Showing posts with label 5G. Show all posts
Showing posts with label 5G. Show all posts

Sunday, 17 February 2019

Displaying 5G Network Status Icon on Smartphones and Other Devices

Who thought displaying of network status icon on 5G devices would be so much fun. Typically the network icons are more of:
2G - Gsm, G, G+, E
3G - 3G, H, H+
4G - 4G, 4G+

Back in 2017, Samsung devices started displaying 4G+ icon. Samsung told mybroadband:

that by default its devices require a network to support Category 6 LTE, and for the total combined bandwidth to exceed 20MHz, before they will display the “4G+” icon.

Networks in South Africa frequently don’t have over 20MHz of aggregated bandwidth available, though.

As a result, one network asked Samsung to reduce the combined bandwidth requirement for the 4G+ icon to display to 15MHz, which Samsung approved.

“Samsung’s global policy regarding the display of the LTE/LTE-A/4G/4G+ network icon is that the network icon display is operator-configurable upon official request and Samsung approval,” it said.

The reason this is interesting is because LTE is really 3.9G but generally called 4G. LTE-A is supposed to be 4G because in theory it meets IMT-Advanced criteria. Then we have LTE-Advanced Pro, which is known as 4.5G. While in majority of the operators display 4.5G as 4G or 4G+, couple of operators has decided to become a bit innovative.

AT&T started by updating the network icons of some of their devices to 5GE, which is their way of saying 4.5G. E stands for Evolution. Or as some people joked, it stands for economy (or value) version, as opposed to premium version.


Brazilian operator Claro, decided to use the 4.5G icon but the 5 is much larger font compared to 4 (see the pic above). Some people call this as dishonest attempt by them.

I see a few people asking how can devices decide if they are on 4G or 4.5G. There is no standard procedure for this and is UE specific. One way is to look at RRC messages. If the system information messages contain optional IE's for 3GPP Release-13, then the network supports LTE-A Pro and if the device supports the features for LTE-A Pro, it can display 4.5G or 5GE, etc. Another approach is the optional IEs present in NAS Attach Accept message. As this comes slightly later in the registration process, the device displays 4G first and once the registration is complete, 4.5G. Note there is no requirement from standards point of  view about displaying of the network status indication icon up to 4G/4.5G.

To avoid such confusion in 5G, 3GPP submitted the first Liaison statement S2-175303. In this, 3GPP said:

With this number of System and Radio access options available, one or more new status icons are expected to appear on the User Interface of future (mobile) devices. A user should expect consistency across devices and networks as to what icons actually mean (i.e. what services might be expected when an icon is displayed).

While 3GPP specifications are not expected to define or discuss Service or RAT indicators in the User Interface themselves, 3GPP should provide the necessary tools in EPS and 5GS to enable them. It is therefore necessary to understand the conditions required for displaying these icons and with which granularity so we can identify what information ought to be available in/made available to the device.

SA2 understands that Status Icons related to 5G might be displayed for example on a UE display taking into account all or some combinations of these items (other items may exist):
- Access Restriction Data in subscription (with the potential exception of emergency access); 
- UE CN registration (i.e. is UE EPC- and/or 5GC-registered?);
- UE capabilities; 
- Network capabilities; 
- UE is camping on a cell of NG-RAN supporting NR only, E-UTRA only or, the ability to activate dual connectivity with another RAT (NR or E-UTRA);
- UE is camping on a cell of E-UTRAN (connected to EPC) with the ability to activate dual connectivity with NR as secondary cell;
- UE is in connected mode using NR, E-UTRA (in 5GS) or dual connectivity between E-UTRA and NR.

Given the above, SA2 would like to kindly ask for any feedback from GSMA FNW and NGMN on requirements and granularity for Service indicators and/or RAT indicators related to 5G.

GSMA responded in R2-1713952. 6 cases have been identified (see the first picture on top) : 

The configurations consist of the following states and are as described in Table 1:

  1. EPS NR NSA (EN-DC) capable UE attached to EPC and currently in IDLE state under or in RRC_connected state connected to E-UTRAN cell not supporting LTE-NR dual connectivity 
  2. EPS NR NSA (EN-DC) capable UE attached to EPC and currently in IDLE state under or in RRC_Connected state connected to AND active on LTE for uplink and downlink on only E-UTRAN cell supporting LTE-NR dual connectivity and has not detected NR coverage (i.e. UE is not under NR coverage and/or not configured to make NR measurements)
  3. EPS NR NSA (EN-DC) capable UE attached to EPC and currently in RRC_Connected state connected to E-UTRAN cell (supporting dual connectivity) and active on LTE for uplink and downlink only and has detected NR coverage (i.e. UE is under NR coverage and has been configured to make NR measurements) 
  4. EPS NR NSA (EN-DC) capable UE attached to EPC and currently in IDLE state under E-UTRAN cell supporting LTE-NR dual connectivity and has detected NR coverage (i.e. UE is under NR coverage and has been configured to make NR measurements)
  5. EPS NR NSA (EN-DC) capable UE attached to EPC and currently in RRC_Connected state connected to E-UTRAN cell (supporting dual connectivity) and active on LTE and NR for uplink and/or downlink
  6. 5GS capable UE attached to 5GC and currently in IDLE state under or in RRC_Connected state connected to NG-RAN (eLTE (option 5 or 7) or NR (option 2 or 4) cell)

As there is no consensus on a single preferred configuration, it is desirable to make the display of 5G status icon in the UE configurable such that the display of 5G status icon can be made depending on operator preference. 

This proposal by GSMA was noted by 3GPP in R2-1803949.

RAN WG2 would like to inform GSMA and SA2 that, according to GSMA and SA2 recommendations (LSs R2-1713952 and S2-175270, respectively), RAN WG2 introduced 1 bit indication per PLMN called “upperLayerIndication” within LTE SIB 2. 

This bit enables the realization of the configurations based on UE states as per recommendation from GSMA (e.g. RRC_IDLE UE as for State 2 in LS R2-1713952 from GSMA)”. 

For idle mode UEs this is the only mechanism agreed. 

Actions: RAN WG2 would like to ask GSMA and SA2 to take the information above into account. 

Hopefully there will be less confusion when 5G is rolled out about the status icons. In the meantime we might see some more 4.5G icon innovations.

Tuesday, 12 February 2019

Prof. Andy Sutton: 5G Radio Access Network Architecture Evolution - Jan 2019


Prof. Andy Sutton delivered his annual IET talk last month which was held the 6th Annual 5G conference. You can watch the videos for that event here (not all have been uploaded at the time of writing this post). His talks have always been very popular on this blog with the last year talk being 2nd most popular while the one in 2017 was the most popular one. Thanks also to IET for hosting this annual event and IET Tv for making this videos available for free.

The slides and video is embedded below but for new starters, before jumping to this, you may want to check out about 5G Network Architecture options in our tutorial here.




As always, this is full of useful information with insight into how BT/EE is thinking about deploying 5G in UK.

Related Posts:

Sunday, 10 February 2019

Theoretical Throughput Calculation of FDD 5G New Radio (NR)


A nice video by Peter Clarke on 5G NR throughput calculation for FDD. Right now it's only in the video form but will hopefully be available as a tool on his excellent website here. A tool for 4G throughput calculation is available here.



Related Links



Wednesday, 6 February 2019

AI in 5G – the why and how

IET recently held the 6th Annual 5G conference bringing together key players in the 5G world. You can watch the videos for that event here (not all have been uploaded at the time of writing this post).

We reached out to Dr. Yue Wang to share her presentation with us and she has kindly done so. The presentation and video are embedded below.






Related posts:

Saturday, 2 February 2019

ITU-NGMN Joint Conference on “Licensing practices in 5G industry segments"


IPR, Licensing and royalties are always an interesting topic. In the end they decide what price a device would be sold at. If I put it simply, the cost of device = cost of manufacturing + marketing + sales and distribution + support and insurance + profit + IPR. The licensing cost is often added in the end as it could be applicable on the selling price of the device.
The above tweet is interesting as it lists out the IPR costs by major patent holders. I wrote a post earlier detailing the 5G patent holders here. Since then this have moved on significantly. In addition to the royalty charged by the 5G patent holders (it also includes legacy technologies like 2G, 3G, 4G &Wi-Fi), there are patents for messaging, Codecs (seperate for audio / video), etc. To be fair it's a complex process. This is why I sometimes get shocked when I see 4G smartphones selling for £20 ($25).

Coming back to the conference, all the presentations are available on ITU page here.

Sylvia Lu, who wears many different hats including one for CW, UK5G and uBlox and a friend of 3G4G blog was one of the speakers at this conference. Here is a tweet on what she had to say about this event:
For those who may not know, FRAND stands for Fair, Reasonable, And Non-Discriminatory. Wikipedia has a nice article explaining it here.

NGMN Press Release on this conference mentions the following:

The Next Generation Mobile Networks (NGMN) Alliance has jointly organised and executed a successful conference on Licensing Practices in 5G Industry Segments with the International Telecommunication Union (ITU), bringing various experts from around the world together to discuss licensing practices and challenges of 5G.

The conference featured moderators and speakers from some of the biggest names in telecoms, including AT&T, Deutsche Telekom, NTT DOCOMO, Orange, Ericsson, Nokia and Microsoft. Also in attendance were key stakeholders of vertical industries, including Audi, Bosch, Panasonic and u-Blox, and patent pool administrators, namely Avanci, MPEG-LA, Sisvel and Via Licensing, who co-sponsored the event, the European Telecommunications Standards Institute (ETSI), the Japanese and the European Patent Offices, and the European Commission.

Focusing on the development of 5G and the Internet of Things (IoT), the conference facilitated sharing and discussing of present-day licensing practices and related issues across different industry segments.

A host of insightful sessions took place igniting an inclusive exchange on:
  • Patent licensing practices with interactive discussions that focused on issues stakeholders need to be aware of.
  • Sharing licensors’, licensees’ and pool administrators’ requirements on patent pools/platforms.
  • Identifying proposed practices and conducts for licensors and licensees.
  • Listing requirements for increasing transparency and assessing essentiality of Standard Essential Patents declared to Standards Developing Organisations.
“It’s great to notice that our joint ITU-NGMN conference has been such a success,” said Dr. Peter Meissner, CEO of NGMN. “Obviously, the 5G Eco-System is different. New use cases beyond mobile broadband - like massive IoT as well as highly demanding requirements from vertical industries on low latency, ultra-high reliability and security - are causing substantial network transformations. All these challenges have implications on the intellectual property of mobile network operators and across the different industry segments. Conferences like this are key in identifying IPR issues and exploring solutions for the enlarged eco-system.”

If you have any insights on this topic, or just any comment in general, feel free to add them as comments below.

Related Article:


Wednesday, 16 January 2019

5G Slicing Templates

We looked at slicing not long back in this post here, shared by ITU, from Huawei. The other day I read a discussion on how do you define slicing. Here is my definition:

Network slicing allows sharing of the physical network infrastructure resources into independent virtual networks thereby giving an illusion of multiple logically seperate end-to-end networks, each bound by their own SLAs, service quality and peformance guarantees to meet the desired set of requirements. While it is being officially defined for 5G, there is no reason that a proprietary implementation for earlier generations (2G, 3G or 4G)  or Wi-Fi cannot be created.

The picture above from a China Mobile presentation, explain the slice creation process nicely:

  1. Industry customers order network slices from operators and provide the network requirements, including network slice type, capacity, performance, and related coverage. Operators generate network slices according to their needs. Provide the network service requirement as General Service Template (GST).
  2. Transfer GST to NST (Network Slice Template)
  3. Trigger Network Instantiation Process
  4. Allocate the necessary resources and create the slice.
  5. Expose slice management information. Industry customers obtain management information of ordered slices through open interfaces (such as number of access users, etc.).

For each specific requirement, a slicing template is generated that is translated to an actual slice. Let's look at some examples:

Let's take an example of Power Grid. The picture below shows the scenario, requirement and the network slicing template.
As can be seen, the RAN requirement is timing and low latency while the QoS requirement in the core would be 5 ms latency with guaranteed 2 Mbps throughout. There are other requirements as well. The main transport requirement would be hard isolation.

The Network requirement for AR Gaming is high reliability, low latency and high density of devices. This translates to main RAN requirement of low jitter and latency; Transport requirement of Isolation between TICs (telecom integrated cloud) and finally Core QoS requirement of 80 ms latency and 2 Mbps guaranteed bit rate.


More resources on Network Slicing:


Thursday, 3 January 2019

Nice short articles on 5G in 25th Anniversary Special NTT Docomo Technical Journal

5G has dominated the 3G4G blog for last few years. Top 10 posts for 2018 featured 6 posts on 5G while top 10 posts for 2017 featured 7. In makes sense to start 2019 posting with a 5G post.

A special 25th Anniversary edition of NTT Docomo Technical Journal features some nice short articles on 5G covering RAN, Core, Devices & Use cases. Here is some more details for anyone interested.

Radio Access Network in 5G Era introduces NTT Docomo's view of world regarding 5G, scenarios for the deployment of 5G and also prospects for further development of 5G in the future. The article looks at the main features in 5G RAN that will enable eMBB (Massive MIMO), URLLC (short TTI) and mMTC (eDRX).

Interested readers should also check out:

Core network for Social Infrastructure in 5G Era describes the principal 5G technologies required in the core network to realise new services and applications that will work through collaboration between various industries and businesses. It also introduces initiatives for more advanced operations, required for efficient operation of this increasingly complex network.

This article also goes in detail of the Services Based Architecture (SBA). In case you were wondering what UL CL and SSC above stands for; UpLink CLassifiers (UL CL) is a technology that identifies packets sent by a terminal to a specific IP address and routes them differently (Local Breakout) as can be seen above. It is generally to be used to connect to a MEC server. Session and Service Continuity (SSC) is used to decide if the IP address would be retained when the UE moves to a new area from the old one.

Interested readers should also check out:
Evolution of devices for the 5G Era discusses prospects for the high-speed, high-capacity, low-latency, and many-terminal connectivity features introduced with 5G, as well as advances in the network expected in the future, technologies that will be required for various types of terminal devices and the services, and a vision for devices in 2020 and thereafter.

According to the article, the medium term strategy of R&D division of NTT Docomo has three main themes: 5G, AI and Devices. In simple terms, devices will collect a lot of data which will become big data, 5G will be used to transport this data and the AI will process all the collected Big Data.

NTT Docomo has also redefined the devices as connecting through various technologies including cellular, Wi-Fi, Bluetooth & Fixed communications.

Interested readers should also check out:

The final article on 5G, Views of the Future Pioneered by 5G: A World Converging the Strengths of Partners looks at field trials, partnerships, etc. In fact here the embedded video playlist below shows some of these use cases described in the article



In addition there are other articles too, but in this post I have focused on 5G only.

The 25th Anniversary Special Edition of NTT Docomo Technical Journal is available here.

Saturday, 24 November 2018

5G Top-10 Misconceptions


Here is a video we did a few weeks back to clear the misconceptions about 5G. The list above summarizes the topics covered.



The video is nearly 29 minutes long. If you prefer a shorter version or are bored of hearing me 😜 then a summary version (just over 3 minutes) is in 3G4G tweet below.


The slides can be downloaded from our Slideshare channel as always.

As always, we love your feedback, even when you strongly disagree.

Other interesting recent posts on 5G:


Monday, 19 November 2018

5G NR Radio Protocols Overview


3GPP held a workshop on 5G NR submission towards IMT-2020 last week. You can access all the agenda, documents, etc. on the 3GPP website here. You can also get a combined version of all presentations from the 3G4G website here. I also wrote a slightly detailed article on this workshop on 3G4G website here.

The following is nice overview of the 5G Radio Interface protocol as defined by 3GPP in NR Rel.15 by Sudeep Palat, Intel. The document was submitted to the 3GPP workshop on ITU submission in Brussels on Oct 24, 2018.



The presentation discusses NR radio interface architecture and protocols for control and user plane; covering RRC, SDAP, PDCP, RLC and MAC, focussing on differences and performance benefits compared to LTE.  RRC states and state transitions with reduced transition delays are also discussed.

Related Posts:

Monday, 29 October 2018

Overview 3GPP 5G NR Physical Layer

3GPP held a workshop on 5G NR submission towards IMT-2020 last week. You can access all the agenda, documents, etc. on the 3GPP website here. You can also get a combined version of all presentations from the 3G4G website here. I also wrote a slightly detailed article on this workshop on 3G4G website here.

One of the presentations on 'Physical layer structure, numerology and frame structure, NR spectrum utilization mechanism 3GPP 5G NR submission towards IMT-2020' by Havish Koorapaty, Ericsson is a good introductory material on 5G New Radio (NR) Physical Layer. It is embedded below (thanks to Eiko Seidel for sharing) and the PDF can be downloaded from slideshare or 3G4G website here.



Related Links:

Friday, 19 October 2018

5G Network Architecture Options (Updated)


ICYMI, we created an updated video on 5G Network Architecture options. The videos and slides are embedded below.



This updated presentation/video looks at 5G Network Architecture options that have been proposed by 3GPP for deployment of 5G. It covers the Standalone (SA) and Non-Standalone (NSA) architecture. In the NSA architecture, EN-DC (E-UTRA-NR Dual Connectivity), NGEN-DC (NG-RAN E-UTRA-NR Dual Connectivity) and NE-DC (NR-E-UTRA Dual Connectivity) has been looked at. Finally, migration strategies proposed by vendors and operators (MNOs / SPs) have been discussed.


Nokia has also released a whitepaper on this topic that I only became aware of after my slides / video were done. More details in the tweet below.


Related Links:

Wednesday, 10 October 2018

Automated 4G / 5G HetNet Design


I recently heard Iris Barcia, COO of Keima speak after nearly 6 years at Cambridge Wireless CWTEC 2018. The last time I heard her, it was part of CW Small Cells SIG, where I used to be a SIG (special interest group) champion. Over the last 6 years, the network planning needs have changed from planning for coverage to planning for capacity from the beginning. This particular point started a little debate that I will cover in another post, but you can sneak a peek here 😉.

Embedded below is the video and presentation. The slides can be downloaded from SlideShare.





Related posts:

Tuesday, 2 October 2018

Benefits and Challenges of Applying Device-Level AI to 5G networks


I was part of Cambridge Wireless CWTEC 2018 organising committee where our event 'The inevitable automation of Next Generation Networks' covered variety of topics with AI, 5G, devices, network planning, etc. The presentations are available freely for a limited period here.

One of the thought provoking presentations was by Yue Wang from Samsung R&D. The presentation is embedded below and can be downloaded from Slideshare.



This presentation also brought out some interesting thoughts and discussions:

  • While the device-level AI and network-level AI would generally work cooperatively, there is a risk that some vendor may play the system to make their devices perform better than the competitors. Something similar to the signaling storm generated by SCRI (see here).
  • If the device-level and network-level AI works constructively, an operator may be able to claim that their network can provide a better battery life for a device. For example iPhone XYZ has 25% better battery life on our network rather than competitors network.
  • If the device-level and network-level AI works destructively for any reason then the network can become unstable and the other users may experience issues. 

I guess all these enhancements will start slowly and there will be lots of learning in the first few years before we have a stable, mutually beneficial solution.

Related Posts:

Monday, 24 September 2018

5G New Radio Standards and other Presentations


A recent Cambridge Wireless event 'Radio technology for 5G – making it work' was an excellent event where all speakers delivered an interesting and insightful presentation. These presentations are all available to view and download for everyone for a limited time here.

I blogged about the base station antennas last week but there are other couple of presentations that stood out for me.


The first was an excellent presentation from Sylvia Lu from u-Blox, also my fellow CW Board Member. Her talk covered variety of topics including IoT, IIoT, LTE-V2X and Cellular positioning, including 5G NR Positioning Trend. The presentation is embedded below and available to download from Slideshare





The other presentation on 5G NR was one from Yinan Qi of Samsung R&D. His presentation looked at variety of topics, mainly Layer 1 including Massive MIMO, Beamforming, Beam Management, Bandwidth Part, Reference Signals, Phase noise, etc. His presentation is embedded below and can be downloaded from SlideShare.




Related Posts:

Friday, 21 September 2018

Base Station Antenna Considerations for 5G

I first mentioned Quintel in this blog three years back for their innovations in 4T8R/8T8R antennas. Since then they have been going strength to strength.


I heard David Barker, CTO of Quintel at Cambridge Wireless event titled "Radio technology for 5G – making it work" talking about the antennas consideration for 5G. There are quite a few important areas in this presentation for consideration. The presentation is embedded below:



Related Posts:

Friday, 14 September 2018

End-to-end Network Slicing in 5G

I recently realised that I have never written a post just on Network slicing. So here is one on the topic. So the first question asked is, why do we even need Network Slicing? Alan Carlton from Interdigital wrote a good article on this topic. Below is what I think is interesting:

Network slicing is a specific form of virtualization that allows multiple logical networks to run on top of a shared physical network infrastructure. The key benefit of the network slicing concept is that it provides an end-to-end virtual network encompassing not just networking but compute and storage functions too. The objective is to allow a physical mobile network operator to partition its network resources to allow for very different users, so-called tenants, to multiplex over a single physical infrastructure. The most commonly cited example in 5G discussions is sharing of a given physical network to simultaneously run Internet of Things (IoT), Mobile Broadband (MBB), and very low-latency (e.g. vehicular communications) applications. These applications obviously have very different transmission characteristics. For example, IoT will typically have a very large number of devices, but each device may have very low throughput. MBB has nearly the opposite properties since it will have a much smaller number of devices, but each one will be transmitting or receiving very high bandwidth content. The intent of network slicing is to be able to partition the physical network at an end-to-end level to allow optimum grouping of traffic, isolation from other tenants, and configuring of resources at a macro level.

Source: ITU presentation, see below

The key differentiator of the network slicing approach is that it provides a holistic end-to-end virtual network for a given tenant. No existing QoS-based solution can offer anything like this. For example, DiffServ, which is the most widely deployed QoS solution, can discriminate VoIP traffic from other types of traffic such as HD video and web browsing. However, DiffServ cannot discriminate and differentially treat the same type of traffic (e.g. VoIP traffic) coming from different tenants.

Also, DiffServ does not have the ability to perform traffic isolation at all. For example, IoT traffic from a health monitoring network (e.g. connecting hospitals and outpatients) typically have strict privacy and security requirements including where the data can be stored and who can access it. This cannot be accomplished by DiffServ as it does not have any features dealing with the compute and storage aspects of the network. All these identified shortfalls of DiffServ will be handled by the features being developed for network slicing.

I came across this presentation by Peter Ashwood-Smith from Huawei Technologies who presented '5G End to-end network slicing Demo' at ITU-T Focus Group IMT-2020 Workshop and Demo Day on 7 December 2016. Its a great presentation, I wish a video of this was available as well. Anyway, the presentation is embedded below and the PPT can be downloaded from here.



The European Telecommunications Standards Institute (ETSI) has established a new Industry Specification Group (ISG) on Zero touch network and Service Management (ZSM) that is working to produce a set of technical specifications on fully automated network and service management with, ideally, zero human intervention. ZSM is targeted for 5G, particularly in network slice deployment. NTT Technical review article on this is available here.

Finally, here is a presentation by Sridhar Bhaskaran of Cellular Insights blog on this topic. Unfortunately, not available for download.


Related Posts:

Tuesday, 11 September 2018

Introduction to Fixed Wireless Access (FWA)


We have just produced a new tutorial on Fixed Wireless Access (FWA). The high level introductory tutorial looks at what is meant by Fixed Wireless Access, which is being touted as one of the initial 5G use cases. This presentation introduces FWA and looks at a practical deployment example.

According to GSA report, "Global Progress to 5G – Trials, Deployments and Launches", July 2018:

One use-case that has gained prominence is the use of 5G to deliver fixed wireless broadband services. We have identified 20 tests so far that have specifically focused on the fixed wireless access (FWA) use-case, which is five more than three months ago.

Embedded below is the video and presentation of the FWA tutorial.



If you found this useful, you would be interested in other tutorials on the 3G4G website here.

Related Posts:

Wednesday, 5 September 2018

LiFi can be a valuable tool for densification

LiFi has been popping up in the news recently. I blogged about it (as LED-Fi) 10 years back. While the concept has remained the same, many of the limitations associated with the technology has been overcome. One of the companies driving LiFi is Scottish startup called pureLiFi.


I heard Professor Harald Haas at IEEE Glasgow Summit speak about how many of the limitations of LiFi have been overcome in the last few years (see videos below). This is a welcome news as there is a tremendous amount of Visible Light Spectrum that is available for exploitation.


While many discussions on LiFi revolve round its use as access technology, I think the real potential lies in its use as backhaul for densification.

For 5G, when we are looking at small cells, every few hundred meters, probably on streetlights and lamp posts, there is a requirement for alternative backhaul to fiber. Its difficult to run fiber to each and every lamp post. Traditionally, this was solved by microwave solutions but another option available in 5G is Integrated Access and Backhauling (IAB) or Self-backhauling.


A better alternative could be to use LiFi for this backhauling between lamp posts or streetlights. This can help avoid complications with IAB when multiple nodes are close by and also any complications with the technology until it matures. This approach is of course being trialed but as the picture above shows, rural backhaul is just one option.
LiFi is being studied as part of IEEE 802.11bb group as well as its potential is being considered for 5G.

Here is a vieo playlist explaining LiFi technology in detail.




Further reading:

Sunday, 5 August 2018

ITU 'Network 2030': Initiative to support Emerging Technologies and Innovation looking beyond 5G advances

Source: ITU

As per this recent ITU Press Release:

The International Telecommunication Union, the United Nations specialized agency for information and communication technology (ICT), has launched a new research initiative to identify emerging and future ICT sector network demands, beyond 2030 and the advances expected of IMT-2020 (5G) systems. This work will be carried out by the newly established ITU Focus Group on Technologies for Network 2030, which is open to all interested parties.

The ITU focus group aims to guide the global ICT community in developing a "Network 2030" vision for future ICTs. This will include new concepts, new architecture, new protocols – and new solutions – that are fully backward compatible, so as to support both existing and new applications.

"The work of the ITU Focus Group on Technologies for 'Network 2030' will provide network system experts around the globe with a very valuable international reference point from which to guide the innovation required to support ICT use cases through 2030 and beyond," said ITU Secretary-General Houlin Zhao.

These ICT use cases will span new media such as hologrammes, a new generation of augmented and virtual reality applications, and high-precision communications for 'tactile' and 'haptic' applications in need of processing a very high volume of data in near real-time – extremely high throughput and low latency.   

Emphasizing this need, the focus group's chairman, Huawei's Richard Li, said, "This Focus Group will look at new media, new services and new architectures. Holographic type communications will have a big part to play in industry, agriculture, education, entertainment – and in many other fields. Supporting such capabilities will call for very high throughput in the range of hundreds of gigabits per second or even higher."

The ITU Focus Group on Technologies for 'Network 2030' is co-chaired by Verizon's Mehmet Toy, Rostelecom's Alexey Borodin, China Telecom's Yuan Zhang, Yutaka Miyake from KDDI Research, and is coordinated through ITU's Telecommunication Standardization Sector – which works with ITU's 193 Member States and more than 800 industry and academic members to establish international standards for emerging ICT innovations.

The ITU focus group reports to and will inform a new phase of work of the ITU standardization expert group for 'Future Networks' – Study Group 13. It will also strengthen and leverage collaborative relationships with and among other standards development organizations including: The European Telecommunications Standards Institute (ETSI), the Association for Computing Machinery's Special Interest Group on Data Communications (ACM SIGCOMM), and the Institute of Electrical and Electronics Engineers' Communications Society (IEEE ComSoc).
Source: ITU

According to the Focus Group page:

The FG NET-2030, as a platform to study and advance international networking technologies, will investigate the future network architecture, requirements, use cases, and capabilities of the networks for the year 2030 and beyond. 

The objectives include: 

• To study, review and survey existing technologies, platforms, and standards for identifying the gaps and challenges towards Network 2030, which are not supported by the existing and near future networks like 5G/IMT-2020.
• To formulate all aspects of Network 2030, including vision, requirements, architecture, novel use cases, evaluation methodology, and so forth.
• To provide guidelines for standardization roadmap.
• To establish liaisons and relationships with other SDOs.

An ITU interview with Dr. Richard Li, Huawei, Chairman of the ITU-T FG on Network 2030 is available on YouTube here.

A recent presentation by Dr. Richard Li on this topic is embedded below:



First Workshop on Network 2030 will be held in New York City, United States on 2 October 2018. Details here.

Related News: