Showing posts with label GRX. Show all posts
Showing posts with label GRX. Show all posts

Wednesday, 23 May 2012

#LTEWS: Highlights and Pictures of Signalling day from 8th LTE World Summit



I got a chance to attend the 'Handling the Surge in Signalling Traffic Focus day' at the LTE World Summit. In fact I got this opportunity through Diametriq, who were the sponsors of this event and were kind enough to provide me a free pass :) As a result, they get a little plug below.




We got off to a flying start with an Introduction to the need of Signaling followed by a brilliant presentation by Martin Pineiro from Telecom Personal, Argentina.


This was the only presentation that looked at the Access Network Signalling. All other presentations focussed on Diameter signaling. Telecom Personal have 4 carriers, 1 is used for 3G and other 3 for GSM.


Above is their revenue share for different services. The data services really took off for them when they offered a flat rate if 1 peso per day for unlimited data.


Their average dongle data consumption is 2GB/month and average smartphone is 200MB/month.


They do have a simple definition of Smartphone, which is a device that produces 10+ packet connections per day. The device that is most popular in their network is Motorola and Apple devices produce highest data load but their comparison of devices from different manufacturers showed they all produced similar signalling traffic. 

One final point highlighted was that OS & Apps are not part of test and certification so we should get better understanding of that to help avoid signalling overload in future.

Ron de Lange from Tekelec was up next:


Interesting to hear that they are 40 year old company with 300+ customers in 100+ countries.



There is a shift coming in the usage plans with multi access roaming. Some sessions will go over WiFi and some over the mobile network. Plans with OTT allowance are already here and will be more common. There may be opportunity for end users to earn allowance as part of loyalty scheme. The main thing for operator to think is how to get a revenue share from advertisement.



Diameter 2.0 is coming. The signalling storms, if not handled properly can cause disruption (congestion) internationally, if the interconnect is not handled properly.

Next up was Ben Volkow, F5 Traffix:

Today we use Diameter 1.0, tomorrow it would be Diameter 2.0. Diamater 2.0 us "nervous system" approach.


Diamater is much less predictable than SS7 but this could be because of Immaturity of Diameter.


Real networks like the one above is out in the field. An example of n/w is one with 140 point to point connections.


DRA (Diameter Routing Agent) is a new topology introduced by 3GPP and DEA (Diameter Edge Agent) was introduced by GSMA.


The network does not want to spend million of dollars in one go so they start by deploying individual components first and then depending on the use cases this scales up as they add more components.

Next up was the Panel Discussion:


Key points:
  • Diameter is first protocol that has dedicated vendors offering monetisation of protocol as well
  • Early operators would have deployed Diameter 1.0 so they can evolve by putting DRA for one use case and so on.
  • When operators want to monetise using diameter, the signalling problems may become worse
  • Adding VoLTE may increase Diameter Signalling by 3 times
  • What is meant by monetisation of Diamater is that in SS7, the focus was on reliability, etc. but in Diameter, the operators can leverage PCRF and as a result monetisation. A new use case can also be a OTT proxy that can leverage advertisement revenue. 
  • The forecast for Diameter is couple of 100 million for this year and growing. There are many components including Router, Roaming, Charging, Security, Interconnect capability, Aggregating relationships with small carriers and OTT service providers, etc.


Next up was Marjan Mursec of Telecom Slovenia

Some interesting facts from them is that they have a public WLAN n/w, GSM with EDGE as fallback and have rolled out HD voice. Their Data usage surpasses voice and Voice and SMS is still growing as can be seen below.



Above shows the data usage increase after they rolled out all you can eat package. They were then forced to introduce fair usage policy.

Their upgrade paths include RAN, Core, Backhaul.


They think they have a big signalling challenge over S1-MME interface. One wrong configured user is sending 4 requests/second. 12,500 users can be enough to reach congestion (ZG: Maybe they should look at PDP Context Parking). Over the S1-U interface, Narrowband users can send 50 packets/sec. 40,000 users at 13.6kbps can saturate the network and the routers will be overloaded.

Next up was Ajay Joseph from iBasis:


Interesting to see that GRX is a service in IPX above.


I think the main point of above is that Diameter by itself is not enough and a mechanism like IPX is required for roaming scenario.


For LTE a new service called LTE Signalling exchange (LSX) can be created within IPX. iBasis has just launched Sandbox for testing Roaming, Charging, Interoperability, etc.

Will LSX bring the roaming costs down? Its operators call but it does provide a foundation and in the next 2-3 years, data roaming costs should come down dramatically.

It should be noted that GRX is an IP network without QoS. Its a service within IPX. Security is also a service within IPX and GSMA based compliance should be there for proper and secure interoperability.

Voice over IPX is not of much interest, especially because there is no return of investment and HD voice cant be send over IP.

Next up was Douglas Ranalli from NetNumber:

His slides are self explanatory




One question during Q&A was, why not put this functionality in the cloud and avoid complexity of having another physical box in the system. The answer was that CDRB is implemented to be compliant with cloud deployment but operators have not yet taken this step. The customers are deploying physical boxes but shared infrastructure would be much more efficient.

Next up was Doug Alston from Sprint:



Next up was Anjan Ghosal from Diametriq:






Everyone is talking about LTE-LTE roaming but there is a need for LTE-3G and LTE-2G so some translation may be required between Diameter and SS7.


Diametriq provides a single platform for signalling between any service (2G/3G/4G) and possibility to enhance.

Next up was another Panel Discussion:


One observation is made is that as compared to the ITM Optimisation event, where the operators were more worried about the OTT players eroding revenues, the focus here was that how Diameter can help monetise the OTT services,

Next up was Edward Gubbins from Current Analysis:




The Final presentation was from Julius Mueller from Fraunhofer FOKUS:




As usual, Dimitris Mavrakis was up to the mark and chaired the whole day very well.

To end an enjoyable day even better, iBasis invited the attendees for drinks on the Hilton Terrace, which is next to CCIB and complemented the drinks with some delicious Tapas as can be seen below :)






E&OE. In case if have misheard, misquoted, etc. please feel free to correct me via comments in this post.

For all the action from LTE World Summit for the next 2 days, please follow twitter #LTEWS.

Please let me know by using the voting buttons below if you found it useful or not.

Thursday, 26 January 2012

Diameter Infrastructure Required for LTE (Data) Roaming


Diameter protocol seems interesting especially since we are moving to All IP Networks. This old post gives a comparison of SS7 and Diamater protocol.

You can learn more about Diameter at the Diameter Learning Center.

Monday, 20 June 2011

Roaming with the IP eXchange (IPX)


From Wikipedia:

Traditionally, voice traffic interconnection between different operators has utilized the international SS7/TDM networks. However, lately the all-IP paradigm with VoIP is being rapidly introduced by different operators in various forms, such as IMS. In order to minimize the number of conversions between packet-switched voice and circuit-switched voice there is a clear need to deploy an IP based NNI (Network-to-Network Interface) and therefore an IP based interconnection network.

It is also evident that a large number of IP based services (such as Presence or IM) simply cannot be interconnected using a SS7/TDM network, further increasing the need for evolution into an IP based interconnection network.

Since the year 2000 GSM operators have been using GRX (GPRS Roaming Exchange) network for routing the IP based commercial roaming traffic between visited and home operators. Mainly 2.5G and 3G data roaming has been using GRX. GRX is a private IP network (separated from internet) consisting of multiple different GRX carriers that are connected to each other via peering points. However, GRX is limited only to GSM operator community and not all GRX's are capable of meeting the demands of real-time services.

Even though the GRX environment is not entirely suitable as a common IP network for interconnection and roaming, it offers a good starting point for the development of IPX. IPX development has been done in various GSM Association projects and working groups since 2004.


The following presentation is from LTE World Summit:

Friday, 12 June 2009

GPRS Roaming eXchange (GRX) for LTE/EPS Networks


The GSM Association (GSMA) has came to the realization that GPRS roaming based on bilateral relationships between individual GPRS operators is incredibly complex and expensive to maintain, in particular if the number of roaming partners is high. In fact, each operator will have to have N(N - 1) dedicated links to other operators (given that N is the global numbers of operators for which roaming should be supported). The GSMA has therefore recommended the use of a GPRS Roaming eXchange (GRX) for the Inter-PLMN GPRS roaming scenario.

The GRX is built on a private or public IP backbone and transports GPRS roaming traffic via the GTP between the visited and the home PLMN (Figure above). A GRX service provider has a network consisting of a set of routers and the links connecting to the GPRS networks. Moreover, the GRX network will have links connecting to other GRX nodes to support GRX peering between networks.

The GRX service provider acts as a hub, therefore allowing a GPRS operator to interconnect with each roaming partner without the need for any dedicated connections. This allows faster implementation of new roaming relations, faster time to market for new operators, and better scalability since an operator can start with low-capacity connections to the GRX and upgrade them depending on the bandwidth and quality requirements of the traffic. Other benefits of GRX are as follows:

Support of QoS: This aspect that will be very important for the GPRS services and, in particular, for the transition to 3G systems.

Security: The interconnection between the home operator and the visited operator uses the private GRX networks, hence does not require the overhead of maintaining expensive IPSEC tunnels over the public Internet.

DNS support: Through GRX it is possible to support a worldwide ".gprs" DNS root, where the various GRX operators will collaborate in managing the root and each operator's DNS servers will be connected to such roots to provide translation of DNS names specific to one operator.

In conclusion, GRX is introduced for GPRS roaming to facilitate the network operators for the interconnection between networks to support roaming and will play a very important role for the transition to third-generation systems.

In the LTE World Summit, Alex Sinclair, Chief Technology Officer, GSMA mentioned about the important role GRX will play in the LTE networks. The figure below are his views on GRX.





Diagram and Initial text Reference: IP in Wireless Networks By Basavaraj Patil, et al.

More information on GRX is available in GSM Association IR.34 document.