Showing posts with label Release 15. Show all posts
Showing posts with label Release 15. Show all posts

Tuesday, 17 November 2020

5G Non IP Data Delivery and Lightweight M2M (LwM2M) over NIDD

Earlier this year, MediaTek had announced that its MT2625 NB-IoT chip has been validated for LwM2M over NIDD on SoftBank Corp.’s cellular network across Japan. This achievement marks the first global commercial readiness of LwM2M over NIDD; a secure, ultra-efficient IoT communications technique that is being adopted by operators worldwide. The benefits of LwM2M over NIDD include security improvements, cost-efficient scalability and reduced power consumption.

LwM2M over NIDD is a combination of the communication technology "NIDD (Non-IP Data Delivery)" that does not use an IP address in LTE communication NB-IoT for IoT and the device management protocol "LwM2M (Lightweight M2M)" advocated by the Open Mobile Alliance. It's been a while since I wrote about Open Mobile Alliance on this blog. OMA SpecWorks is the successor brand to the Open Mobile Alliance. You can read all about it here.


OMA SpecWorks’ LightweightM2M is a device management protocol designed for sensor networks and the demands of a machine-to-machine (M2M) environment. With LwM2M, OMA  SpecWorks has responded to demand in the market for a common standard for managing lightweight and low power devices on a variety of networks necessary to realize the potential of IoT. The LwM2M protocol, designed for remote management of M2M devices and related service enablement, features a modern architectural design based on REST, defines an extensible resource and data model and builds on an efficient secure data transfer standard called the Constrained Application Protocol (CoAP). LwM2M has been specified by a group of industry experts at the OMA SpecWorks Device Management Working Group and is based on protocol and security standards from the IETF.

You can get all the LwM2M resources here and the basic specs of 'Lightweight M2M 1.1: Managing Non-IP Devices in Cellular IoT Networks' here.
The 5G Americas whitepaper 'Wireless Technology Evolution Towards 5G: 3GPP Release 13 to Release 15 and Beyond' details how Current Architecture for 3GPP Systems for IOT Service Provision and Connectivity to External Application Servers. It also talks about Rel-13 Cellular IoT EPS Optimizations which provide improved support of small data transfer over control plane and user plane. Control Plane CIoT EPS Optimization transports user data (measurements, ID, status, etc.) via MME by encapsulating user data in NAS PDUs and reduces the total number of control plane messages when handling a short data transaction. Control Plane CIoT EPS optimization, designed for small infrequent data packets, can also be used for larger data bursts depending in UE Radio capability.

User data transported using the Control Plane CIoT EPS Optimization, has special characteristics, as different mobility anchor and termination nodes.

Therefore, the Preferred Network Behavior signaling must include information on:
  • Whether Control Plane CIoT EPS optimization is supported
  • Whether User Plane CIoT EPS optimization is supported
  • Whether Control Plane CIoT EPS optimization is preferred or whether User Plane CIoT EPS optimization is preferred
These optimizations have enabled:
  • Non-IP Data Delivery (NIDD) for both: mobile originated and mobile terminated communications, by using SCEF (Service Capability Exposure Function) or SGi tunneling. However, it has to be taken into account that Non-IP PDUs may be lost and its sequence is not guaranteed
  • For IP data, the UE and MME may perform header compression based on Robust Header Compression (ROHC) framework
  • NB-IoT UE can attach but not activate any PDN connection
  • High latency communication handled by the buffering of downlink data (in the Serving GW or the MME)
  • SMS transfer
  • EPS Attach, TA Update and EPS Detach procedures for NB-IoT only UEs, with SMS service request
  • Procedures for connection suspend and resume are added
  • Support for transfer of user plane data without the need for using the Service Request procedure to establish Access Stratum context in the serving eNodeB and UE
When selecting an MME for a UE that is using the NB-IoT RAT, and/or for a UE that signals support for CIoT EPS Optimizations in RRC signaling, the eNodeB’s MME selection algorithm shall select an MME taking into account its Release 13 NAS signaling protocol.

Mpirical has a nice short video explaining 5G Non IP Data Delivery. It is embedded below.

IoT has not taken off as expected and prophesised for years. While the OMASpecWorks is doing some fantastic work by defining simplified approach for IoT deployment, its current member list doesn't have enough operators to drive the uptake required for its spec adoption. They would argue that it doesn't matter how many members there are as the NIDD approach is completely optional and over-the-top. Let's wait and see how it progresses.

Related Posts:

Sunday, 20 September 2020

Reliance Jio and 5G Network Architecture Option 6


Last week I read about Jio looking at 5G Network Architecture Option 6. There were also a few discussions on Twitter with users sounding a bit confused. So here is my attempt to explain what is Option 6. Video and slides embedded below. 

You can also see this original video where Satish Jamadagni, Vice President - Network Planning Engineering, Head of Standards at Reliance Jio talks about the need for Option 6. 

Feel free to leave your thoughts in the comments below.

Related Posts:

Sunday, 12 July 2020

Anritsu Webinar on 'Evolution of 5G from 3GPP Rel-15 to Rel-17 and Testing Challenges'


At the TSG#88e Plenary meetings that ended on 03 July 2020, Release 16 was completed with both the Stage 3 freeze and the ASN.1 and OpenAPI specification freeze being approved. The 3GPP Release-16 page has more details on timelines but they may shift. See at the bottom of this post.

Anritsu have uploaded a short presentation on their channel that I am embedding below. I have skipped the beginning part but of you feel like you want to listen, jump to the beginning.




Meanwhile in the recently concluded TSG#88e Plenary meetings, there is a discussion on some of the timelines for Release-17 and Rel-18 moving. This graph below is from SP-200606.


In another piece of 3GPP news, RAN Working Group 6 (WG6 or RAN6) – responsible for the GERAN and UTRAN radio and protocol work - was formally closed.  No new features but specs will be maintained as necessary, of course.

Finally, here is a short video interview by 3GPP in which Balazs Bertenyi looks back at the recent TSG RAN Plenary e-meeting. He talks about the challenges, about IMT-2020, Rel-16 being just on time & the prospects for Rel-17.

Release 16 - RAN progress from 3GPPlive on Vimeo.


Related Posts:

Monday, 9 December 2019

5G Evolution with Matthew Baker, Nokia


I wrote a summary of CW (Cambridge Wireless) TEC conference here a couple of months back. The last session was on "Getting ready for Beyond-5G Era". Matthew Baker, Head of Radio Physical Layer & Co-existence Standardization, Nokia Bell Labs was one of the speakers. His talk provided a summary of 3GPP Rel-15 and then gave a nice and short summary of all the interesting things coming in Rel-16 and being planned for Rel-17. The slides from his presentation is embedded below:



Nokia also created a short video where Matthew talks about these new features. It's embedded below:



Related Posts:

Sunday, 27 October 2019

R&S Webinar on LTE-A Pro and evolution to 5G


Rohde & Schwarz recently uploaded a webinar video on their YouTube channel. I found it really useful. It's embedded below.

Topics covered:

  • LTE-M / NB-IoT
    • feMTC
    • UE Category M2
    • OTDOA based positioning
  • UE Categories
  • Unlicensed Spectrum Overview
  • LTE in Unlicensed Spectrum
    • LWA, LWIP
    • LAA, eLAA
    • Wi-Fi
    • LBT
    • LWA mobility
  • Carrier Aggregation Enhancements
  • Multi-user superposition transmission (MUST)
  • Single cell - point to multipoint transmission (SC-PTM)
    • SC-PTM Channel Structure
    • SC-PTM Channel Flow
  • Massive MIMO
  • V2X Overview
    • eNB scheduling - transmission mode 3
    • Distributed scheduling - transmission mode 4
    • Direct communication
  • LTE Advanced Pro (Release 15)
    • Further NB-IoT Enhancements
    • Even further enhanced MTC - eMTC4 (Rel-15)



Related Posts:

Sunday, 15 September 2019

Thursday, 29 August 2019

LTE / 5G Broadcast Evolution


It's been a while since I last wrote about eMBMS. A report by GSA last month identified:
- 41 operators known to have been investing in eMBMS
- 5 operators have now deployed eMBMS or launched some sort of commercial service using eMBMS
- GSA identified 69 chipsets supporting eMBMS, and at least 59 devices that support eMBMS


BBC R&D are testing the use of 4G/5G broadcast technology to deliver live radio services to members of the public as part of 5G RuralFirst - one of 6 projects funded under the UK Government’s 5G Phase 1 testbeds and trials programme (link).

A press release by Samsung Electronics back in May announced that it has signed an expansion contract with KT Corporation (KT) to provide public safety (PS-LTE) network solutions based on 3GPP standard Release 13 for 10 major metropolitan regions in South Korea including Seoul by 2020. One of the features of PS-LTE that the PR listed was LTE Broadcast (eMBMS): A feature which allows real time feeds to hundreds of devices simultaneously. It enables thousands of devices to be connected at once to transfer video, images and voice simultaneously using multicast technology

Dr. Belkacem Mouhouche – Samsung Electronics Chief Standards Engineer  and Technical Manager of 5G projects: 5G-Xcast and 5G-Tours Presented an excellent overview on this topic at IEEE 5G Summit Istanbul, June 2019. His presentation is embedded below.



5G-Xcast is a 5GPPP Phase II project focused on Broadcast and Multicast Communication Enablers For the Fifth Generation of Wireless Systems.

They have a YouTube channel here and this video below is an introduction to project and the problems it looks to address.




Further Reading:

Related posts:

Tuesday, 9 July 2019

3GPP 5G Standardization Update post RAN#84 (July 2019)

3GPP recently conducted a webinar with Balazs Bertenyi, Chairman of 3GPP RAN in which he goes through some of the key features for 5G Phase 2. The webinar also goes through the details of 5G Release-15 completion, status of Release-16 and a preview of some of Release-17 features.

Slides & video embedded below. Slides can be downloaded from 3GPP website here.







Related Posts:

Thursday, 21 March 2019

Update from 3GPP on LTE & 5G Mission Critical Communications


Adrian Scrase, CTO of ETSI & Head of MCC, 3GPP presented an update at BAPCO / CCE 2019 on Public Safety LTE and 5G. His presentation is embedded below.

There has been quite a progress in this area since I wrote my last post on Release-14 here.
This is the list of features that are planned for Release-16. There is also an update on Satellite communications but I will look at it separately in another post. Here are the slides:



The presentation can be directly downloaded from 3GPP website here.

Related posts:

Monday, 24 September 2018

5G New Radio Standards and other Presentations


A recent Cambridge Wireless event 'Radio technology for 5G – making it work' was an excellent event where all speakers delivered an interesting and insightful presentation. These presentations are all available to view and download for everyone for a limited time here.

I blogged about the base station antennas last week but there are other couple of presentations that stood out for me.


The first was an excellent presentation from Sylvia Lu from u-Blox, also my fellow CW Board Member. Her talk covered variety of topics including IoT, IIoT, LTE-V2X and Cellular positioning, including 5G NR Positioning Trend. The presentation is embedded below and available to download from Slideshare





The other presentation on 5G NR was one from Yinan Qi of Samsung R&D. His presentation looked at variety of topics, mainly Layer 1 including Massive MIMO, Beamforming, Beam Management, Bandwidth Part, Reference Signals, Phase noise, etc. His presentation is embedded below and can be downloaded from SlideShare.




Related Posts:

Thursday, 12 July 2018

Minimum Bandwidth Requirement for 5G Non-Standalone (NSA) Deployment

I was attending the IEEE 5G World Forum live-stream, courtesy of IEEE Tv and happen to hear Egil Gronstad, Senior Director of Technology Development and Strategy at T-Mobile USA. He said that they will be building a nationwide 5G network that will initially be based on 600 MHz band.


During the Q&A, Egil mentioned that because of the way the USA has different markets, on average they have 31 MHz of 600 MHz (Band 71). The minimum is 20 MHz and the maximum is 50 MHz.

So I started wondering how would they launch 4G & 5G in the same band for nationwide coverage? They have a good video on their 5G vision but that is of course probably going to come few years down the line.

In simple terms, they will first deploy what is known as Option 3 or EN-DC. If you want a quick refresher on different options, you may want to jump to my tutorial on this topic at 3G4G here.

The Master Node (recall dual connectivity for LTE, Release-12. See here) is an eNodeB. As with any LTE node, it can take bandwidths from 1.4 MHz to 20 MHz. So the minimum bandwidth for LTE node is 1.4 MHz.

The Secondary Node is a gNodeB. Looking at 3GPP TS 38.101-1, Table 5.3.5-1 Channel bandwidths for each NR band, I can see that for band 71


NR band / SCS / UE Channel bandwidth
NR Band
SCS
kHz
5 MHz
101,2 MHz
152 MHz
202 MHz
252 MHz
30 MHz
40 MHz
50 MHz
60 MHz
80 MHz
90 MHz
100 MHz
n71
15
Yes
Yes
Yes
Yes








30

Yes
Yes
Yes








60













The minimum bandwidth is 5MHz. Of course this is paired spectrum for FDD band but the point I am making here is that you need just 6.4 MHz minimum to be able to support the Non-Standalone 5G option.

I am sure you can guess that the speeds will not really be 5G speeds with this amount of bandwidth but I am looking forward to all these kind of complaints in the initial phase of 5G network rollout.

I dont know what bandwidths T-Mobile will be using but we will see at least 10MHz of NR in case where the total spectrum is 20 MHz and 20 MHz of NR where the total spectrum is 50 MHz.

If you look at the earlier requirements list, the number being thrown about for bandwidth was 100 MHz for below 6 GHz and up to 1 GHz bandwidth for spectrum above 6 GHz. Don't think there was a hard and fast requirement though.

Happy to hear your thoughts.

Friday, 9 February 2018

Tuesday, 16 January 2018

3GPP-VRIF workshop on Virtual Reality Ecosystem & Standards in 5G

Its been a year since I last posted about Augmented / Virtual Reality Requirements for 5G. The topic of Virtual Reality has since made good progress for 5G. There are 2 technical reports that is looking at VR specifically. They are:

The second one is work in progress though. 

Anyway, back in Dec. 3GPP and Virtual Reality Industry Forum (VRIF) held a workshop on VR Ecosystem & Standards. All the materials, including agenda is available here. The final report is not there yet but I assume that there will be a press release when the report is published.

While there are some interesting presentations, here is what I found interesting:

From presentation by Gordon Castle, Head of Strategy Development, Ericsson





From presentation by Martin Renschler, Senior Director Technology, Qualcomm


For anyone wanting to learn more about 6 degrees of freedom (6- DoF), see this Wikipedia entry. According to the Nokia presentation, Facebook’s marketing people call this “6DOF;” the engineers at MPEG call it “3DOF+.”
XR is 'cross reality', which is any hardware that combines aspects of AR, MR and VR; such as Google Tango.

From presentation by Devon Copley, Former Head of Product, Nokia Ozo VR Platform
Some good stuff in the pres.

From presentation by Youngkwon Lim, Samsung Research America; the presentation provided a link to a recent YouTube video on this presentation. I really liked it so I am embedding that here:



Finally, from presentation by Gilles Teniou, SA4 Vice chairman - Video SWG chairman, 3GPP





You can check and download all the presentations here.

Further Reading:

Sunday, 7 January 2018

Satellites & Non-terrestrial networks (NTN) in 5G


Satellites has been an area of interest of mine for a while as some of you know that I used to work as Satellite Applications & Services Programme manager at techUK. I have written about how I see satellites complementing the mobile networks here and here.

Its good to see that there is some activity in 3GPP going on about satellites & Non-terrestrial networks (NTN) in 5G. While there are some obvious roles that satellites can play (see pic above), the 5G work is looking to cover a lot more topics in details.

3GPP TR 38.913: Study on scenarios and requirements for next generation access technologies looks at 12 different scenarios, the ones relevant to this topic ate Air to ground, Light aircraft and Satellite to terrestrial.
3GPP TR 38.811: Study on New Radio (NR) to support non terrestrial networks (Release 15) covers this topic a bit more in detail. From looking at how satellites and other aerial networks work in general, it looks at the different NTN architecture options as can be seen above.
People looking to study this area in detail should probably start looking at this TR first.

3GPP also released a news item on this topic last week. It also refers to the above TR and a new one for Release 16. The following from 3GPP news:

The roles and benefits of satellites in 5G have been studied in 3GPP Release 14, leading to the specific requirement to support satellite access being captured in TS 22.261 - “Service requirements for next generation new services and markets; Stage 1”, recognizing the added value that satellite coverage brings, as part of the mix of access technologies for 5G, especially for mission critical and industrial applications where ubiquitous coverage is crucial.

Satellites refer to Spaceborne vehicles in Low Earth Orbits (LEO), Medium Earth Orbits (MEO), Geostationary Earth Orbit (GEO) or in Highly Elliptical Orbits (HEO).

Beyond satellites, Non-terrestrial networks (NTN) refer to networks, or segments of networks, using an airborne or spaceborne vehicle for transmission. Airborne vehicles refer to High Altitude Platforms (HAPs) encompassing Unmanned Aircraft Systems (UAS) - including tethered UAS, Lighter than Air UAS and Heavier than Air UAS - all operating at altitude; typically between 8 and 50 km, quasi-stationary.

These Non-terrestrial networks feature in TSG RAN’s TR 38.811 “Study on NR to support non-terrestrial networks”. They will:
  • Help foster the 5G service roll out in un-served or underserved areas to upgrade the performance of terrestrial networks
  • Reinforce service reliability by providing service continuity for user equipment or for moving platforms (e.g. passenger vehicles-aircraft, ships, high speed trains, buses)
  • Increase service availability everywhere; especially for critical communications, future railway/maritime/aeronautical communications
  • Enable 5G network scalability through the provision of efficient multicast/broadcast resources for data delivery towards the network edges or even directly to the user equipment

The objective of TR 38.811 is to study channel models, to define the deployment scenarios as well as the related system parameters and to identify and assess potential key impact areas on the NR. In a second phase, solutions for the identified key impacts on RAN protocols/architecture will be evaluated and defined.

A second study item, the “Study on using Satellite Access in 5G” is being addressed in Working Group SA1.  It shall lead to the delivery of the corresponding Technical Report TR 22.822 as part of Release 16.

This study will identify use cases for the provision of services when considering the integration of 5G satellite-based access components in the 5G system. When addressing the integration of (a) satellite component(s), use cases will identify new potential requirements for 5G systems addressing:
  • The associated identification of existing / planned services and the corresponding modified or new requirements
  • The associated identification of new services and the corresponding requirements
  • The requirements on set-up / configuration / maintenance of the features of UE’s when using satellite components related features as well for other components from the 5G system
  • Regulatory requirements when moving to (or from) satellite from (or to) terrestrial networks

Friday, 22 December 2017

The small detail about 5G you may have missed...


While going through the latest issue of CW Journal, I came across this article from Moray Rumney, Lead Technologist, Keysight. It highlights an interesting point that I missed out earlier that 5G also includes all LTE specifications from Release 15 onwards.

I reached out to our CW resident 3GPP standards expert Sylvia Lu to clarify and received more details.
There is a whole lot of detail available in RP-172789.zip. Here RIT stands for Radio Interface Technology and SRIT for Set of RIT.

In fact at Sylvia clarified, NB-IoT and Cat-M will also be part of the initial IMT-2020 submissions early next year. Thanks Sylvia.


There is also this nice presentation by Huawei in ITU (here) that describes Requirements, Evaluation Criteria and Submission Templates for the development of IMT-2020. It is very helpful in understanding the process.

Coming back to the question I have often asked (see here for example),
1. What features are needed for operator to say they have deployed 5G, and
2. How many sites / coverage area needed to claim 5G rollout

With LTE Release-15 being part of 5G, I think it has just become easy for operators to claim they have 5G.

What do you think?

Tuesday, 26 September 2017

5G Dual Connectivity, Webinar and Architecture Overview

One of the things that will come as a result of NSA (Non-StandAlone) architecture will be the option for Dual Connectivity (DC). In fact, DC was first introduced in LTE as part of 3GPP Release 12 (see 3G4G Small Cells blog entry here). WWRF (Wireless World Research Forum) has a good whitepaper on this topic here and NTT Docomo also has an excellent article on this here.

A simple way to understand the difference between Carrier Aggregation (CA) and Dual Connectivity (DC) is that in CA different carriers are served by the same backhaul (same eNB), while in DC they are served by different backhauls (different eNB or eNB & gNB).


We have produced a short video showing different 5G architectures, looking mainly at StandAlone (SA) and Non-StandAlone (NSA) architectures, both LTE-Assisted and NR-Assisted. The video is embedded below:



Finally, 3GPP has done a short webinar with the 3GPP RAN Chairman Balazs Bertenyi explaining the outcomes from RAN#77. Its available on BrightTalk here. If you are interested in the slides, they are available here.

Related posts: