Showing posts with label Interference Management. Show all posts
Showing posts with label Interference Management. Show all posts

Monday, 13 June 2022

Tutorial on 4G/5G Mobile Network Uplink Working and Challenges

People involved with mobile technology know the challenges with uplink for any generation of mobile network. With increasing data rates in 4G and 5G, the issue has become important as most of the speeds are focused on download but upload speeds are quite poor.

People who follow us across our channels know of many of the presentations we share across them from various sources, not just ours. One such presentation by Peter Schmidt looked at the uplink in details. In fact we recommend following him on Twitter if you are interested in technical details and infrastructure.

The details of his talk as follows:

The lecture highlights the influences on the mysterious part of mobile communications - sources of interference in the uplink and their impact on mobile communication as well as practices for detecting sources of RF interference.

The field strength bar graph of a smartphone (the downlink reception field strength) is only half of the truth when assessing a mobile network coverage. The other half is the uplink, which is largely invisible but highly sensitive to interference, the direction from the end device to the base stations. In this lecture, sources of uplink interference, their effects and measurement and analysis options will be explained.

Cellular network uplink is essential for mobile communication, but nobody can really see it. The uplink can be disrupted by jammers, repeaters, and many other RF sources. When it is jammed, mobile communication is limited. I will show what types of interference sources can disrupt the uplink and what impact this has on cellular usage and how interference hunting can be done.

First I explain the necessary level symmetry of the downlink (from the mobile radio base station - eNodeB to the end device) and the uplink (from the end device back to the eNodeB). Since the transmission power of the end device and eNodeB are very different, I explain the technical background to achieving symmetry. In the following I will explain the problems and possibilities when measuring uplink signals on the eNodeB, it is difficult to look inside the receiver. In comparison, the downlink is very easy to measure, you can see the bars on your smartphone or you can use apps that provide detailed field strength information etc. However, the uplink remains largely invisible. However, if this is disturbed on the eNodeB, the field strength bars on the end device say nothing. I will present a way of observing which some end devices bring on board or can be read out of the chipset with APPs. The form in which the uplink can be disrupted, the effects on communication and the search for uplink sources of disruption will complete the presentation. I will also address the problem of 'passive intermodulation' (PIM), a (not) new source of interference in base station antenna systems, its assessment, measurement and avoidance.

The slides are available here. The original lecture was in German, a dubbed video is embedded below:

If you know of some other fantastic resources that we can share with our audience, please feel free to add them in the comments.

Related Posts

Tuesday, 14 October 2014

'Real' Full Duplex (or No Division Duplex - NDD?)

We all know about the two type of transmission schemes which are FDD and TDD. Normally, this FDD and TDD schemes are known as full duplex schemes. Some people will argue that TDD is actually half-duplex but what TDD does is that it emulates a full duplex communication over a half duplex communication link. There is also a half-duplex FDD, which is a very interesting technology and defined for LTE, but not used. See here for details.


One of the technologies being proposed for 5G is referred to as Full Duplex. Here, the transmitter and the receiver both transmit and receive at the same frequency. Due to some very clever signal processing, the interference can be cancelled out. An interesting presentation from Kumu networks is embedded below:



The biggest challenge is self-interference cancellation because the transmitter and receiver are using the same spectrum and will cause interference to each other. There have been major advances in the self-interference cancellation techniques which could be seen in the Interdigital presentation embedded below:



Monday, 12 May 2014

Improvement in Interference Rejection and Suppression Technology


In the last post where I talked about FeICIC I mentioned about the advanced Interference rejecting receivers, here is one very good article from NTT Docomo technical journal. The following is from this article:

Rel. 11 LTE has introduced MMSE-Interference Rejection Combining (MMSE-IRC) receivers as a mobile terminal interference rejection and suppression technology to mitigate the effects of these interference signals and increase user throughput even in areas that are recently experiencing high interference. Rel. 8 LTE receivers support MIMO transmission technology, so receivers were equipped with at least two antennas since it was first introduced. The MMSE-IRC receivers in Rel. 11 LTE, are able to use the multiple receiver antennas to create points, in the arrival direction of the interference signal, where the antenna gain drops (“nulls”) and use them to suppress the interference signal (Figure 1). The terminal orients a null toward the main interference signal, which is the signal that particularly affects the degradation of throughput, thereby improving the Signal-to-Interferenceplus-Noise power Ratio (SINR) and improving throughput performance.

However, with the original MIMO multiplexed transmission, which realized high throughput using multiple transmit and receiver antennas, the receiver antennas are used to separate the signals between layers, so interference from adjacent cells cannot be suppressed and throughput cannot be improved, particularly for mobile terminals with two receiver antennas.

