others who may be more interested in summary rather than a lot of details, here are some good links to navigate:

  • Nokia whitepaper - 5G-Advanced: Expanding 5G for the connected world (link)
  • Paper by Ericsson researcher, Xingqin Lin, 'An Overview of 5G Advanced Evolution in 3GPP Release 18' (link)
  • Marcin Dryjański, Rimedo Labs - 3GPP Rel-18: 5G-Advanced RAN Features (link)
  • Bevin Fletcher, FierceWireless: Next 3GPP standard tees up 5G Advanced (link)

As always, Qualcomm has a fantastic summary of 5G evolution and features in 3GPP Release-18 on their page here. The image above nicely shows the evolution of 5G from Release-15 all the way to Release-18. The image below shows a summary of 3GPP Release-18, 5G-Advanced features.

They also hosted a webinar with RCR wireless. The webinar is embedded below.

The slides can be downloaded from GSA website (account required, free to register) here.

Related Posts

Tuesday, 18 January 2022

3GPP 5G Non Terrestrial Networks (NTN) Standardization Update

We have looked at 5G Non Terrestrial Networks (NTN) in many different posts in our blogs. If you are new to this topic then this tutorial with a video is a good place to start or just follow this IEEE Comsoc article or this short update from R&S here.

Nicolas Chuberre is the rapporteur of the NR_NTN_solutions work item (TSG RAN) and of the FS-5GET study item (WG SA1) from Thales Alenia Space. In the October 2021 issue of 3GPP Highlights newsletter, he along with Munira Jaffar, Lead delegate representing EchoStar and Hughes Standards in ESOA (EMEA Satellite Operators Association) Standards Working Group, wrote a summary of 'Status of NTN & Satellite in 3GPP Releases 17 & 18'.

Quoting from the article:

The approval of normative activities on Non-Terrestrial Networks (NTN) in Rel-17 has generated growing interest in the topic. The Rel-17 NTN work items are supported by a wide range of vendors (terminal, chipset, network), as well as service providers from both the mobile and space industries and vertical user groups including ESOA.

The Rel-17 NTN and satellite work items in Technical Specification Group (TSG) RAN and TSG SA have been progressing towards the goal of satellite inclusion in 3GPP technical specifications. The focus is on transparent payload architecture with FDD systems where all UEs are assumed to have GNSS capabilities. The normative phase includes adaptation to the physical & access layer aspects, radio access network and system architecture, radio resource management, and RF requirements for targeted satellite networks operating at LEO, MEO or GEO orbits.

With an expected completion date of March 2022, the 3GPP Rel-17 specifications will support New Radio (NR) based satellite access deployed in FR1 bands serving handheld devices for global service continuity. Equally exciting, the 3GPP Rel-17 specification will support NB-IoT and eMTC based satellite access to address massive Internet of Things (IoT) use cases in areas such as agriculture, transport, logistics and many more. 

This joint effort between mobile and satellite industries will enable the full integration of satellite in the 3GPP ecosystem and define a global standard for future satellite networks. This will address the challenges of reachability and service continuity in unserved/underserved areas, enhance reliability through connectivity between various access technologies, and improve network resilience and dependability in responding to natural and manmade disasters.

Upon completion of Rel-17 the long-awaited standard for satellite networks serving handheld devices should be in place by 2022, with commercial product availability expected sometime in 2024. Including satellite as part of the 3GPP specifications will support the promise of worldwide access to 5G services and drive explosive growth in the satellite industry. 

Looking ahead, ESOA members and other NTN stakeholders have started discussions during the 3GPP Rel-18 June workshop and are continuing to work on a further list of enhancements for both NR-NTN and IoT-NTN to be considered in Rel-18. Plans are also underway to further define the enablers for NR based satellite access in bands above 10 GHz to serve fixed and moving platforms (e.g., aircraft, vessels, UAVs) as well as building- mounted devices (e.g., businesses and premises). The goal of these efforts is to further optimize satellite access performance, address new bands with their specific regulatory requirements, and support new capabilities and services as the evolution of 5G continues.

At Mobile Korea 2021, Nicolas Chuberre gave a talk on '3GPP NTN standardization: past, current and future'. The talk nicely summarizes Release-17 progress and the features planned for 3GPP Release-18. His talk is embedded below:

Related Posts:

Tuesday, 30 November 2021

Will Wi-Fi Help 3GPP Bring Reliable Connectivity Indoors?

I have argued a few times now that it would make much more sense to be able to make access and core independent of each other. 3GPP 5G Standards already have a feature available from Release-16 onwards that enables this with 5G Core, Standalone networks.

We use our smart devices currently for voice and data communications. When we are indoor, many times the data goes over Wi-Fi. This is what tempted operators to move to WiFi for voice solution as well. Many operators are now enabling Voice of WiFi in their network to provide reliable voice coverage indoors.

While this works currently without any issues, when operators start offering new native services and applications, like XR over 5G, the current approach won't help. When our devices are connected over Wi-Fi at present, they are unable to take advantage of operator core or services. With access and core independence, this will no longer be an issue.

I gave a short (15 mins) virtual presentation at 5G Techritory this year. I argued not just for WWC but also looked at what 5G features have a potential for revolution. It's embedded below.

Related Posts:

Tuesday, 23 November 2021

3GPP Presentations from CEATEC Japan 2021

3GPP and its Japanese Organizational Partners TTC (Telecommunication Technology Committee) and ARIB (Association of Radio Industries and Businesses) hosted a “3GPP Summit” online workshop at CEATEC 2021, back in October. The event was co-located with the Japanese Ministry of Internal Affairs and Communications (MIC) and 5G Mobile Communications Promotion Forum (5GMF) 5G day at the event. Here is a summary of the event from 3GPP news:

The “3GPP Summit” featured all three Technical Specification Group (TSG) Chairs and one Japanese leader from each group. After the presentations, they exchanged their views and expectations for 3GPP work – as the industry starts to look at research beyond 5G. The event attracted almost 700 people, keen to understand what is going on in 3GPP.

The first session covered Release 17 and 18 evolution, with each TSG Chair and a domestic leader jointly presenting. Wanshi Chen introduced the latest schedule of each release and potential projects for Release 18 with the result of 3GPP Release 18 workshop held in June. Then, Hiroki Takeda presented some key features on Release 17 such as Redcap, RAN slicing and evolution of duplex.

TSG SA Chair, Georg Mayer introduced the group’s latest activities alongside Satoshi Nagata, covering key Release 17 features, such as enhanced support on Non-public Networks, Industrial IoT and Edge computing.

Next up was the TSG CT Chair, Lionel Morand, presenting the latest activities and roadmap for Core Network evolution from Release 15 to 17. Hiroshi Ishikawa also presented, covering 5G core protocol enhancements and some activities driven by operators.

The second part of the session focused more on activities ‘Beyond 5G’. First, Takaharu Nakamura introduced the latest activities on the topic in Japan. A panel discussion followed, with Satoshi Nagata joining the other 3GPP speakers, to give feedback on 5G developments and future use.

You can download the PPT of presentations from 3GPP site here or get the PDF from 3G4G page here.

Please feel free to add your thoughts as comments below.

Related Posts

Tuesday, 7 September 2021

Future Railway Mobile Communication System (FRMCS)


I have been meaning to write on this topic for a very long time. The discussion started back in 2016 when the limitations of GSM-R were obvious and it was recognised that a successor will be needed sooner or later. The International Railway Union (UIC) published a user requirement specification in their paper “Future Railway Mobile Communication System - FRMCS”. This is available on 3GPP server as liaison statement S1-161250.

As 3GPP notes in their article, this was the trigger for them to go ahead and start the studies. Then in Release 16, 3GPP TS 22.289 "Mobile communication system for railways" outlined the requirements for railway communication, beyond the 3GPP Future Railway Mobile Communication System (FRMCS) Phase 1 specs. Details are available on this post here.

Source Tweet

The latest version of 3GPP TR 22.889, Study on Future Railway Mobile Communication System; Stage 1 is from Release 17. The introduction to the document clarifies:

The railway community is considering a successor communication system to GSM-R, as the forecasted obsolescence of the 2G-based GSM-R technology is envisaged around 2030, with first FRMCS trial implementations expected to start around 2020. 

The Future Railway Mobile Communication System (FRMCS) Functional Working Group (FWG) of the International Union of Railways (UIC) have investigated and summarised their requirements for the next generation railway communication system in the Future Railway Mobile Communication User Requirements Specification (FRMCS URS). The present document is based on this input given by the UIC/ETSI TC-RT 

Study on FRMCS Evolution (FS_eFRMCS), available as SP-201038 clarifies:

The UIC FRMCS programme was recently releasing stable version 5.0.0 of the User Requirement Specification, version 2.0.0 of the Functional Use Cases and a new specification item, version 1.0.0 of the Telecom On-Board System - Functional Requirements Specification, as a further step in the evolution of the FRMCS specifications. The UIC FRMCS Programme is developing all the technical conditions for the 5G FRMCS, with the main objective to make available a “FRMCS First Edition” ecosystem available for procurement by Q1 2025.

The UIC FRMCS 3GPP Task Force has been identifying and analyzing impact of this newly released set of FRMCS specifications on existing use cases and requirements collected in TR 22.889. The UIC FRMCS 3GPP Task Force analysis has concluded that refining existing use cases, defining new use cases such as merging railway emergency communications and real-time translation of conversation, and deriving potential new requirements, will be necessary to align FRMCS and 3GPP specifications. The potential impact on normative work is estimated to be limited and much less compared to the study work.

As approved in SA1#90-e (S1-202245), TR 22.889 has now been re-named to TR 22.989 from Rel-18 onwards (latest version is TR 22.989 v18.0.0) to make it visible to the Rail community to be able to follow the 3GPP normative work in line with their needs. It is of most importance for the Rail community that specifications from different organisations (i.e. UIC, 3GPP and ETSI) are all aligned.

Due to the expected 3GPP work overload in Release 18 (SA1 and downstream groups), it is proposed to reduce the scope of the present Rel-18 study to evolution of critical applications related use cases only already identified by UIC – what is really essential for the railways as part of the “FRMCS First Edition” and the migration phase from GSM-R to FRMCS. 

Study of non-essential use cases (e.g. evolution of performance and business use cases) shall be postponed to Rel-19.

This plan is from 2019 so quite likely that it is already outdated. It does provide an idea on different steps and trial plans. Some of this was also covered in the 5G RAN Release 18 for Industry Verticals Webinar detailed here.

Finally, as this image from Arthur D. Little highlights, there is a lot of other interest in addition to FRMCS for 5G in railway. Report here.

Related Posts:

Wednesday, 1 September 2021

Qualcomm Explains 5G Millimeter Wave (mmWave) Future & Integrated Access and Backhaul (IAB)

We have covered various topics in our blog posts on millimeter wave spectrum and even going beyond 52.6 GHz in FR2. A Qualcomm webinar from back in January expands on many of the topics that I looked superficially in various posts (links at the bottom).

The following is edited from the Qualcomm blog post:

5G NR in unlicensed spectrum (NR-U) was standardized in Release 16 and it is a key enabler for the 5G expansion to new use cases and verticals, providing expanded spectrum access to mobile operators, service providers, and industry players. At the same time, we are starting to push the mmWave boundary to even higher bands toward the sub-Terahertz (i.e., >100 GHz) range. Expected in Release 17, 5G NR will support spectrum bands up to 71 GHz, leveraging the 5G NR Release 15 scalable numerology and flexible framework. This opens up 5G to operate in the globally unlicensed 60 GHz band, which can fuel a broad range of new applications and deployments.

One daunting challenge that mobile operators will face when expanding 5G mmWave network coverage is the cost of deploying additional base stations for mmWave, which usually requires new fiber optics backhaul installations. Release 16-defined IAB allows a base station to not just provide wireless access for its user devices (e.g., smartphones) but also the ability to backhaul wirelessly via neighboring base stations using the same mmWave spectrum. IAB opens the door to more flexible densification strategies, allowing mobile operators to quickly add new base stations to their networks before having to install new fiber to increase backhaul capacity. 

Release 16 established foundational IAB capabilities, such as dynamic topology adaptation for load balancing and blockage mitigation, and Release 17+ will further enhance IAB by bringing new features like full-duplex operation, topology redundancy, and ML-based network management.

Beyond IAB, there is a rich roadmap of other new features that can further improve 5G mmWave system performance and efficiency. The webinar embedded below is presented by Ozge Koymen, Senior Director, Technology, Qualcomm Technologies, Inc. It covers the following topics:

  • Qualcomm's vision for 5G mmWave and the new opportunities it poises to bring for the broader ecosystem
  • mmWave capabilities and enhancements coming in Release -16 and beyond
  • Qualcomm’s role in mobilizing and democratizing 5G mmWave to usher in new experiences
  • Latest update on the global commercial rollout of 5G mmWave networks and devices

Slides of the presentation are available here.

Related Posts:

Tuesday, 17 August 2021

'5G RAN Release 18 for Industry Verticals' Webinar Highlights

5G PPP held a virtual workshop on RAN Release 18 for Industry Verticals on June 23rd, 2021. The workshop was organised by 3GPP Market Representation Partners (MRPs): 5G-IA, 5GAA, 5G-ACIA and PSCE.

It features a fireside chat with new 3GPP RAN TSG Chair, Wanshi Chen. In addition to this, the workshop then provides a deep dive on new requirements from verticals, spanning automotive (5GAA), manufacturing (5G-ACIA), critical communications and public safety (TCCA with PSCE), broadcasting and media (5G-MAG), satellite (ESOA), rail (UIC), maritime (IALA) and energy (EUTC).

5G-SOLUTIONS came on board as a 5G PPP project supporting verticals with the 5G-EVE and 5G-VINNI 5G network infrastructures alongside RAN specialists doing standardisation work applicable to multiple verticals.

The video of the webinar is embedded below. In addition, you will find timings of when a particular talk starts and a link to the slides (if shared/available)

Timings:

  • 0:04:21 Fireside chat with Wanshi Chen, Qualcomm and 3GPP RAN TSG Chairman
  • 0:21:00 NTN Requirements in Rel-18 by Nicolas Chuberre, Thales Alenia Space (slides)
  • 0:31:40 Multiple verticals: Andrea Di Giglio, 5G SOLUTIONS (slides)
  • 0:36:35 Media and Broadcasting: David Vargas, BBC and 5G-MAG Chair of CD-T WG, Proposals for 3GPP RAN Rel-18 (slides)
  • 0:43:19 Maritime: Hyounhee Koo, Synctechno and IALA, Maritime Requirements on 3GPP Rel 18 RAN Studies/Works Priorities (slides)
  • 0:46:12 Rail: Ingo Wendler, UIC, NR Narrowband Channel Bandwidth - Railway Use Case (slides)
  • 0:50:02 Utilities: Julian Stafford, EUTC 3GPP RAN Rel-18 Requirements (slides)
  • 0:58:35 Utilities: Erik Guttman, Samsung 5G Smart Energy Infrastructure (slides)
  • 1:05:45 Multiple verticals: Mathew Webb, Huawei and 3GPP RAN 3GPP Release 17 and Release 18 support for industry verticals (slides)
  • 1:15:19 Public Safety/Critical Communications: Tero Pesonen, TCCA Chair, joint presentation with PSCE, 3GPP MRP Mini Workshop: 3GPP Rel 18. Requirements from industry verticals (slides)
  • 1:20:15 Multiple verticals: Thierry Berisot, Novamint and 3GPP RAN, Industry Verticals and Rel-18 RAN (slides)
  • 1:32:56 Manufacturing/IIoT: Michael Bahr, Siemens and 5G-ACIA WG 1Chair and An Xueli, Huawei and 5G-ACIA WG1 Vice Chair 3GPP RAN Rel-18 for Industry Verticals (slides)
  • 1:42:20 Automotive: 5GAA Maxime Flament, CTO Input to RAN 18 Rel-18 Workshop (slides)
  • 1:53:35 Interactive Session 2
  • 2:04:36 Passive IoT for 5G-Advanced, Mathew Webb, Huawei and 3GPP RAN (slides)
  • 2:14:59 Template A for Interactive Session 2
  • 2:20:40 Critical Communications / Public Safety requirements for Release 18 
  • 2:26:00 Closing Remarks

Official page here.

The slide above nicely summarizes 3GPP RAN Verticals up to Release 17.

Related Posts

Monday, 9 August 2021

Qualcomm Demoes Sub-band Half Duplex (SBHD)


Qualcomm has been busy promoting its advanced 5G solutions these last few months in the run up to Mobile World Congress (MWC). You can find a detailed write-up on their website here as well as a feature which they did with RCR wireless here.

One of the innovations that caught my attention was Sub-band Half-Duplex (SBHD). In the first glance it looks like the Enhanced Interference Mitigation & Traffic Adaptation (eIMTA) solution we discussed long back here.

Their article talks about how their 5G multi-cell over-the-air (OTA) test network can now support subband half-duplex, allowing for more flexible service multiplexing as well as improved latency and coverage. 

While you can get an idea of what SBHD is from the diagram above, here is a video explaining it further.

Let us know what do you think about how important will this feature be in future 5G networks.

Related Posts:

Tuesday, 27 July 2021

Introduction to 5G Reduced Capability (RedCap) Devices

Back in 2019, we wrote about Release-17 study item called NR-Lite (a.k.a. NR-Light). After the study started, it was renamed as RedCap or Reduced Capability.

We have now made a video tutorial on RedCap to not only explain what it is but also discuss some of the enhancements being discussed for 3GPP Release-18 (5G-Advanced). For anyone wanting to find out the differences between the baseline 5G devices with RedCap, without wanting to go too much in detail, can see the Tweet image for comparison.

The video and the slides of the tutorial are embedded below:

Related Posts:

Monday, 17 May 2021

3GPP RAN Plenary Update and Evolution towards 5G-Advanced

(click on image to enlarge)

ETSI recently held a webinar to provide a 3GPP RAN Plenary update by Wanshi Chen, Senior director of technology at Qualcomm Technologies, who was appointed as the RAN Chair not too long back. The webinar video is embedded below. The following is from the 3GPP summary of the webinar:

Wanshi Chen acknowledged that Release 17 - the third release of 5G specifications - has been under pressure due to COVID-19 restrictions, but despite making the move to e-meetings, he reported that the group’s experts have managed to ensure positive progress towards the freeze of the RAN1 physical layer specifications on schedule, by December 2021.

This is to be followed by the Stage 3 freeze (RAN2, RAN3 and RAN4) by March 2022 and the ASN.1 freeze and the performance specifications completion by September 2022 – On the timeline agreed back in December 2019.

This staggered timeline has been made achievable with careful planning and management, demonstrated to the webinar viewers via a complex planning schedule, with a slide showing the array of Plenary & WG meetings and Release landmarks - Interspersed with a series of planned periods of inactivity, to allow delegates some relief from 3GPP discussions.

Wanshi Chen noted that the efficiency of e-meetings has not been comparable with physical meetings, in terms of getting everything done. To compensate for that, the companies involved have planned two RAN1 meetings in 4Q21 and two meetings for each of the RAN working groups in the 1Q22. He observed: “We will monitor Release 17 RAN progress closely and take the necessary actions to make sure we can get the release completed on time.”

Release 18 Planning

Looking forward to Release 18 and the start of work on 5G-Advanced, Chen outlined the schedule for an online RAN workshop from June 28 – July 2, to define what will be in the release. The workshop will set the scene for email discussions about the endorsed topics for consideration. The work will culminate with Release 18 Package Approval, at the December 2021 Plenary (RAN#94).

The high-level objective of the workshop will be to gather company proposals in three areas:

  • eMBB driven work;
  • Non-eMBB driven functionality;
  • Cross-functionality for both.

Wanshi Chen concluded that during the Release 18 planning process, some capacity must be kept in hand; keeping around 10% of WG effort in reserve, for workload management and to meet late, emerging critical needs from commercial deployments.

The following Q&A topics were covered, along with the time stamps:

  • The effect of the pandemic and eMeeting management schedules and tools (19.25).
  • Balance between commercial needs and societal needs, emergency services, energy efficiency, sustainability (21.20).
  • The importance of the verticals in the second phase of 5G – With 5G-Advanced. How will this Rel-18 workshop compare in scale with the 5G Phoenix workshop in 2015? (23.00)
  • The job of the Chair is to be impartial…but Wanshi guesses that Antennas, MiMo enh., Sidelink, Positioning, xR, AI machine learning…. could come up in Rel-18! (26.15)
  • Will 5G-Advanced have a strong identity & support? (30.05)
  • The potential for hybrid meetings – No clear answers yet, but we have learnt a lot in the past year.(34.35)
  • The link between gathering new requirements and use cases in SA1 and RAN work and RAN1’s role in focusing these needs for radio work. (40.10)
  • Software-ization of the RAN. Do you see more open RAN work coming to 3GPP? (44.18)
  • Machine type communications and IoT – Where is IoT going in 3GPP RAN? (47.01)
  • Some thoughts on Spectrum usage from a 3GPP point of view, is that difficult to fathom for non-experts? (52.00)
  • Can Standards writing become more agile, less linear? (54.00)

If you want to get hold of the slides, you will have to register on BrightTALK here and then download from attachments.

Signals Research Group has a short summary of 3GPP RAN #91 electronic plenary held in late March. It is available to download after registration from here.

xoxoxoxoxoxo Updated later, 07 June 2021 oxoxoxoxoxoxox 

5G-Advanced logo is now available as shown above. Guidelines on how to use the logo is available on 3GPP here.

Related Posts:

Tuesday, 2 February 2021

NWDAF in 3GPP Release-16 and Release-17

We looked at Network Data Analytics Function, NWDAF, in detail here. While the 3GPP Release-16 work just starting back then, we have now completed Rel-16 and looking at Release 17. 

The 5G Core (5GC) supports the application of analytics to provide Intelligent Automation of the network, In Rel-16 the set of use cases that are proposed for the NWDAF has been widely expanded. 

In an earlier post, we looked at the ATIS webinar discussing Release-16 & forthcoming features in Rel-17. Puneet Jain, Director of Technical Standards at Intel and 3GPP SA2 Chairman talked briefly about NWDAF. The following is from his talk:

Release-16 provides support for Network Automation and Data Analytics.  Network Data Analytics Function (NWDAF) was defined to provide analytics to 5G Core Network Functions (NFs) and to O&M. It consists of several services that were defined in 3GPP Rel-16 and work is now going in Release 17 to further extend them. 

In release 16 Slice load level related network data analytics and observed service experience related network data analytics were defined. NF load analytics as well Network Performance analytics was also specified. NWDAF provides either statistics or prediction on the load communication and mobility performance in the area of interest. 

Other thing was about the UE related analytics which includes UE mobility analytics, UE communication analytics, Expected UE behavior parameter, Related network data analytics and abnormal behavior related network data analytics.

The NWDAF can also provide user data congestion related analytics. This can be done by one time reporting or continuous reporting in the form of statistics or prediction or both to any other network function. 

QoS sustainability analytics, this is where the consumer of QoS sustainability analytics may request NWDAF analytics information regarding the QoS change statistic for a specific period in the past in a certain area or the likelihood of QoS change for a specific period in future, in certain areas. 

In Release 17, studies are ongoing for network automation phase 2. This includes some leftover from Release 16 such as UE driven analytics, how to ensure that slice SLA is guaranteed and then also new functionality is being discussed that includes things like support for multiple NWDAF instance in one PLMN including hierarchies, how to enable real-time or near-real-time NWDAF communications, how to enable NWDAF assisted user pane optimization and last which is very interesting is about interaction between NWDAF and AI model and training service owned by the operator.

This article on TM Forum talks about NWDAF deployment challenges and recommendations:

To deploy NWDAF, CSPs may encounter these challenges:

  • Some network function vendors may not be standards compliant or have interfaces to provide data or receive analytics services.
  • Integrating NWDAF with existing analytics applications until a 4G network is deployed is crucial as aggregated network data is needed to make decisions for centralized analytics use cases.
  • Many CSPs have different analytics nodes deployed for various use cases like revenue assurance, subscriber/marketing analytics and subscriber experience/network management. Making these all integrated into one analytics node also serving NWDAF use cases is key to deriving better insights and value out of network data.
  • Ensuring the analytics function deployed is integrated to derive value (e.g., with orchestrator for network automation, BI tools/any UI/email/notification apps for reporting).

Here are some ways you can overcome these challenges and deploy efficient next-generation analytics with NWDAF:

  • Mandate a distributed architecture for analytics too, this reduces network bandwidth overhead due to analytics and helps real-time use cases by design.
  • Ensure RFPs and your chosen vendors for network functions have, or plan to have, NWDAF support for collecting and receiving analytics services.
  • Look for carrier-grade analytics solutions with five nines SLAs.
  • Choose modular analytics systems that can accommodate multiple use cases including NWDAF as apps and support quick development.
  • Resource-efficient solutions are critical for on-premise or cloud as they can decrease expenses considerably.
  • Storage comes with a cost, store more processed smart data and not more raw big data unless mandated by law.
  • In designing an analytics use case, get opinions from both telco and analytics experts, or ideally an expert in both, as they are viewed from different worlds and are evolving a lot.

This is such an important topic that you will hear more about it on this blog and elsewhere.

Related Posts:

Sunday, 27 September 2020

ATIS Webinar on '5G Standards Developments in 3GPP Release 16 and Beyond'

3GPP Organizational Partner, ATIS (Alliance for Telecommunications Industry Solutions), recently delivered a webinar (video & slides below) titled "5G Standards Developments in 3GPP Release 16 and Beyond". 

3GPP News details:

An expert panel brings you up-to-speed on the current state of 5G standardization. The webinar delivers a broad overview of 3GPP's work and introduces some of the key technology elements. It is suitable for people in technical roles and technical executives who want to understand the current state of 5G standardization.

In Release 16, 3GPP delivered important updates to 5G specifications to broaden their range of commercial applications and improve the efficiency of networks. 3GPP is now further enhancing 5G in Release 17 and starting to plan Release 18. This webinar provides an up-to-date view of the completed 3GPP Release 16 work with a particular focus on how the work is expanding capabilities of 5G and enhancing the technical performance of the mobile system. It also looks ahead to future 3GPP deliverables and their use cases.


The webinar features, Iain Sharp, Principal Technologist at ATIS (Moderator), Greg Schumacher, Global Standards at T-Mobile USA and 3GPP SA and SA1 Vice Chairman, Puneet Jain, Director of Technical Standards at Intel and 3GPP SA2 Chairman and Wanshi Chen, Senior Director, Technology at Qualcomm and 3GPP RAN1 Chairman


Many interesting topics have been covered including the updates on mMTC and URLLC. 


There is also details about new features coming in 3GPP Release-17 and an early look at what 3GPP Release-18 might include, as can be seen in the picture above.

Sunday, 12 July 2020

Anritsu Webinar on 'Evolution of 5G from 3GPP Rel-15 to Rel-17 and Testing Challenges'


At the TSG#88e Plenary meetings that ended on 03 July 2020, Release 16 was completed with both the Stage 3 freeze and the ASN.1 and OpenAPI specification freeze being approved. The 3GPP Release-16 page has more details on timelines but they may shift. See at the bottom of this post.

Anritsu have uploaded a short presentation on their channel that I am embedding below. I have skipped the beginning part but of you feel like you want to listen, jump to the beginning.




Meanwhile in the recently concluded TSG#88e Plenary meetings, there is a discussion on some of the timelines for Release-17 and Rel-18 moving. This graph below is from SP-200606.


In another piece of 3GPP news, RAN Working Group 6 (WG6 or RAN6) – responsible for the GERAN and UTRAN radio and protocol work - was formally closed.  No new features but specs will be maintained as necessary, of course.

Finally, here is a short video interview by 3GPP in which Balazs Bertenyi looks back at the recent TSG RAN Plenary e-meeting. He talks about the challenges, about IMT-2020, Rel-16 being just on time & the prospects for Rel-17.

Release 16 - RAN progress from 3GPPlive on Vimeo.


Related Posts:

Sunday, 12 April 2020

Spectrum for 5G NR beyond 52.6 GHz

3GPP TR 38.807: Study on requirements for NR beyond 52.6 GHz has recently been revised with all the new information post WRC-19. There is a section that details potential use cases for this new spectrum.


Quoting from the specs:

The relatively underutilized millimeter-wave (mmWave) spectrum offers excellent opportunities to provide high speed data rate, low latency, and high capacity due to the enormous amount of available contiguous bandwidth. However, operation on bands in frequencies above 52.6GHz will be limited by the performance of devices, for example, poor power amplifier (PA) efficiency and larger phase noise impairment, the increased front-end insertion loss together with the low noise amplifier (LNA) and analog-to-digital converter (ADC) noise. In addition, bands in frequencies above 52.6GHz have high propagation and penetration losses challenge. Even so, various use cases are envisioned for NR operating in frequencies between 52.6GHz and 114.25GHz. Some of the use cases are illustrated in Figure 5.1-1 and following section provide detailed description of the uses cases. It should be noted that there is not a 1-to-1 mapping of use cases and wireless interfaces, e.g. Uu, slidelink, etc. Various wireless interfaces could be applicable to various uses cases described.

  • High data rate eMBB
  • Mobile data offloading
  • Short-range high-data rate D2D communications
  • Vertical industry factory application
  • Broadband distribution network
  • Integrated access backhaul (IAB)
  • Factory automation/Industrial IoT (IIoT)
  • Augmented reality/virtual reality headsets and other high-end wearables
  • Intelligent Transport Systems (ITS) and V2X
  • Data Center Inter-rack Connectivity
  • Smart grid automation
  • Radar/Positioning
  • Private Networks
  • Critical medical communication

There is quite detailed information for each use case in the document that I am not detailing here.


It also details information on the allocation within the frequency range 52.6 GHz to 116 GHz in ITU Radio Regulation (see table below). The column with comments contains (a subset of) information on protection requirements for incumbent services. For the full details please refer to the Radio Regulations.

Quoting from the specs:

Within the range 52.6 to 116 GHz, the frequency bands 66-76 GHz (including 66-71 and 71-76 GHz) and 81-86 GHz are being studied under WRC-19 Agenda Item 1.13 for potential IMT identification. Results of sharing and compatibility studies, potential technical and regulatory conditions are included in Draft CPM Report, and the final decisions are to be made in WRC-19 with respect to IMT identification or no IMT identification, along with the corresponding technical and regulatory conditions.

For 66-71 GHz, Studies were carried out for the ISS, MSS (Earth-to-space) indicating that sharing is feasible, with a need for separation distance in the order of few kilometers for the case of MSS (space-to-Earth). The need for studies addressing interference from IMT towards RNS is still under debate. Thus, final conclusions in the regulatory and technical conditions for this band cannot be drawn.

For 71-76 GHz, studies were carried out for the FS, RLS and FSS (space-to-Earth) indicating that sharing with FS and FSS is feasible. However, additional limits of the IMT BS and UE unwanted emissions is needed to protect RLS in the adjacent frequency band 76-81 GHz.

For 81-86 GHz, studies were carried out for the FS, FSS (Earth-to-space), RAS (in band and adjacent band), EESS (passive) and RLS. Studies are not needed for the SRS (passive), as this service is dealing with sensors around other planets and no interference issue is expected. Studies were also not carried out for the MSS. The results of those studies indicate that sharing with FS, FSS and RAS (in band and adjacent band) is feasible. Notice that additional limits of the IMT BS and UE unwanted emissions would be needed to ensure protection of EESS (passive) in the adjacent frequency band 76-81 GHz and RLS in the adjacent frequency band 86-82 GHz.

An interesting paper looking at Waveforms, Numerology, and Phase Noise Challenge for Mobile Communications Beyond 52.6 GHz is available here.


Related Posts: