Showing posts with label Europe. Show all posts
Showing posts with label Europe. Show all posts

Monday 9 May 2022

Transitioning from eCall to NG-eCall and the Legacy Problem

eCall (an abbreviation of "emergency call") is an initiative by the European Union, intended to bring rapid assistance to motorists involved in a collision anywhere within the European Union. The aim is for all new cars to incorporate a system that automatically contacts the emergency services in the event of a serious accident, sending location and sensor information. eCall was made mandatory in all new cars sold within the European Union as of April 2018.

In UK, the National Highways have a fantastic summary of the eCall feature here. The following video explains how this feature works:

Last year, ETSI hosted the Next Generation (NG) eCall webinar and Plugtests. The presentations from the event are available here. The presentations from GSMA, Qualcomm and Iskratel have a fantastic summary of many of the issues and challenges  with eCall and transitioning to NG eCall.

From the Qualcomm presentation:

The eCall standardisation began in 2004 when 2G networks were prevalent and 3G was being deployed. The chosen solution was in-band modem and Circuit Switched (CS) 112 call. The in-band modem was optimised for GSM (2G) and UMTS (3G) as the standard completed in 2008.

eCall for 4G (NG eCall) standardisation was started in 2013 and completed in 2017. As there is no CS domain in 4G/5G, IMS emergency calling will replace circuit switched emergency call. Next generation (NG) eCall provides an extension to IMS emergency calls and support for 5G (NR) has since been added.

The picture above from GSMA presentation highlights the magnitude of the problem if NG eCall deployment is delayed. GSMA is keen for the mobile operators to switch off their 2G/3G networks and only keep 4G/5G. There are problems with this approach as many users and services may be left without connectivity. Fortunately the European operators and countries are leaving at least one previous generation of technology operational for the foreseeable future.

GSMA's presentation recommends the following:

  • New technology neutral eCall Regulation (type approval and related acts) to be amended, adopted by European Commission and enter into force by end 2022 the latest.
  • OEMs to start installing NG eCall /remotely programable/exchangeable modules by end 2022; by end 2024 all new vehicles sold in the market should be NG eCall only
  • New vehicle categories to start with NG eCall only by 2024
  • MNOs have initiated to phase out 2G/3G between 2020 and 2025 , whereas the optimal transition path of their choice beyond this date will depend on market and technology specifics, and may require alignment with NRAs.
  • By 2022 , the industry will develop solutions for the transition period that need to be implemented country by country, which will also assess the amount of needed public funding to be economically feasible.
  • Retrofitting to be acknowledged, completed and formalised as a process by end 2024; standards should already be available in 2022.
  • Aftermarket eCall solution to be completed (including testing) and formalised by end 2024; standards should already be available in 2022.
  • The European Commission to make available public funding to support OEMs and alternative solutions to legacy networks starting from 2022 , under the RRF/ recovery package (or other relevant instruments)
  • Legacy networks availability until 2030 at the latest. By then deployment of all alternative solutions simultaneously would have ensured that the remaining legacy fleet will continue to have access to emergency services through NG eCall.

EENA, the European Emergency Number Association, is a non-governmental organisation whose mission is to contribute to improving people’s safety & security. One of the sessions at the EENA 2021 Conference was on eCall. The video from that is embedded below and all information including agenda and presentations are available here.

Related Posts:

Saturday 29 June 2019

Presentations from ETSI Security Week 2019 (#ETSISecurityWeek)


ETSI held their annual Security Week Seminar 17-21 June at their HQ in Sophia Antipolis, France. All the presentations are available here. Here are some I think the audience of this blog will like:


Looks like all presentations were not shared but the ones shared have lots of useful information.


Related Posts:

Friday 12 December 2014

5G Spectrum and challenges

I was looking at the proposed spectrum for 5G last week. Anyone who follows me on Twitter would have seen the tweets from last weekend already. I think there is more to discuss then just tweet them so here it is.




Metis has the most comprehensive list of all the bands identified from 6GHz, all the way to 86GHz. I am not exactly sure but the slide also identifies who/what is currently occupying these bands in different parts of the world.


The FCC in the USA has opened a Notice of Inquiry (NoI) for using the bands above 24GHz for mobile broadband. The frequency bands above have a potential as there is a big contiguous chunk of spectrum available in each band.



Finally, the slides from ETRI, South Korea show that they want to have 500MHz bandwidth in frequencies above 6GHz.

As I am sure we all know, the higher the frequency, the lower the cell size and penetration indoors. The advantage on the other hand is smaller cell sizes, leading to higher data rates. The antennas also become smaller at higher frequencies thereby making it easier to have higher order MIMO (and massive MIMO). The only way to reliably be able to do mobile broadband is to use beamforming. The tricky part with that is the beam has to track the mobile user which may be an issue at higher speeds.

The ITU working party 5D, recently released a draft report on 'The technical feasibility of IMT in the bands above 6 GHz'. The document is embedded below.




xoxoxo Added Later (13/12/2014) xoxoxo
Here are some links on the related topic:


xoxoxo Added Later (18/12/2014) xoxoxo
Moray Rumney from Keysight (Agilent) gave a presentation on this topic in the Cambridge Wireless Mobile Broadband SIG event yesterday, his presentation is embedded below.



Monday 9 June 2014

European Regulations for 'Decoupling of SIM' and 'International Roaming'


The following is an extract from an article from Capana:

From the 1st of July 2014, the new EU Roaming Regulations III will become active.

The new EU Roaming regulations set by the European Commission, will allow retail mobile customers to purchase roaming services (such as voice, SMS and data) from an Alternative Roaming Provider (ARP) separate from their domestic service provider (DSP), without affecting either mobile number or device.
The general idea behind the regulations is to promote the interests of European citizens by increase competition between European operators, provide greater transparency, reduce bill shocks, and ultimately provide a greater roaming experience and higher quality of service for consumers.
European Commission President Jose Manuel Barosso said in a press release:
“Further substantial progress towards a European single market for telecoms is essential for Europe’s strategic interests and economic progress. For the telecoms sector itself and for citizens who are frustrated that they do not have full and fair access to internet and mobile services.”
Vice President Neelie Kroes, the Digital Agenda Commissioner responsible for package then continued in the same press release by saying:
“The legislation proposed today is great news for the future of mobile and internet in Europe. The European Commission says no to roaming premiums, yes to net neutrality, yes to investment, yes to new jobs. Fixing the telecoms sector is no longer about this one sector but about supporting the sustainable development of all sectors.”
Requirements
The process of selecting an ARP and its services while abroad within EU is more commonly known as decoupling or separate sale of roaming services. BEREC (the body of European Regulators for Electronic Communications) have provided the European Commission with their recommendations of two decoupling models that should be supported; Local breakout (LBO, which is the local provisioning of data services by a visited network operator, or Single IMSI solution where the ARP acts as a reseller of the DSPs service offerings.
Decoupling using Single IMSI
With the Single IMSI solution the ARP will engage in agreements with each domestic operator providing domestic services, then the ARP will act as a reseller of these services to the roaming subscriber. This type of solution is applicable for all types of service providers such as mobile network operators, MVNOs or VSPs. From a subscriber standpoint, they will have a roaming agreement with the ARP regardless of the DSP and the DSP is required to activate services within one working day.
Decoupling using Local Breakout
The Local breakout model refers to local provisioning of data services only, where the services is provided directly on the visited network and traditional SMS and voice traffic is supplied by the home operator in traditional roaming manner. By using the 3GPP option for local breakouts, the VPMN will be able to act as ARP for internet access and other data services.
With these new regulatory changes, there is a higher demand on flexibility in billing systems. Support for more complex multi-partner business models for ARP and MVNO is necessary for both billing and financial settlement activities.

Raymond Bouwman from Rabion Consultancy did an excellent presentation last year in the LTE World Summit, here is his presentation explaining more about the EU Roaming Regulations III



Thursday 14 April 2011

Smart Grids (again)


I blogged about smart grids just the other day but they seem to be the 'in thing' and keep popping up everywhere.

The very interesting picture above is from The Guardian article here, that promises that consumers will be able to cut down on their bills by taking advantage of smart meters.

Meanwhile European Commission is making Smart Grids a high priority. The following is from one of their communique:

The European Commission presented its Communication on smart grids. It sets policy directions to drive forward the deployment of future European electricity networks. Bringing together latest progress in Information and Communication technologies and network development will allow electricity current to flow exactly where and when it is needed at the cheapest cost. Smart grids will give in particular to consumers the ability to follow their actual electricity consumption in real time : smart meters will give consumers strong incentives to save energy and money. Estimates show that smart electricity grids should reduce CO2 emissions in the EU by 9% and the annual household energy consumption by 10%. They also help to ensure secure functioning of the electricity system and are a key enabler of both the internal energy market and integration of vast amounts of renewable.

You can read the complete press summary here. A new report entitled 'Smart Grids: from innovation to deployment' is available to download from here. The European Commission Smart Grids taskforce webpage is here.


The following is from IEEE Spectrum :

On 17 March, game designers at the Institute for the Future, in collaboration with us at IEEE Spectrum, ran a 24-hour forecasting game called Smart Grid 2025. Weenlisted the help of listeners like you and game players around the world to brainstorm solutions to the problems the smart grid will face. That way, by 2025—when all our homes have smart meters and utilities are linking up wind farms and solar plants to national grids—it'll be running as smoothly as it possibly can.

Steven Cherry's guest is Jake Dunagan, the game's project leader at the Institute for the Future in Palo Alto, Calif. He was on this show in early March in advance of the Smart Grid 2025 game to talk about how it would work, and now he's back to tell how it went.

This interview was recorded 4 April 2011. (Listen below)



Background on Smart Grids from the same IEEE article: One of the hottest topics in engineering is the smart grid—the idea of adding computer intelligence to a nation's basic electrical grid. The goal is to transport and use energy more efficiently in the grid itself—and also in your home. By adding intelligence to our electrical meters, fuse boxes, even our home appliances, each of us can use electricity more wisely and consume less of it.

But it's still early days for smart grid deployment. In fact, today, the smart grid still raises more questions than it answers—questions like, who will profit from the smart grid? How do we keep the smart grid from knowing too much about our personal lives? Is the smart grid dangerously hackable? Will the smart grid force you to do your laundry at night? Will the smart grid make us healthier? What kind of appliances are needed to accommodate the smart grid?

Feel free to add your thoughts in the comments.

Monday 7 February 2011

'EU-Alert' in Release-11

In the recently concluded 3GPP CT-50 in Istanbul, EU-Alert was adopted as part of Rel-11. The EU-Alert is introduced under Public Warning System (PWS) in parallel with Earthquake and Tsunami Warning System (ETWS).

PWS was introduced in Rel-9 and I blogged about it here. ETWS has been around since Rel-8 and was blogged here.

In fact EU-Alert is sent as part of the Cell Broadcast Message (CBS) using new identifiers. For more details see 3GPP TS 23.401.

The following is an old video from CHORIST project, which was instrumental in providing details of working of this EU-Alert system.




Also Read: Commercial Mobile Alert System (CMAS) here.

Tuesday 14 September 2010

Femtocell Interference Management in real life

Couple of years back we blogged about the Femtocell Inteference in Macro network. Since then things have moved on a long way. There are commercial rollouts happening with Vodafone leading the way. Yesterday, I was reading Prof. Simon Saunders article on Femtocell and the following struck me.

A major technical challenge that femtocell designers initially faced was the need to manage potential interference. It takes up to two years to install conventional base stations, during which time radio engineers meticulously plan a station’s position and radio characteristics to avoid interference. However, such an approach is not viable in the case of femtocells, deployed potentially in their millions at random. Automating a process conducted by radio engineers was no mean feat and simply would not have been possible a few years ago.

Fortunately, the fact that the walls of buildings keep 3G signals out and keep the femtocell’s signals in provides strong inherent interference mitigation for indoor femtocells. Extensive studies have shown that proper implementation of a few key techniques to reduce interference can take advantage of this attenuation in an intelligent manner. Such techniques include frequent monitoring of the cell’s surrounding radio environment combined with adaptive power control. Indoor users gain faster data rates, as do outdoor users who now operate on less congested cells, while it costs less for operators to deliver higher overall network capacity. Large-scale, real-world deployments are demonstrating that these techniques work in practice and even allow new approaches, such as operating 3G networks in the same spectrum as 2G networks.

AT&T has deployed femtocells on the same frequencies as both the hopping channels for GSM macrocells and with UMTS macrocells. They have tested thousands of femtocells, and found that the mitigation techniques implemented successfully minimise and avoid interference. The more femtocells are deployed, the more uplink interference is reduced.

It is very interesting to see that the interference is not causing any problems in real life.


Back in Feb, Femto Forum released a new report on "Interference Management in UMTS Femtocells". A similar report was released in Dec. 08. Then in March they released a similar report for OFDMA (covering both LTE and WiMAX) femtocells. They are interesting reading for those who are interested in this area.


European Union is having a similar program called FREEDOM (Femtocell-based network enhancement by interference management and coordination of information for seamless connectivity ). FREEDOM focuses on:
  • Advanced interference-aware cooperative PHY techniques,
  • Improvement of the control plane procedures for seamless connectivity, and
  • System-level evaluation and hardware demonstrator of the proposed femto-based network architecture.

More info on their website (http://www.ict-freedom.eu/). You can see their scenario document that shows different interference scenarios and also compares different approaches including those of Femto Forum, 3GPP and WiMAX.

Monday 12 July 2010

HSPA+ rollout updates, July 2010



Its been a while since we talked about HSPA+ rollouts. In between we did hear about the data rates bumping upto 84Mbps and even 168Mbps.

The good news is that now there are actual rollouts happening with 42Mbps HSPA+ and others in pipeline.

According to The Register:

In Japan this week, the smallest operator, eMobile, 'soft launched' Japan's fastest network. Using Ericsson kit, the fourth cellco made its new HSPA+ (high speed packet access) services available to select users, promising theoretical download speeds of 42Mbps. This iteration of HSPA+ has only been adopted by a few carriers so far, notably Australia's Telstra.

The full commercial launch of eMobile's data-driven network, in metropolitan areas such as Tokyo, Tokai and Osaka, will take place by year end.

According to Wireless Intelligence, the small player has 2.5 million subscribers - just 2.3 per cent market share - but enjoyed a high year-on-year growth rate of 52.5 per cent to mid-2010. It originally relied on an MVNO model but started rolling out its HSPA network, offering flat rate data services, in 2007. It upgraded to 21Mbps last summer using equipment from Huawei and promises LTE by 2012.

Bulgarian mobile carrier M-Tel demonstrated download speeds of 42 Mbps reached via Dual Carrier HSPA+. The technology will be introduced in Sofia by the end of this year, doubling the current maximum download speed of 21 Mbps. Thanks to the 42 Mbps download speed, the customers of M-Tel will be able not only to surf the internet at high speeds, but also watch 3D and HD TV channels through the mobile network. With the new Dual Carrier HSPA+, it will take about two and a half minutes to download a 750 MB movie, compared to four hours and 45 minutes via UMTS. With the HSPA+ technology, a movie of the same size would be downloaded in five minutes and 16 seconds. M-Tel introduced the HSPA+ technology which provides speed for data transfer up to 21 Mbps last year in Sofia. By the end of August, HSPA+ will also be available in Varna, Plovdiv and Burgas.

In Saudi Arabia, Mobily successfully completed trials for the coming upgrade of its state-of-the- art evolved high-speed packet access (HSPA+) network testing speeds of 42 megabits per second (Mbps), according to a statement issued by the company. The 42 Mbps speed, expected to be rolled out in major cities in the interim, will be the first major speed upgrade since Mobily became the first operator in the region to launch HSPA+ towards the end of 2009 at speeds of 21 Mbps, and closed the year with one million customers subscribed to its high-usage bundles, and an overall base of 18.2 million.

Mobily’s HSPA network has given a much needed boost to household Internet usage in the Kingdom with household penetration rates more than doubling from around 14 percent for end of 2008 results to 32 percent for yearend 2009, according to the Communications and Information Regulatory Commission’s annual report.

According to the same report, wireless broadband grew 488 percent to 1.41 million wireless broadband subscriptions and representing 51 percent of all broadband connections in the country, as compared to a 47 percent share for ADSL. Of those 1.41 million wireless broadband subscriptions, one million were on Mobily’s network, giving the company a market share of 70 percent market of all wireless subscriptions and 36 percent of all broadband connections in the Kingdom.

Etisalat, Egypt, in partnership with Hawei Technologies Co Ltd, has launched its HSPA+ Phase 2 network in EGYPT. This new technology has already been deployed in the Etisalat Misr network. The existing network has reached an average download speed at 41.73 Mbps. HSPA+ Phase 2 increases Etisalat mobile broadband network capacity to support speeds of up to 42Mbps, from 21Mbps previously.

Indosat just launch fast Internet access service DC-HSPA+ 42 Mbps in Surabaya, Indonesia. Indosat claim the DC-HSPA+ services could provide download speeds of up to 42 Mbps for customers Indosat Mobile Broadband and IM2. Previously, these service has only presented to Indosat customers in Jakarta.

There are rumours that in USA while everyone is concentrating on LTE, T-Mobile has been planning to upgrade to HSPA+ to improve its speed. We will have to wait

Friday 29 January 2010

HSPA+ rollout updates, Jan 2010

It has been predicted that the growth of HSPA+ broadband across Europe is set to soar with the total number of subscribers set to nearly double across Europe in 2011.

A new report has predicted that by 2011 the growth of HSPA+ broadband across key European markets will soar, and could almost double compared to 2009. The number of subscribers is set to soar from twenty two million in 2009 to around forty three million in 2011. The report was released by CCS Insight.

According to the report HSPA+ broadband will be a major factor in seeing growth of one hundred percent in the to five major European markets. The report goes on to state that the European mobile broadband market will enjoy seeing both subscriber and revenue numbers double by 2011. Revenues are set to increase from around six billion Euros in 2009 to around eleven billion Euros in 2011.

Michael O’Hara, chief marketing officer at the GSMA, said: “It is clear from this report that with the right network investment, European mobile network operators will see significant growth in mobile broadband adoption in the next two years. HSPA technology will drive this rapid uptake across Europe as mobile operators and their customers continue to benefit from its expanding, vibrant and competitive ecosystem.”


HSPA+ was generally the most efficient way of upgrading use of bandwidth already in use and was likely to dominate in the short term at least, with an estimated 1.4 billion subscribers worldwide by 2013, around ten times the estimated take-up of LTE.

HSPA+ release 7, which became available last year, uses MIMO technology like that in 11n Wifi to help take the peak downlink throughput to 28Mbps, with 11Mbps on the uplink. Release 8, for which chipsets will become available this year, aggregates two carrier signals to bring peak data rates to 42Mbps on the downlink.

Release 9 will put two MIMO streams on each of two 5MHz carriers, aggregated to produce a 10MHz data pipe delivering 84Mbps on the downlink; the uplink uses simple aggregation to 23Mbps. A projected Release 10 would bring the peak downlink speed to 168Mbps, though this would require 20MHz carriers only available in the 2.5GHz and 2.6GHz bands.

Novatel Wireless, a developer of wireless data cards and other devices, said that it has added support for dual-carrier HSPA+ networks. The firm said it is using Qualcomm's MDM8220 chipset for the support, and will launch commercial devices in the second half of 2010 based on the chipset. Novatel said the new support will add more advanced data capability and other features to its offerings. Dual Carrier HSPA+ networks are expected to provide higher throughput to wireless data devices, and also helps address better service for cell phone users.

The new modem can receive data at up to 42M bps (bits per second) in compatible 3G networks. To increase the theoretical maximum download speed of the modem from 21M bps to 42M bps, Novatel uses two carrier frequencies instead of the usual one, a technique called dual-carrier. But it will only deliver the higher speed on networks that also support the technique.

Users can expect peak speeds at up to 30M bps, according to Hans Beijner, marketing manager for radio products at Ericsson.Leif-Olof Wallin, research vice president at Gartner, is a more pessimistic, saying increased traffic on the networks could negatively impact speeds. "I think it will be difficult to get above 20M bps," he said.

Sixty-six operators have said they plan to use HSPA Evolution, and so far 37 networks have been commercially launched, according to statistics from the Global Mobile Suppliers Association (GSA).

However, the version of HSPA Evolution that supports 42M bps is still very much in its infancy. Last week, mobile operator 3 Scandinavia announced plans to launch services when modems become available. In December, representatives from Vodafone and the Australian operator Telstra visited Ericsson to Stockholm to view a demonstration, but neither operator has so far announced plans to launch commercial services.

Ericsson and 3 Scandinavia have unveiled plans to roll-out a worlds-first 84Mbps HSPA+ wireless network. The initial rollout will cover Denmark and four Swedish cities. HSPA+ networks that currently operate in Canada, for example, offer speeds of up to 21Mbps depending on conditions. In the United States, T-Mobile recently announced a similar planned network.

Real-world tests of the 21Mbps networks show the services achieving around 7Mbps speed. If a similar performance could be applied to the new Ericsson/3 network, it could result in speeds of roughly 28Mbps at realistic distances and network load.

and 3 will also deploy 900MHz 3G networks in Sweden in a bid to boost coverage in remote areas, as existing higher frequency networks have left some users with poor performance.
The high-speed services will hit Denmark and areas of Sweden this winter if all goes to plan.

China Unicom is putting the finishing touch on the tests on its HSPA+ networks in Guangzhou, Shenzhen, and Zhuhai, which were kicked off in October 2009 by partnering with its three major suppliers Huawei Technologies, ZTE, and Ericsson.

HSPA+ is the next generation technology for China Unicom's WCDMA 3G service. HSPA+, also known as Evolved High-Speed Packet Access, is a wireless broadband standard defined in 3GPP release 7. The HSPA+ network claims with a transmission speed of 21Mbps, 1.5 times faster than its current 3G network.

The outdoor average speed of the networks built up by Ericsson and Huawei reach up to 16.5Mbps and 18.5Mbps on the downlink, 50% higher than that of the existing HSPA network. That means you can download a song within two or three seconds.

Cell C, South Africa, has signed a US$378m deal with the Chinese telecom equipment provider ZTE Corporation. Cell C would ever lead the industry as far as network infrastructure is concerned but it is a fact that Cell C will be the first South African operator to roll out HSPA+ technologies incorporating download speeds of up to 21Mbit/s – three times faster than anything currently available.

According to Cell C an important factor in the decision to appoint ZTE is its ability to offer 4G services using Cell C’s 900MHz frequency band which offers wider and deeper coverage than existing 2100 MHz networks, enabling cost effective deployment to rural as well as metropolitan areas.

Tuesday 15 December 2009

Teliasonera reaches a milestone with first commercial LTE Networks

TeliaSonera has rolled out commercial LTE Networks in Stockholm, Sweden and Oslo, Norway. The Swedish network is supplied by Ericsson and the Norway one by Huawei. At the moment only Samsung Dongles are available for browsing the web.

Read the press release here.

By the way, its a bit shameful that the operator wants to market itself and its using the term 4G for LTE as it probably sounds more sexy :) I blogged couple of years back and it still applies that LTE is 3.9G and IMT-Advanced/LTE-Advanced is 4G.

Wednesday 9 September 2009

HSPA+ is everywhere...



EMobile Ltd. , Japan's smallest mobile operator, has deployed HSPA+, also known as HSPA Evolved, in the country's major cities, including Tokyo, Osaka, Yokohama, and Nagoya.

This deployment is based on equipment from Ericsson AB, which supplied the core network and core systems integration services as well as the majority of the radio access network. It builds out the geographical coverage for HSPA+ that EMobile has already established using Huawei Technologies Co. Ltd. equipment in a number of Japan's other cities, including Hokkaido, Sendai, Niigata, Hiroshima, Fukuoka, and Nagasaki.

Japan is a market with a reputation for being first with new technology, but HSPA+ has been passed over, most notably by market leader NTT DoCoMo Inc., which has focused on moving to Long-Term Evolution (LTE) as fast as possible.

The No. 2 player, KDDI Corp. , is similarly pushing toward LTE, although from a CDMA base that takes HSPA out of the equation, while Softbank Mobile Corp. is known to have run HSPA+ lab trials and has also said it will move to LTE when it gets the necessary spectrum.

EMobile is by far the smallest of Japan's operators, with just 1.67 million subscribers at the end of the second quarter, compared to DoCoMo's 54.86 million, KDDI's 31 million, and Softbank's 20.96 million customers, according to Wireless Intelligence .

You can check out the HSPA+ features in Rel-7 and Rel-8 here.

Zapp, mobile operator of Romania, has launched the first stage of its HSPA+, the upgraded mobile broadband service in the capital city of Bucharest. With this service, the subscribers can enjoy peak download speeds of 21.6Mbps, while upload speeds will increase by up to 15 times, from 384Kbps to 5.8Mbps. According to a report, Zapp contracted Chinese firm ZTE to deploy the network, which will run parallel to the cellco’s second phase 3G rollout, expanding its UMTS services to 63 cities nationwide.


O2 Germany is currently running a friendly user test in Munich where O2 Germany's technology partner is Huawei. Beside being O2's network partner for the overall HSPA-network upgrade, Huawei is also O2 Germany's major vendor for UMTS sticks and therefore O2 Germany is using Huawei equipment for the HSPA+ test as well. The used Huawei E182E stick is a slide-out USB stick, supporting quadband GSM/GPRS/EDGE as well as quadband UMTS/HSDPA up to 21.6 Mbps and HSUPA up to 5.76 Mbps. Furthermore the stick is MIMO ready.

Spanish mobile network operator Vodafone Spain has announced it will begin deploying HSPA+ technology across its network in the autumn of 2009. The cellco says the upgrade will allow its infrastructure to achieve theoretical download speeds of up to 21.6Mbps, while uplink speeds would increase to up to 5.7Mbps. Initially Vodafone expects to launch the increased speeds in seven unnamed ‘major’ cities, with further expansion to follow. In addition, Francisco Roman, president and CEO of Vodafone Spain, has announced that the operator plans to further extend its provision of ADSL services across the country, although it has not given any specifics for areas it plans to extend its reach to.

­Swiss network operator, Swisscom says that it is deploying a HSPA+ (HSPA Evolution) upgrade, with the first areas completed in time for the ITU Telecom World 2009 in Geneva. The upgrade will offer a peak rate data transfer rate of 28.8 Mbps - although the more realistic average is no higher than 8Mbps. The network has launched a HSPA 14.4Mbps service at the beginning of this year.

Chunghwa Telecom, the Taiwanese mobile operator has reportedly selected Nokia Siemens Networks (NSN) to upgrade its wireless infrastructure with HSPA+ technology. The operator intends to launch its HSPA+ and 3G services by 2010, boosting mobile broadband download speeds to up to 21Mbps. Initially, devices able to utilise the HSPA+ service will include data network cards, USB dongles and wireless modules before it is extended to cover smartphones, netbooks and notebooks.

ZTE Corp has completed the interoperability test (IOT) of its 3GPP R7-based HSPA+ MIMO (multiple-input multiple-output) solution, conducted in conjunction with mainstream terminal chip platform manufacturers, in July 2009.

The MIMO solution, realized with its SDR-based next-generation base station, has reached a theoretical speed limit of 28.8Mbps in both cable connection and wireless environment tests. The trials included data download services for UDP (User Datagram Protocol) and FTP (File Transfer Protocol), as well as various IOT item tests.

All the test results indicated stable and fast data download performance. The successful IOT testing confirms that ZTE's MIMO solution is now ready for large-scale commercial deployment worldwide.

Monday 24 August 2009

EU commits to LTE-A future


Communications industry executives have welcomed the EU's commitment to fund research work on LTE Advanced , the follow-on technology from LTE that many mobile network operators have only just started embracing, but also cautioned on the timescales involved in deploying the next generation technology.

Earlier last week, the EU said it would invest 18 million Euros ($25 million) in developing the next generation of LTE, beginning on Jan. 1, 2010.

Between 2004 and 2007, the EU supported research on optimization and standardization of LTE -- the WINNER I and II projects, run by a consortium of 41 leading European companies and universities -- with 25 million Euros.

LTE Advanced is the first version of the mobile standard that might actually match the International Telecommunication Union (ITU)'s requirements for wireless 4G networks. It promises performance in the region of 1Gbit/s downlink when the user is stationary and 100 Mbit/s on the move.

The specs for LTE Advanced are in very initial stages and will be a part of 3GPP Release 10, which is scheduled for 2011, and may slip into 2012.

LTE by itself is considered to be really a '3.9G' technology and it is LTE Advanced that will deliver on the 4G promise of minimizing differences between wired and wireless broadband speeds. LTE Advanced calls for support of peak data rates which are as high as 1Gbit/s.

The investment will provide a base for migration, as well as experience with running 4G networks - and help evaluate whether/when the upgrade to LTE Advanced will be needed.

Operators have only now started embracing LTE, and are making plans to migrate their current 3G offerings to LTE by 2012.