Showing posts with label Telefonica. Show all posts
Showing posts with label Telefonica. Show all posts

Monday, 13 August 2018

Telefonica: Big Data, Machine Learning (ML) and Artificial Intelligence (AI) to Connect the Unconnected


Earlier, I wrote a detailed post on how Telefonica was on a mission to connect 100 Million Unconnected with their 'Internet para todos' initiative. This video below is a good advert of what Telefinica is trying to achieve in Latin America


I recently came across a LinkedIn post on how Telef贸nica uses AI / ML to connect the unconnected by Patrick Lopez, VP Networks Innovation @ Telefonica. It was no brainer that this needs to be shared.



In his post, Patrick mentions the following:

To deliver internet in these environments in a sustainable manner, it is necessary to increase efficiency through systematic cost reduction, investment optimization and targeted deployments.

Systematic optimization necessitates continuous measurement of the financial, operational, technological and organizational data sets.

1. Finding the unconnected


The first challenge the team had to tackle was to understand how many unconnected there are and where. The data set was scarce and incomplete, census was old and population had much mobility. In this case, the team used high definition satellite imagery at the scale of the country and used neural network models, coupled with census data as training. Implementing visual machine learning algorithms, the model literally counted each house and each settlement at the scale of the country. The model was then enriched with crossed reference coverage data from regulatory source, as well as Telefonica proprietary data set consisting of geolocalized data sessions and deployment maps. The result is a model with a visual representation, providing a map of the population dispersion, with superimposed coverage polygons, allowing to count and localize the unconnected populations with good accuracy (95% of the population with less than 3% false positive and less than 240 meters deviation in the location of antennas).


2. Optimizing transport



Transport networks are the most expensive part of deploying connectivity to remote areas. Optimizing transport route has a huge impact on the sustainability of a network. This is why the team selected this task as the next challenge to tackle.

The team started with adding road and infrastructure data to the model form public sources, and used graph generation to cluster population settlements. Graph analysis (shortest path, Steiner tree) yielded population density-optimized transport routes.


3. AI to optimize network operations


To connect very remote zones, optimizing operations and minimizing maintenance and upgrade is key to a sustainable operational model. This line of work is probably the most ambitious for the team. When it can take 3 hours by plane and 4 days by boat to reach some locations, being able to make sure you can detect, or better, predict if / when you need to perform maintenance on your infrastructure. Equally important is how your devise your routes so that you are as efficient as possible. In this case, the team built a neural network trained with historical failure analysis and fed with network metrics to provide a model capable of supervising the network health in an automated manner, with prediction of possible failure and optimized maintenance route.

I think that the type of data driven approach to complex problem solving demonstrated in this project is the key to network operators' sustainability in the future. It is not only a rural problem, it is necessary to increase efficiency and optimize deployment and operations to keep decreasing the costs.


Finally, its worth mentioning again that I am helping CW (Cambridge Wireless) organise their annual CW TEC conference on the topic 'The inevitable automation of Next Generation Networks'. There are some good speakers and we will have similar topics covered from different angles, using some other interesting approaches. The fees are very reasonable so please join if you can.

Related posts:

Thursday, 7 June 2018

Telefonica and open source


An interesting presentation by Patrick Lopez, VP Networks Innovation, Telef贸nica at NFV & Zero Touch World Congress 2018 about how and why Telef贸nica is moving to open source. Slides and video embedded below





Tuesday, 13 March 2018

LoRa is quietly marching on...


During the mobile world congress, I was pleasantly surprised to see how LoRa ecosystem keeps getting larger. There was also an upbeat mood within the LoRa vendor community as it keeps winning one battle after another. Here is my short take on the technology with an unbiased lens.


To start with, lets look at this short report by Tom Rebbeck from Analysys Mason. The PDF can be downloaded after registering from here.

As can be seen, all major IoT technologies (LoRa, NB-IoT, Sigfox & LTE-M) gained ground in 2017. Most of the LoRa and all of Sigfox networks are actually not deployed by the mobile operators. From the article:

These points lead to a final observation about network deployments – many operators are launching multiple technologies. Of the 26 operators with publicly-announced interest in LTE-M networks, 20 also have plans for other networks;
• 14 will combine it with NB-IoT
• four will offer LTE-M and LoRa and
• two, Softbank and Swisscom, are working with LoRa, LTE-M and NB-IoT.

We are not aware of operators also owning Sigfox networks, though some, such as Telef贸nica, are selling connectivity provided by a Sigfox network operator.

The incremental cost of upgrading from NB-IoT or LTE-M to both technologies is relatively small. Most estimates put the additional cost at less than an additional 20% – and sometimes considerably less. For many operators, the question will be which technology to prioritise, and when to launch, rather than which to choose.

The reasons for launching multiple networks appear to be tactical as much as strategic. Some operators firmly believe that the different technologies will match different use cases – for example, LoRa may be better suited to stationary, low bandwidth devices like smart meters, while LTE-M, could meet the needs of devices that need mobility, higher bandwidth and support for voice, for example a personal health monitor with an emergency call button.

But, a fundamental motive for offering multiple networks is to hedge investments. While they may not admit it publicly, operators do not know which technology will gain the most traction. They do not want to lose significant, lucrative contracts because they have backed the wrong technology. Deploying both LTE-M and NB-IoT – or LoRa – adds little cost and yet provides a hedge against this risk. For operators launching LoRa, there has been the added benefit of being early to market and gaining experience of what developers want and need from LPWA networks. This experience should help them when other technologies are deployed at scale.

The following is from MWC 2018 summary by ABI Research:

LPWA network technologies continue to gather momentum with adoption from a growing ecosystem of communications service providers (CSPs), original equipment manufacturers (OEMs) and IoT solution providers. LPWA networks are central to the connectivity offerings from telcos with support for NB-IoT, LTE-M, LoRaWAN, and SIGFOX. Telefonica highlighted SIGFOX as an important network technology along with NB-IoT and Cat M in its IoT connectivity platform. Similarly, Orange and SK Telecom emphasized on their continued support for LoRaWAN along with Cat M in France and South Korea. On the other hand, Vodafone and Deutsche Telekom, while aggressively pursuing deployment of NB-IoT networks, currently have mostly large scale POCs on their networks. 

...
Smart meters — Utilities are demanding that meter OEMs and technology solution providers deliver product design life of at least 15 years for battery operated smart water and gas meters. LPWA technologies, such as NB-IoT, LoRaWAN, SIGFOX and wireless M-bus, that are optimized for very low-power consumption and available at low cost are clearly emerging as the most favored LPWA solutions.

The following picture is from Ovum post MWC-2018 Webinar:

Here is a short video from MWC by yours truly looking at LoRa Gateways


There are also few announcements / news from LoRa world just to highlight how the ecosystem is thriving:


Source: SenRa

So someone recently asked me is LoRa is the new WiMax? The answer is obviously a big NO. Just look at the LoRa alliance members in the picture above. Its a whole ecosystem with different players having different interests, working on a different part of the ecosystem.

NB-IoT & LTE-M will gain ground in the coming years but there will always be a place for other LPWA technologies like LoRa.

Finally, here is a slide deck (embedded below) that I really like. The picture above very nicely illustrates that LoRaWAN and Cellular complement each other well. Maybe that is the reason that Orange is a big supporter of LoRa.



So for operators who are just starting their IoT journey or smaller operators who are unsure of the IoT potential, may want to start their journey with LoRa to play around and understand the business cases, etc. In the meantime LTE-M and NB-IoT ecosystem will mature with prices coming down further and battery time improving. That may be the right time to decide on the way forward.


Further Reading:

Wednesday, 7 March 2018

Quick summary of Mobile World Congress 2018 (#MWC18)


This year at MWC, I took the time out to go and see as many companies as I can. My main focus was looking at connectivity solutions, infrastructure, devices, gadgets and anything else cool. I have to say that I wasn't too impressed. I found some of the things later on Twitter or YouTube but as it happens, one cannot see everything.

I will be writing a blog on Small Cells, Infrastructure, etc. later on but here are some cool videos that I have found. As its a playlist, if I find any more, it will be added to the same playlist below.



The big vendors did not open up their stands for everyone (even I couldn't get in 馃槈) but the good news is that most of their demos is available online. Below are the name of the companies that had official MWC 2018 websites. Will add more when I find them.

Operators

Network Equipment Vendors

Handset Manufacturers

Chipset Manufacturers

Did I miss anyone? Feel free to suggest links in comments.


MWC Summary from other Analysts:


Monday, 1 May 2017

Variety of 3GPP IoT technologies and Market Status - May 2017



I have seen many people wondering if so many different types of IoT technologies are needed, 3GPP or otherwise. The story behind that is that for many years 3GPP did not focus too much on creating an IoT variant of the standards. Their hope was that users will make use of LTE Cat 1 for IoT and then later on they created LTE Cat 0 (see here and here).

The problem with this approach was that the market was ripe for a solution to a different types of IoT technologies that 3GPP could not satisfy. The table below is just an indication of the different types of technologies, but there are many others not listed in here.


The most popular IoT (or M2M) technology to date is the humble 2G GSM/GPRS. Couple of weeks back Vodafone announced that it has reached a milestone of 50 million IoT connections worldwide. They are also adding roughly 1 million new connections every month. The majority of these are GSM/GPRS.

Different operators have been assessing their strategy for IoT devices. Some operators have either switched off or are planning to switch off they 2G networks. Others have a long term plan for 2G networks and would rather switch off their 3G networks to refarm the spectrum to more efficient 4G. A small chunk of 2G on the other hand would be a good option for voice & existing IoT devices with small amount of data transfer.

In fact this is one of the reasons that in Release-13 GSM is being enhanced for IoT. This new version is known as Extended Coverage – GSM – Internet of Things (EC-GSM-IoT ). According to GSMA, "It is based on eGPRS and designed as a high capacity, long range, low energy and low complexity cellular system for IoT communications. The optimisations made in EC-GSM-IoT that need to be made to existing GSM networks can be made as a software upgrade, ensuring coverage and accelerated time to-market. Battery life of up to 10 years can be supported for a wide range use cases."

The most popular of the non-3GPP IoT technologies are Sigfox and LoRa. Both these technologies have gained significant ground and many backers in the market. This, along with the gap in the market and the need for low power IoT technologies that transfer just a little amount of data and has a long battery life motivated 3GPP to create new IoT technologies that were standardised as part of Rel-13 and are being further enhanced in Rel-14. A summary of these technologies can be seen below


If you look at the first picture on the top (modified from Qualcomm's original here), you will see that these different IoT technologies, 3GPP or otherwise address different needs. No wonder many operators are using the unlicensed LPWA IoT technologies as a starting point, hoping to complement them by 3GPP technologies when ready.

Finally, looks like there is a difference in understanding of standards between Ericsson and Huawei and as a result their implementation is incompatible. Hopefully this will be sorted out soon.


Market Status:

Telefonica has publicly said that Sigfox is the best way forward for the time being. No news about any 3GPP IoT technologies.

Orange has rolled out LoRa network but has said that when NB-IoT is ready, they will switch the customers on to that.

KPN deployed LoRa throughout the Netherlands thereby making it the first country across the world with complete coverage. Haven't ruled out NB-IoT when available.

SK Telecom completed nationwide LoRa IoT network deployment in South Korea last year. It sees LTE-M and LoRa as Its 'Two Main IoT Pillars'.

Deutsche Telekom has rolled out NarrowBand-IoT (NB-IoT) Network across eight countries in Europe (Germany, the Netherlands, Greece, Poland, Hungary, Austria, Slovakia, Croatia)

Vodafone is fully committed to NB-IoT. Their network is already operational in Spain and will be launching in Ireland and Netherlands later on this year.

Telecom Italia is in process of launching NB-IoT. Water meters in Turin are already sending their readings using NB-IoT.

China Telecom, in conjunction with Shenzhen Water and Huawei launched 'World's First' Commercial NB-IoT-based Smart Water Project on World Water Day.

SoftBank is deploying LTE-M (Cat-M1) and NB-IoT networks nationwide, powered by Ericsson.

Orange Belgium plans to roll-out nationwide NB-IoT & LTE-M IoT Networks in 2017

China Mobile is committed to 3GPP based IoT technologies. It has conducted outdoor trials of NB-IoT with Huawei and ZTE and is also trialing LTE-M with Ericsson and Qualcomm.

Verizon has launched Industry’s first LTE-M Nationwide IoT Network.

AT&T will be launching LTE-M network later on this year in US as well as Mexico.

Sprint said it plans to deploy LTE Cat 1 technology in support of the Internet of Things (IoT) across its network by the end of July.

Further reading:

Sunday, 23 March 2014

Securing the backhaul with the help of LTE Security Gateway


An excellent presentation from the LTE World Summit last year, that is embedded below. The slide(s) that caught my attention was the overhead involved when using the different protocols. As can be seen in the picture above, the Ethernet MTU is 1500 bytes but after removing all the overheads, 1320 bytes are left for data. In case you were wondering, MTU stands for 'maximum transmission unit' and is the largest size packet or frame, specified in octets (8-bit bytes), that can be sent in a packet or frame based network such as the Internet.

Anyway, the presentation is embedded below:


Thursday, 20 June 2013

Economical M2M using LTE - #LTEWS

In the upcoming LTE World Summit 2013 (programme here), I will be doing a briefing on the topic 'Economical M2M using LTE'. I have some ideas but I would like to hear more on what you think? In fact, is LTE the right technology from the M2M device point of view? Or do they better stick to 2G (I dont think 3G is good enough generally from low data M2M point of view). What other issues can be foreseen? Security? Roaming?
A recent presentation from Telefonica shows how they are partnering with other operators worldwide to create universal solutions. Will this help? Why not use these solutions for everything, not just LTE? LTE is data only technology isn't it?

The presentation is embedded below to draw your own conclusion but I an interested in hearing your thoughts on Twitter or here on the blog.

Thursday, 1 November 2012

‘Small Cells’ and the City



My presentation from the Small Cells Global Congress 2012. Please note that this presentation was prepared at a very short notice so may not be completely accurate. Comments more than welcome.

Wednesday, 18 July 2012

Real Life Pictures of Small Cells Deployments in London

Visitors of this blog seemed to like the last set of deployment pictures I put up. As a result here is another set of pictures from the same Telefonica presentation by Robert Joyce. See also my earlier post on the same topic here.













Saturday, 19 May 2012

Backhauling the Telefonica O2 London LTE Trial

Interesting Video and Presentation about backhaul in the London Trial of LTE deployment by O2.


Presentation:
We have an event in October in Cambridge Wireless that will look at the backhaul and deployments a bit more in detail. Details here.

Saturday, 12 May 2012

A Twitter discussion on 'Data Tsunami' myth




Participants:


@disruptivedean - Dean Bubley
@StevenJCrowley - Steve Crowley
@WhatTheBit - Stefan Constantine
@labboudles - Leila Abboud
@twehmeier - Thomas Wehmeier
@jamncl4 - Jonathan Morgan
@wifidave - Dave Wright



@disruptivedean: Data tsunami myth washing further out to sea: Telefonica mobile data grew 35% YoY to Q1, vs. data rev growth of 28%. http://www.telefonica.com/en/shareholders_investors/html/financyreg/resultados2012.shtml


@disruptivedean: Increasingly convinced that some cellular data growth numbers & forecasts are over-inflated - mainly to sway regulators on spectrum policy

@StevenJCrowley: Wonder how much of Telefonica lower data growth is from Spain's unusually bad economy versus normal "S curve"

@twehmeier: Did you see that shockingly unbalanced story on data traffic in FT? Pure spin. Telefonica is v representative of Euro ops. The other factor is vendors perpetuating the myth to sell their products and services

@WhatTheBit: you should do some research into operator spectrum holdings versus actual utilization, I'm sure the results would B shocking

@twehmeier: The other factor is vendors perpetuating the myth to sell their products and services

@disruptivedean: Don't think Spanish economy that much an issue. Growth been flattening in UK & Germany for a while - http://disruptivewireless.blogspot.co.uk/2011/11/smoking-gun-i-think-o2-uk-has-falling.html


@disruptivedean: The contrast in attitude between TF corporate vs. TF Digital is striking sometimes.

@labboudles: that's interesting, is it typical of others ops numbers, ie data makes them money so stop whining abt capex/google?

@disruptivedean: It's certainly true for VF in Europe - they have faster data rev growth than traffic growth. Caps/tiers fixed the problem


@disruptivedean: Basic pricing tiers/caps + user-controlled WiFi have "fixed" the problem. Has undermined need for more complex solutions & tech

@twehmeier: Indeed. amazes me how little emphasis placed on imprtnce of pricing. Next prob will be working out how to bring traffic back

@disruptivedean: Yes, especially with LTE - in some places/networks we're heading for overcapacity. Not quite as bad as fibre in 2001, but scary

@twehmeier: And that will likely lead to more naive pricing models that only serve to accelerate self-commoditisation of value of data!


@twehmeier: Telenor firsy reported faster data revenue growth versus traffic back in 2010. And that's in some of the world's most advanced smartphone and MBB markets...

@labboudles: thought so since that was case in France, but admit had not looked at all ops trends

@disruptivedean: Also beware that some operators (eg AT&T) have started adding in WiFi hotspot traffic to bump up the numbers

@twehmeier: Shameless lobbying....

@labboudles: where is there overcapacity?! Places where LTE has been built and already used?

@twehmeier: imagine a market where Wi-Fi is ubiquitous and all operators deploy LTE on top of pre-existing HSPA/HSPA+. And remember average utilisation of European 3G networks is typically only in the 35-40% range and pretty steady

@labboudles: that's a ways off in real world though


@labboudles: ok that I just don't understand, then why is my user experience of mobile Internet so crap n London, Paris ?

@disruptivedean: Depends how you calculate it. Bear in mind many MNOs don't "light up" all spectrum initially, but add extra capacity


@disruptivedean: Plenty of other bottlenecks - most notable is poor coverage, could be backhaul, stuff in core network, even DNS etc


@disruptivedean: Congestion often caused by too much signalling (setting up/tearing down IP conxns), not sheer data "tonnage"

@jamncl4: Actually I think we are also seeing the impact of the shift from laptops to tablets and smartphones


@jamncl4: People can't afford multiple data plans so they shift from laptop to Smartphones which inherently use less data

@wifidave: How did you arrive at 35%/28%? I found 15.4% YoY in "mobile data revenue", and couldn't find traffic figures.

@jamncl4: Same with tablets which also pull usage away from laptop except most tablets are wifi only


@jamncl4: WiFi is in enough places that I can't justify two data plans so I stick to wifi tablet and data pla smartphone

@disruptivedean: It's on page 6 of the results presentation, showing rapid convergence of traffic & revenue growth

@jamncl4: The smartphone will take a few years to catch up to laptops in terms of data requirements thus "slowdown" growth

@disruptivedean: Bear in mind rising % of people don't have "plans" but use PAYG for data. But yes, dongle traffic falling, phone rising

@jamncl4: But Smartphone require higher signaling than laptops due to apps & power saving techniques;massive signal growth

@disruptivedean: Tablet/laptop substitution (or not) largely irrelevant as both are generally WiFi-only & will most likely stay that way

@jamncl4: Multi device plans could be interesting moving forward and there impact on this


@jamncl4: I disagree. Majority of traffic has come from laptops in past so more wifi & tablets reduces the traffic

@wifidave: @disruptivedean OK, I see. The 27% is a subset of the 15.4%.

@jamncl4: I think the real issue is that people don't want to pay for 2 plans & the 1 plan in general is Smartphone for now. Multidevice PAYG plans will be interesting on their impact.

@wifidave: Ponder this > Assuming TF #s are cell data, they represent a mobile data Traffic/Rev YoY growth ratio of 1.29:1 . The same ratio for #ChinaMobile in Q4'11 was 1.28:1 . For #ChinaMobile, cell data grew at 56.1% traffic and 43.5% revenues.


@wifidave: ATT says that "wireless data traffic" doubled in 2011 from 2010. (http://www.attinnovationspace.com/innovation/story/a7781181). but elsewhere report that their Wi-Fi traffic increased 550% in Q4'11. (http://www.vision2mobile.com/news/2012/01/wif.aspx). all while wireless data revenues only grew 19.4% YoY in Q4'11 (http://www.att.com/gen/press-room?pid=22304&cdvn=news&newsarticleid=33762)


@wifidave: The real growth (337% and 550% for CM and ATT) is in Wi-Fi as Dean said. Not adding much to rev yet.

@disruptivedean: Absolutely agree more WiFi = less "big device mobile data traffic". Unconvinced it matters if big device = laptop/tablet


----------------------x------------------------o---------------------------x------------------------

Wednesday, 25 April 2012

Signalling Load per device and OS

From the presentation by Martin Prosek, Telefonica, Czech Republic in 3G Optimization Conference 2012, Prague.




Signalling can cause many issues:

In the mobile device, Frequent PDP-context establishment is known to drain the battery. Battery life can be improved by supporting fast dormancy in network.

In the network, Signalling flood can create situations reminding DoS attacks. Increased signalling in RAN can cause impacts in core network:

  • Radius/Diameter interface overload of AAA servers
  • DHCP IP address pools exhaustion


Thursday, 19 April 2012

The concept of 'PDP Context Parking'




Access Point Name (APN) identifies a packet data network (PDN) that is configured on and accessible from the packet core (eg. GGSN). APNs are similar to a DNS name of the packet core and its composed of 2 parts.

• The APN Network Identifier which defines the external network or service that the user wishes to connect to via the packet core.
• The APN Operator Identifier which defines in which mobile network the packet core is located.

The APN that a mobile user is allowed to use is either programmed in the phone, or it could be sent over the air (OTA) via SMS. If an invalid APN is used then the PDP context request would be rejected with Invalid APN cause.

The networks of today are capable of handling any APN name and in fact recently I read some operator will allow any APN name to be used (PS: I cant remember details so please feel free to add link in the comment if you know). The reason for any APNs is that users use mobiles that were used on other networks which would have their APN settings, so the operator allows them to use any APN and then send OTA message to provide new settings.

The problem starts on these devices of today, even though you may say that you dont want to use operator data (especially while roaming), it still uses data and if the user does not have a good data plan then he may end up running a huge bill. See a discussion on this topic here and here.

From operators point of view, once they have sent setting OTA then they dont send it again. The users have come up with a workaround that they can use an invalid APN name and that would not connect to the operators network and incur data costs. The problem is that since the PDP Context request was now rejected, the device retries it when the device tries to use data again (mostly when there is no WiFi due to user being out and background apps are still running). This can cause loads of unnecessary signalling (for establishing PDP context).

In a situation like this, Martin Prosek from Telefonica, Czech Republic, mentioned that they have introduced 'PDP Context Parking'. They accept the PDP context request even though the APN is invalid but redirect the user to a default page where the user has many options like name of correct APN for someone using wrong APN by mistake, possiblity to buy 'bolt-ons' so they can use data over the mobile network and in some cases simply some free data allowance so that the users can get a feel of mobile data usage. This helped Telefonica O2, Czech Republic, reduce signaling and improve pdp connection success rate

I think this is a great idea and if someone has more information on this or personal experience, please feel free to add.

Tuesday, 10 April 2012

Mobile Energy Efficiency (MEE) Optimisation project

Recently read that Telefonica, Germany has identified that it can save €1.8 million per year with the help of GSMA's MEE Optimisation service. Here is a detailed case study from GSMA:

Also, found a presentation that explains a bit more about what MEE (Mobile Energy Efficiency) is:
Maybe a good idea for other operators to start looking into how they can be saving with this initiative as well.

More details on MEE here.

Tuesday, 28 September 2010

SIMFi = SIM with WiFi

Since the beginning of this year, Sagem Orga and Telefonica have been working on next generation SIM card called SIMFi.

With SIMFi, you can convert a phone into a WiFi hotspot. The phone would use HSPA/LTE for data connectivity and at the same time it would broadcast WiFi signals for any equipment to connect to these signals and browse the web. Power consumption information have not been mentioned which I am sure would be a problem for the phone.

SIMFi Removes the need for additional accessories to facilitate transmission services (e.g. MiFi, USB modem, PCMCIA…) and can make connectivity a lot simpler, straigtforward and cheaper.




SIMFi specifications
  • SIM card compatible with the latest telecom specifications.
  • SIM card: ISO 2FF plug-in
  • The mobile phone does not need any special features.
  • Modem WiFi integrated in the SIM card, works with 802.11b.
  • The modem is guided by the SIM card's tools.
  • Energy-saving features (works with 2G and 3G).
  • The aerial is adaptable, allowing short- and long-range operations (from 2 cm to 30 m) managed by the SIM card's tools.