On the other hand, the 3GPP has already included interference rejection and suppression technology in performance specifications for mobile terminals equipped with W-CDMA/High-Speed Downlink Packet Access (HSDPA) in Rel. 7 of the Universal Mobile Telecommunications System (UMTS). With W-CDMA, receivers normally use one receiver antenna and perform Rake reception, but the effects of multipath interference degrading reception performance was an issue.

Thus, the following three receiver extensions were studied and introduced.
• Type 1/1i extends the Rake receiver to use two antennas.
• Type 2/2i extends the Rake receiver to an MMSE receiver that suppresses multipath and adjacent-cell interference.
• Type 3/3i extends the MMSE interference-suppressing receiver defined in Type 2/2i to use two receiver antennas.

The functional extensions in receivers in Rel.7 UMTS and Rel. 11 LTE are summarized in Table 1. The MMSE-IRC receivers in Rel. 11 LTE incorporate receiver algorithms that are generally equivalent to those in the Type 3/3i receivers introduced in WCDMA/HSDPA. However, in the WCDMA/HSDPA receivers they also operate to suppress inter-coding interference within a cell. There is no interference within a cell in LTE systems, so in the MMSE-IRC receivers introduced in Rel. 11 LTE, they operate to suppress interference arriving from adjacent cells.

From my understanding, a similar approach is being proposed for the Mobile Relay Node (MRN)

Anyway, the complete article is as follows:


Thursday, 1 May 2014

Further enhanced Inter-Cell Interference Coordination (FeICIC)


Recently while delivering a training, I realised that this is a topic that I haven't covered in the blog before, even though I have been talking about it for a while. FeICIC has been introduced in Release-11 and there are a few enhancements as shown above. The main being that instead of an Almost Blank Subframe (ABS) with no other information except for the reference signals, now there is a possibility of reduced power ABS where the data on PDSCH can still be transmitted but on a reduced power level. This would ensure that the capacity of the interferer is not wasted.


Another enhancement on which FeICIC depends on are the advanced receivers (should do a post on it sometime soon). Another feature that allows a better probability of reception is the Transmission Mode 9 (TM9 - see blog post here)

An interesting comment that I received on my Deployments Dilemma Post is also relevant to the discussion here:

The ground reality is generally a lot different than theory. Metrocells often face interference not just from Macrocells but also other Metrocells. The ABS patterns are not just straightforward Macro to pico case but even pico to pico and multiple macros to pico.
Until all the handsets and other dongles could be upgraded with advanced interference cancellation receivers, there would be many scenarios where deployment option 2 may be chaotic. Deployment option 1 can serve the users well in the meantime. 
We can sacrifice efficiency for reliability in the meantime.

I recently posted the Small Cells Research Bible on the Small Cells blog here, the following is the Interference Management part that would help anyone willing to learn more about this feature.


Saturday, 26 April 2014

LTE Deployment Dilemma


Earlier this month during our Cambridge Wireless Small Cells SIG event, I presented a small quiz in the final session. The first part of the quiz was titled "LTE Deployment Dilemma" and it generated lots of interesting discussions. After the event, I did a more detailed writeup of that and Cisco has kindly published it in their SP Mobility Blog. Since many people have told me that they cannot anonymously post comments there, I am now bringing it to this blog. I am interested in hearing what others think.

Here is the complete post

Monday, 15 April 2013

Cell Range Expansion (CRE)



The intention of the Pico Cells is to offload traffic from the Macro cells to increase the system capacity. As a result, when Macro cell becomes overloaded, it would make sense to offload the MUE’s in the vicinity of the Pico cell to it. This can/should be done even if the UE is receiving a better signal from the Macro cell. The expansion of the range of the Pico cell is termed as CRE or Cell Range expansion.

To make sure that the UE does not fail in the handover process, the Time domain ICIC should be used and Macro cell should use ABS. The UE’s can be configured to do measurements on the Pico when the Macro is using ABS. The MUE now reports the Measurement reports to the Macro and are handed over to the Pico to act as PUE.

Monday, 8 April 2013

Interference Management in HetNets


Interference Management is a big topic in HetNet's. An earlier blog post here on similar topic was very popular. The above picture shows a Heterogeneous cellular network topology incorporating different forms of small cell deployments as an overlay on the macrocell network. Small cells would generally use secure tunnels back to the core network using existing broadband infrastructure. Whereas in the HCS (Hierarchical Cell Structures), different layers have different frequencies, thereby not causing radio frequency interference, in HetNets same frequencies can be used between different layers. The same frequencies can cause radio frequency Interference and necessitates the use of advanced Interference avoidance techniques.

CTTC has another interesting presentation on Interference Management in HetNets that I am embedding below as slides and video: