Showing posts with label Relays. Show all posts
Showing posts with label Relays. Show all posts

Friday 2 August 2013

Mobile Relay Nodes (MRN) in Rel-12


Interesting article in IEEE Comms Magazine (embedded below) about the Moving Relay Node (MRN). 3GPP has done a study on a similar topic available in 3GPP TR 36.836. To make the case for the MRN they provide a reference scenario of high speed train

The TGV Eurostar in Europe is 393 m long, moves at speed reaching 300 km/h. The Shinkansen in Japan has similar characteristics, with 480 m long, 300 km/h of commercial speed. The high speed train in China is 432 m long moving at speed reaching 350 km/h.

Due to fast moving and well shield carriage, the network in high speed train scenario faces severe Doppler frequency shift and high penetration loss, reduced handover success rate and increased power consumption of UEs.


To improve the coverage of the train deployment, access devices can be mounted on the high speed train, providing a wireless backhaul connection via the eNBs along the railway by outer antenna e.g. installed on top of the train, and wireless connectivity to the UEs inside carriages by inner antenna installed inside.

MRN is a good solution but when it has to operate alongside with many other technologies can pose challenges. The IEEE article summarises it as follows:

Furthermore, new challenges regarding interference management arise due to the use of MRNs. As the distance between an MRN and the vehicular UE served by it is very short, the MRN and the vehicular UE can communicate with each other using very low power. In addition, the VPL can further help to dampen the signal of the MRN access link that propagates out from the vehicle. Thus, compared to direct transmission, the use of MRNs generates less interference from the access link, for both downlink and uplink, to UE outside the vehicles. This is appreciated in a densely deployed urban scenario where link availabilities are usually dependent on interference rather than coverage. For the backhaul link, however, the problem becomes complicated, as interference is expected both between different MRN backhaul links, and between MRN backhaul links and macro UE. The use of predictor antennas can improve CSI accuracy to enable the use of advanced interference avoidance and cancellation schemes for the backhaul links. Nevertheless, whether enhancements on the current intercell interference coordination (ICIC) framework in LTE are needed to support the use of MRNs still requires further investigation.

I have been thinking of possible use of 8x8 MIMO, this can be one possible scenario where the network may use 8x8 or even 4x4. Anyway, the complete article is embedded below:




Monday 18 June 2012

3GPP Release-12 and beyond


3GPP Recently held a workshop on "Release 12 and Onward" to identify common requirements for future 3GPP radio access technologies. The goal of the workshop is to investigate what are the main changes that could be brought forward to evolve RAN toward Release 12 and onward. It is recommended that presentations in the workshop include views on:
- Requirements
- Potential technologies
- Technology roadmap for Releases 12, 13 and after

The discussions from the workshop should be used to define the work plan for Release 12 and onward in TSG-RAN.

The list of presentations and links, etc. are below and I have also embedded the Summary and Draft report, both of which can be downloaded from 3GPP website or slideshare. Here is a list of different topics and the presentations that covered them:


AdHoc Networks
AdHoc Networks - RWS-120035


Antennas, Beamforming, Transmitters, Receivers
3D-beamforming - RWS-120002
Vertical sectorization/3D beamforming via AAS - RWS-120005
Advanced receivers and joint Tx/Rx optimisation - RWS-120005
Network assistance for IC receivers - RWS-120005
Support of Active Antenna Systems - RWS-120006
Advanced transmitter beamforming - RWS-120010
Advanced receiver cancellation - RWS-120010
Vertical and 3D beamforming - RWS-120011
MIMO Enhancements - RWS-120014
New antenna configurations and 3D MIMO - RWS-120014
UE AAS (Active Antenna System) [Detailed] - RWS-120015 / RWS-120049
Cloud of Antennas (CoA) Concept - RWS-120016
Support of Massive MIMO Technology - RWS-120016
Full Dimension MIMO (FD-MIMO) System [Detailed] - RWS-120021 / RWS-120046
Cloud-RAN: Benefits and Drawbacks - RWS-120021 / RWS-120046
Further Enhanced Receivers - RWS-120022
Multiple antenna evolution - RWS-120025
3D beamforming - RWS-120026
Vision of 3D MIMO - RWS-120029
Massive MIMO & 3D MIMO - RWS-120034
Potential MIMO Enhancements - RWS-120035
Advanced Antenna Technology - RWS-120035
DL MIMO Enhancement - RWS-120037
Performance Requirement for 8Rx at eNB - RWS-120037
UE Receiver Enhancements - RWS-120039
DL MU-MIMO Enhancement - RWS-120039
Enhancement of MIMO, CoMP - RWS-120040
Advanced MIMO - RWS-120040
MIMO and COMP - RWS-120041
Role of Advanced Receivers - RWS-120041
Advanced Interference Handling - RWS-120041
Interference Suppression Subframes (ISS) and IRC Receiver [Detailed] - RWS-120051


Applications (Apps)
Efficiency for diverse small data applications - RWS-120011
Device Service/Application Awareness - RWS-120018
I-Net:”I”-centric mobile network design philosophy - RWS-120024
Application Aware Comm - RWS-120036 / RWS-120050


Backhaul and Relay
Relay backhaul enhancement - RWS-120011
LTE Backhaul - RWS-120013
Relay - RWS-120025
CoMP, backhaul and X2 interface - RWS-120027 / RWS-120048
Mobile Relay And Relay Backhaul Enhancement - RWS-120029


Baseband
Baseband resource pooling and virtualization - RWS-120011


Capacity and Coverage
Higher system capacity - RWS-120010
Capacity for Mobile Broadband: Requirements and Candidate technologies - RWS-120012
Increase N/W capacity by 1000 times - RWS-120020
Coverage Enhancement - RWS-120037
Capacity Enhancement - RWS-120038 / RWS-120047
Cell-edge Throughput Improvement - RWS-120038 / RWS-120047


Carrier Aggregation, Flexible Bandwidths and Multiflow
LTE multiflow / Inter-site CA - RWS-120002
LTE/HSDPA Carrier Aggregation - RWS-120002
Multiflow Enhancements - RWS-120002
Multi-Stream Aggregation - RWS-120006
Provide mechanisms for Flexible Bandwidth Exploitation - RWS-120008
Carrier aggregation enhancement - RWS-120019
Inter-eNB Carrier Aggregation - RWS-120021 / RWS-120046
Evolution of Carrier Aggregation - RWS-120036 / RWS-120050
CA of Alternative Spectra - RWS-120042


Cells, Carriers, C/U Planes
C/U plane split & Phantom cell - RWS-120010
Phantom cell by single/separate nodes - RWS-120010
Phantom cell: Other topics - RWS-120010
New Carrier Type for Primary Component Carrier - RWS-120011
Flexible/Reconfigurable Cells - RWS-120023
New carrier-type (NCT) enhancements - RWS-120026
Amorphous cells - RWS-120034
New Carrier Types - RWS-120035
Non-Orthogonal Access - RWS-120039
Dynamic Area Construction for UE - RWS-120040


Cognitive Radio
Cognitive radio - RWS-120034
Cognitive Networking - RWS-120036 / RWS-120050


Coordinated MultiPoint (CoMP)
CoMP Enhancements - RWS-120014
CoMP/ICIC enhancement - RWS-120019
CoMP Enhancements - RWS-120023
CoMP enhancements - RWS-120026
CoMP Technologies - RWS-120027 / RWS-120048
Enhanced CoMP - RWS-120029
Potential CoMP Enhancements - RWS-120035
CoMP - RWS-120037
CoMP Enhancement for Indoor Environment - RWS-120040
Overhauling DL CoMP - RWS-120042


Device, Handsets, UE's
Additional UE Enhancements - RWS-120018
Coordination : Multi-mode UE - RWS-120024


D2D / Device-to-Device
Device-to-Device - RWS-120003
LTE Device to Device - Proximity Based Services - RWS-120004
LTE device to device - RWS-120007
LTE direct communication - RWS-120007
Device-to-Device Communications - RWS-120014
D2D Discovery/Communication - RWS-120016
3GPP Proximity Services (ProSe) / D2D - RWS-120022
Device-to-Device communications - RWS-120026
Device-to-Device communication - RWS-120036 / RWS-120050


Data Rates and Throughputs
Higher data rate and user-experienced throughput - RWS-120010
Fairness of user throughput - RWS-120010


Deployments
LTE in Local Area Deployments & Enhancements - RWS-120004
Energy Efficient Local Area Deployments - RWS-120004
Scaling for Mass Deployment - RWS-120008
Flexible and cost-efficient NW deployments - RWS-120010
Considerations on dense NW deployment - RWS-120019


Energy Consumption, Efficiency and Savings
Energy efficiency - RWS-120005
Reduce energy consumption - RWS-120008
Energy Saving - RWS-120014
UE Power Saving - RWS-120036 / RWS-120050
NB Power Saving - RWS-120036 / RWS-120050
Energy Saving Enhancements with CoMP - RWS-120040
Energy Saving with Centralized eNB - RWS-120040


Herogeneous Networks (HetNets)
Optimisation of Het Nets performance - RWS-120005
Improved Support for Heterogeneous Networks - RWS-120006
Network hyper-densification: LTE HetNet2.0 - RWS-120007
Multi-layer HetNet Deployments - RWS-120016
HetNet for HSPA - RWS-120017
HetNet Enhancements - RWS-120023
HetNet Mobility - RWS-120029
Small cells & HetNet - RWS-120031
HetNet - RWS-120037
HetNet Enhancements for HeNB - RWS-120040


HSDPA / HSUPA / HSPA+ Enhancements
HSPA UL Enhancements - RWS-120003
Uplink Enhancements - RWS-120006
UMTS evolution: enhancing CS voice on DCH - RWS-120007
High Speed Packet Access - RWS-120012
HSPA RRM enhancement - RWS-120024
HSPA+ further evolution - RWS-120034


Interworking (HSPA, LTE)
Coordination : HSPA/LTE e-interworking - RWS-120024
Inter-RAT Coordination/CA - RWS-120037


Local-Area Access (Small Cells)
Local-Area Access - RWS-120003
LTE in Local Area Deployments & Enhancements - RWS-120004
LTE Local Area Enhancements - RWS-120004
LTE Local Area Enhancement Areas - RWS-120004
enhanced Local Area (eLA) - RWS-120010
Local Area Enhancements - RWS-120022
Improved Local Area Mobility - RWS-120022


LTE
LTE for Nomadic and Fixed Use - RWS-120018
E-PDCCH enhancement - RWS-120019
Efficiency : Paging Optimization - RWS-120024


LTE Hotspot and Indoor Enhancements (LTE-Hi)
Hotspot and Indoor Enhancements (LTE-Hi) - RWS-120006
Hotspot/indoor Scenario (LTE-Hi) - RWS-120025
Indoor & Hotspot Enhancements (LTE-Hi) [Detailed] - RWS-120029
Possible Study Items for Indoor Environment - RWS-120040


M2M / Machine Type Communications (MTC)
Machine Type Communications - RWS-120003
Improved Support for MTC - RWS-120006
Machine-to-Machine: The Internet of Things - RWS-120014
Machine Type Communications: a new ecosystem - RWS-120014
Wireless MTC and RAN optimizations for MTC - RWS-120016
Low-Cost MTC UE - RWS-120017
MTC + eDDA (enhanced Diverse data application) - RWS-120019
Further Enhancements to Support MTC - RWS-120023
MTC - RWS-120025
MTC enhancements - RWS-120026
M2M - RWS-120029
MTC and migration of traffic from 2G - RWS-120031
Machine Type Communications enhancements - RWS-120034
Machine Type Communications - RWS-120035
Extension triggered by growing M2M traffic - RWS-120038 / RWS-120047
LTE-based M2M - RWS-120041


MBMS / eMBMS
eMBMS Enhancements - RWS-120007
eMBMS - RWS-120013
UHD Multimedia Broadcast/Multicast Service - RWS-120036 / RWS-120050


Mesh Networks
Mesh Networks - RWS-120018


Network Density
Network density: Scenarios - RWS-120010


Network Architecture and Operation
Easier network operation, tolerance to failure - RWS-120005
System Architecture - RWS-120032
Evolution of LTE Networks - RWS-120034


Positioning
Positioning Enhancements - RWS-120006


Public Safety
Public Safety - RWS-120030
Operation of Public Safety System via LTE - RWS-120031
Public safety’s future in LTE [Detailed] - RWS-120033


Self Organising Networks (SON) and Minimisation of Drive Testing (MDT)
SON Evolution - RWS-120002
Enhanced MDT - RWS-120011
Network Self-Optimisation - RWS-120014
SON and MDT - RWS-120017
HetNet SON - RWS-120029
MDT & Energy Saving - RWS-120029
Autonomous Interference Coordination - RWS-120029
Large scale multi-layer centralized cooperative radio - RWS-120034
MDT Enhancement - RWS-120036 / RWS-120050
SON Enhancements - RWS-120036 / RWS-120050
MDT and eDDA - RWS-120041


Small Cells (HNB/HeNB)
UMTS evolution: small cells - RWS-120007
Wide & Local area enhancements - RWS-120010
Small Cells - RWS-120014
Small Cell Enhancement in Rel-12 - RWS-120021 / RWS-120046
HeNB Enhancement - RWS-120036 / RWS-120050
Efficient Usage of Macro and Small Cells - RWS-120038 / RWS-120047
Low-cost Low Power Nodes (LC-LPN) - RWS-120038 / RWS-120047
Small-Cell Improvements: System Aspects - RWS-120041


Spectrum
Enhanced spectrum efficiency - RWS-120005
Spectrum efficiency: eLA topics - RWS-120010
Scenarios for spectrum extension - RWS-120010
Spectrum and spectrum usage - RWS-120012
Wider Spectrum Utilization - RWS-120016
Spectral efficiency for LTE - RWS-120017
New Spectrum for Mobile Broadband Access - RWS-120021 / RWS-120046
Enabling Technologies for New Spectrum - RWS-120021 / RWS-120046
Radio Propagation - RWS-120021 / RWS-120046
Opportunistic Use of Unlicensed Spectrum for D2D Local Traffic - RWS-120023
Flexible Spectrum Utilization - RWS-120024
Spectrum Related: New Bands And CA Band Combinations - RWS-120029
Spectrum - RWS-120032
Hybrid access scheme - RWS-120034
Spectrum - RWS-120035
Spectrum and Transmission Efficiency - RWS-120039
Spectrum-Agile LTE - RWS-120041


TDD / TD-LTE
TD-LTE - RWS-120014
TDD-specific aspects - RWS-120014
TDD adaptive reconfiguration - RWS-120034
Efficient Usage of Dual Duplex Modes - RWS-120038 / RWS-120047
LTE TDD Small-Cell versus WiFi - RWS-120041


Testing
Testing and Certification - RWS-120022


Traffic and Signalling Overhead
Efficient support of diverse traffic characteristics - RWS-120005
Efficient support for variety of traffic types - RWS-120010
Enhancements for variety of traffic types - RWS-120010
Very high traffic (and signalling) scenarios - RWS-120017
Control Plane Overhead Reduction - RWS-120021 / RWS-120046
Further Enhancements to Support Diverse Data Applications - RWS-120023
Efficiency : Small data services in high mobility - RWS-120024


User Experience
Improve User experience - RWS-120009
User Challenges - RWS-120032


Video streaming, call
RAN Enhancements for Video Streaming QoE - RWS-120023
RAN Enhancements for Internet Video Call - RWS-120023


WiFi / WLAN
Cooperation between LTE/HSPA and WiFi - RWS-120005
Unlicensed spectrum: LTE & WLAN - RWS-120007
LTE integration with other RATs - RWS-120014
WiFi integration: For Beyond Rel-12 - RWS-120017
LTE-WLAN Interworking - RWS-120023
Coordination With WiFi - RWS-120029
Smarter opportunistic usage of Wi-Fi - RWS-120031
LTE TDD Small-Cell versus WiFi - RWS-120041


Others
Other identified techniques for LTE - RWS-120005
Efficient Transactions - RWS-120035
Link Enhancement Considerations - RWS-120035
Intra-RAT cooperation / Inter-RAT cooperation - RWS-120036 / RWS-120050


Here is the summary from the workshop:

Complete list of Presentations

RWS-120002Release 12 and beyond for C^4 (Cost, Coverage, Coordination with small cells and Capacity)NSN
RWS-120003Views on Rel-12Ericsson & ST-Ericsson
RWS-120004LTE evolving towards Local Area in Release 12 and beyondNokia Corporation
RWS-120005Views on Release 12Orange
RWS-120006Views on Rel-12 and onwards for LTE and UMTSHuawei Technologies, HiSilicon
RWS-1200073GPP RAN Rel-12 & BeyondQualcomm
RWS-120008New Solutions for New Mobile Broadband ScenariosTelefonica
RWS-120009Telecom Italia requirements on 3GPP evolutionTelecom Italia
RWS-120010Requirements, Candidate Solutions & Technology Roadmap for LTE Rel-12 OnwardNTT DOCOMO, INC.
RWS-120011Where to improve Rel-12 and beyond: Promising technologiesNEC
RWS-120012Deutsche Telekom Requirements and Candidate TechnologiesDeutsche Telekom
RWS-120013Release 12 Prioritization ConceptsDish Networks
RWS-120014Towards LTE RAN EvolutionAlcatel-Lucent
RWS-120015UE AAS (Active Antenna System)Magnolia Broadband
RWS-120016Requirements and Technical Considerations for RAN Rel.12 & OnwardsFujitsu Limited
RWS-120017Operator requirements on future RAN functionalityTeliaSonera
RWS-120018AT&T View of Release 12 in the North America MarketplaceAT&T
RWS-120019Major drivers, requirements and technology proposals for LTE Rel-12 OnwardPanasonic
RWS-120020Efficient spectrum resource usage for next-generation N/WSK Telecom
RWS-120021Technologies for Rel-12 and onwardsSamsung Electronics
RWS-120022LTE Rel-12 and BeyondRenesas Mobile Europe
RWS-120023LTE Rel-12 and Beyond: Requirements and Technology ComponentsIntel
RWS-120024Considerations on further enhancement and evolution of UMTS/LTE network in R12 and onwardsChina Unicom
RWS-120025Views on LTE R12 and BeyondCATT
RWS-120026A proposal for potential technologies for Release 12 and onwardsETRI
RWS-120027A view on requirements on Rel-12 and onwards from an operator’s viewpointSoftbank Mobile
RWS-120028India market Requirements for Rel. 12 and beyondCEWiT
RWS-120029Views on LTE Rel-12 & BeyondCMCC
RWS-120030LTE addressing the needs of the Public Safety CommunityIPWireless
RWS-120031Vodafone view on 3GPP RAN Release 12 and beyondVodafone
RWS-120032An Operator’s View of Release 12 and BeyondSprint
RWS-120033Public Safety Requirements for Long Term Evolution REL-12U.S. Department of Commerce
RWS-120034Views on 3GPP Rel-12 and BeyondZTE
RWS-120035Considerations for LTE Rel-12 and beyondMotorola Mobility
RWS-120036LG’s view on evolution of LTE in Release 12 and beyondLG Electronics
RWS-120037Views on REL-12 and OnwardsChina Telecom
RWS-120038KDDI’s Views on LTE Release 12 onwardsKDDI
RWS-120039Evolving RAN Towards Rel-12 and BeyondSHARP
RWS-120040Views on enhancement of system capacity and energy efficiency toward Release12 and onwardHitachi
RWS-120041Beyond LTE-A: MediaTek’s view on R12MediaTek
RWS-120042Potential Technologies and Road Map for LTE Release 12 and BeyondITRI, HTC
RWS-120043New concept to maximize the benefit of interference rejection at the UE receiver: interference suppression subframes (ISS)Broadcom
RWS-120046Technologies for Rel-12 and onwardsSamsung Electronics
RWS-120047KDDI’s Views on LTE Release 12 onwardsKDDI
RWS-120048A view on Rel-12 and onwards from an operator’s viewpointSoftbank Mobile
RWS-120049UE AAS (Active Antenna System)Magnolia Broadband
RWS-120050LG’s view on evolution of LTE in Release 12 and beyondLG Electronics
RWS-120051New concept to maximize the benefit of interference rejection at the UE receiver: interference suppression subframes (ISS)Broadcom

More technically minded people want to explore the 3GPP website for the workshop links here: http://3gpp.org/ftp/workshop/2012-06-11_12_RAN_REL12/

Draft report that gives more insight into the presentations as follows:


Monday 9 April 2012

Radio relay technologies in LTE-Advanced

The following is from NTT Docomo Technical journal

Three types of radio relay technologies and their respective advantages and disadvantages are shown in Figure 1. 
A layer 1 relay consists of relay technology called a booster or repeater. This is an Amplifier and Forward (AF) type of relay  technology by which Radio Frequency (RF) signals received on the downlink from the base station are amplified and transmitted to the mobile station. In a similar manner, RF signals received on the uplink from the mobile station are amplified and transmitted to the base station. The equipment functions of a layer 1 relay are relatively simple, which makes for low-cost implementation and short processing delays associated with relaying. With these  features, the layer 1 relay has already found widespread use in 2G and 3G mobile communication systems. It is being deployed with the aim of improving coverage in mountainous regions, sparsely populated areas and urban areas as well as in indoor environments.


The RF performance specifications for repeaters have already been specified in LTE, and deployment of these repeaters for the same purpose is expected. The layer 1 relay, however, amplifies intercell interference and noise together with desired signal components thereby deteriorating the received Signal to Interference plus Noise power Ratio (SINR) and reducing the throughput enhancement gain.


The layer 2 relay, meanwhile, is a Decode and Forward (DF) type of relay technology by which RF signals received on the downlink from the base station are demodulated and decoded and then encoded and modulated again before being sent on to the mobile station. This demodulation and decoding processing performed at the radio relay station overcomes the drawback in layer 1 relays of deteriorated received SINR caused by amplification of intercell interference and noise. A better throughput-enhancement effect can therefore be expected compared with the layer 1 relay. At the same time, the layer 2 relay causes a delay associated with modulation/demodulation and encoding/decoding processing. In this type of relay, moreover, radio functions other than modulation/demodulation and encoding/decoding (such as mobility control, retransmission control by Automatic Repeat request (ARQ), and user-data concatenation/segmentation/reassembly) are performed between the base station and mobile station transparently with respect to the radio relay, which means that new radio-control functions for supporting this relay technology are needed. 




The layer 3 relay also performs demodulation and decoding of RF signals received on the downlink from the base station, but then goes on to perform processing (such as ciphering and user-data concatenation/segmentation/reassembly) for retransmitting user data on a radio interface and finally performs encoding/modulation and transmission to the mobile station. Similar to the layer 2 relay, the layer 3 relay can improve throughput by eliminating inter-cell interference and noise, and additionally, by incorporating the same functions as a base station, it can have small impact on the standard specifications for radio relay technology and on implementation. Its drawback, however, is the delay caused by user-data processing in addition to the delay caused by modulation/demodulation and encoding/decoding processing.


In 3GPP, it has been agreed to standardize specifications for layer 3 relay technology in LTE Rel. 10 because of the above features of improved received SINR due to noise elimination, ease of coordinating standard specifications, and ease of implementing the technology. Standardization of this technology is now moving forward.


Layer 3 radio relay technology is shown in Figure 2. In addition to performing user-data regeneration processing and modulation/demodulation and encoding/ decoding processing as described above, the layer 3 relay station also features a unique Physical Cell ID (PCI) on the physical layer different than that of the base station. In this way, a mobile station can recognize that a cell provided by a relay station differs from a cell provided by a base station.


In addition, as physical layer control signals such as Channel Quality Indicator (CQI) and Hybrid ARQ (HARQ) can terminate at a relay station, a relay station is recognized as a base station from the viewpoint of a mobile station. It is therefore possible for a mobile station having only LTE functions (for example, a mobile station conforming to LTE Rel. 8 specifications) to connect to a relay station. Here, the wireless backhaul link (Un) between the base station and relay station and the radio access link (Uu) between the relay station and mobile station may operate on different frequencies or on the same frequency. In the latter case, if transmit and receive processing are performed simultaneously at the relay station, transmit signals will cause interference with the relay station’s receiver by coupling as long as sufficient isolation is not provided between the transmit and receive circuits. Thus, when operating on the same frequency, the wireless backhaul-link and radio-access-link radio resources should be subjected to Time Division Multiplexing (TDM) so that transmission and reception in the relay station are not performed simultaneously.




Scenarios in which the introduction of relay technology is potentially useful have been discussed in 3GPP. Deployment scenarios are shown in Table 1. Extending the coverage area to mountainous and sparsely populated regions (rural area and wireless backhaul scenarios) is an important scenario to operators. It is expected that relay technology can be used to economically extend coverage to such areas as opposed to deploying fixed-line backhaul links. Relay technology should also be effective for providing temporary coverage when earthquakes or other disasters strike or when major events are being held (emergency or temporary coverage scenario), i.e., for situations in which the deployment of dedicated fixed-line backhaul links is difficult. In addition, while pico base stations and femtocells can be used for urban hot spot, dead spot, and indoor hot spot scenarios, the installation of utility poles, laying of cables inside buildings, etc. can be difficult in some countries and regions, which means that the application of relay technology can also be effective for urban scenarios. Finally, the group mobility scenario in which relay stations are installed on vehicles like trains and buses to reduce the volume of control signals from moving mobile stations is also being proposed.


In 3GPP, it has been agreed to standardize the relay technology deployed for coverage extension in LTE Rel. 10. These specifications will, in particular, support one-hop relay technology in which the position of the relay station is fixed and the radio access link between the base station and mobile station is relayed by one relay station.



References
[1] 3GPP TS36.912 V9.1.0: “Feasibility study for Further Advancement for E-UTRA (LTE-Advanced),” 2010.
[2] 3GPP TS36.323 V9.0.0: “Evolved Universal Terrestrial Radio Access (E-UTRA); Packet Data Convergence Protocol (PDCP) specification,” 2009
[3] 3GPP TS36.322 V9.1.0: “Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Link Control (RLC) protocol specification,” 2010.
[4] 3GPP TS36.321 V9.2.0: “Evolved Universal Terrestrial Radio Access (E-UTRA); Medium Access Control (MAC) protocol specification,” 2010.
[5] 3GPP TS36.331 V9.2.0: “Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Resource Control (RRC); Protocol specification,” 2010.
[6] 3GPP TS36.413 V9.2.1: “Evolved Universal Terrestrial Radio Access (E-UTRA); S1 Application Protocol (S1AP),” 2010.
[7] 3GPP TR36.806 V9.0.0: “Evolved Universal Terrestrial Radio Access (E-UTRA); Relay architectures for E-UTRA (LTEAdvanced),” 2010.
[8] IETF RFC4960: “Stream Control Transmission Protocol,” 2007.
[9] 3GPP TS29.281 V9.2.0: “General Packet Radio System (GPRS) Tunnelling Protocol User Plane (GTPv1-U),” 2010.


Thursday 25 March 2010

Home Relays for LTE-Advanced

If you look at the Home eNodeB (Femtocell) architecture, the HeNB is connected to its gateway which in turn is connected to MME/S-GW. There is a considerable amount of technology investment in this approach. The HeNB consists of complete protocol stack, the HeNB-GW is an expensive piece of equipment and there is lots of other things including the management software, etc.
Now in LTE-A, there is a concept of Relays which we have talked about. The Relays do not contain the complete stack (generally just L1 and L2). If capacity is not an issue but coverage, then we may be able to use Home Relays.

The backhaul for Femtocell is Internet whereas for Relay its generally the same Radio resources within the cell. I guess the main thing for Relay is the requirement of reasonably good channel (Line of sight maybe). Home Relays can use the Internet connection but rather than connection terminating in some kind of gateway, it can terminate at the actual eNB.

There are already many advanced antenna techniques that can handle the transmission and reception without much interference and maybe the SON algorithms may need some additional improvements.
The main thing is that if this technology becomes reality then it may cost less than $50 per Home relay and would become really a commonplace.

Thursday 15 October 2009

On Relay Technology in LTE-Advanced and WiMAX standards

I blogged earlier about Relay technology that is part of LTE-Advanced. In the IEEE Communications Magazine, this month there is a complete article on Relay technology. Here is a brief summary from that paper with my own understanding (and words).

We have mentioned about IMT-Advanced and LTE-Advanced before. International Mobile Telecommunications-Advanced is going to be the first 4G technology and as i discussed earlier, there are two main technologies vying for the 4G crown. I am sure both are as good and both will succeed. From 3GPP point of view, the standards will be part of Release-10 and should be ready end 2010 or beginning 2011. The understanding is that IMT-Advanced systems will support peak data rates of 100 Mb/s in high mobility environment (up to 350 km/h) and 1 Gb/s in stationary and pedestrian environments (up to 10 km/h). The transmission bandwidth of IMT-Advanced systems will be scalable and can change from 20 to 100 MHz, with downlink and uplink spectrum efficiencies in the ranges of [1.1, 15 b/s/Hz] and [0.7, 6.75 b/s/Hz], respectively. There will be a minimum requirement on voice over IP (VoIP) capacities in high- and low-mobility environments of around 30 and 50 active users/sector/MHz. The latency for control and user planes should be less than 100 ms and 10 ms, respectively, in unloaded conditions.


As I mentioned last week, the 3GPP candidate for IMT-Advanced is LTE-Advanced. On the IEEE front, 802.16j group published the relay-based multihop techniques for WiMAX and IEEE 802.16m has been submitted for the IMT-Advanced approval last week. The normal 802.16 WiMAX standard has been approved as 3G standard by the ITU.

So what exactly are Relays. Relay transmission can be seen as a kind of collaborative communications, in which a relay station (RS) helps to forward user information from neighboring user equipment (UE)/mobile station (MS) to a local eNode-B (eNB)/base station (BS). In doing this, an RS can effectively extend the signal and service coverage of an eNB and enhance the overall throughput performance of a wireless communication system. The performance of relay transmissions is greatly affected by the collaborative strategy, which includes the selection of relay types and relay partners (i.e., to decide when, how, and with whom to collaborate).



There are two different terminology used for Relay's. First is Type-I and Type-II and other is non-transparency and transparency. Specifically, a Type-I (or non-transparency) RS can help a remote UE unit, which is located far away from an eNB (or a BS), to access the eNB. So a Type-I RS needs to transmit the common reference signal and the control information for the eNB, and its main objective is to extend signal and service coverage. Type-I RSs mainly perform IP packet forwarding in the network layer (layer 3) and can make some contributions to the overall system capacity by enabling communication services and data transmissions for remote UE units. On the other hand, a Type-II (or transparency) RS can help a local UE unit, which is located within the coverage of an eNB (or a BS) and has a direct communication link with the eNB, to improve its service quality and link capacity. So a Type-II RS does not transmit the common reference signal or the control information, and its main objective is to increase the overall system capacity by achieving multipath diversity and transmission gains for local UE units.


Different relay transmission schemes have been proposed to establish two-hop communication between an eNB and a UE unit through an RS. Amplify and Forward — An RS receives the signal from the eNB (or UE) at the first phase. It amplifies this received signal and forwards it to the UE (or eNB) at the second phase. This Amplify and Forward (AF) scheme is very simple and has very short delay, but it also amplifies noise. Selective Decode and Forward — An RS decodes (channel decoding) the received signal from the eNB (UE) at the first phase. If the decoded data is correct using cyclic redundancy check (CRC), the RS will perform channel coding and forward the new signal to the UE (eNB) at the second phase. This DCF scheme can effectively avoid error propagation through the RS, but the processing delay is quite long. Demodulation and Forward — An RS demodulates the received signal from the eNB (UE) and makes a hard decision at the first phase (without decoding the received signal). It modulates and forwards the new signal to the UE (eNB) at the second phase. This Demodulation and Forward (DMF) scheme has the advantages of simple operation and low processing delay, but it cannot avoid error propagation due to the hard decisions made at the symbol level in phase one.

Relay starts becoming interesting because according to the 3GPP LTE-Advanced and IEEE 802.16j, an RS can act as the BS for legacy UE units and should have its own physical cell identifier. It should be able to transmit its own synchronization channels, reference symbols and downlink control information. So an RS shall have the full functions of an eNB/BS (except for traffic backhauling), including the capabilities of knowing the radio bearer of received data packets and performing traffic aggregation to reduce signaling overhead. There should be no difference between the cell controlled by an RS and that controlled by a normal eNB.

There are much more details and simulation results in the IEEE article. For those interested, can always get hold of the article and dig deeper.
More information also available in the following: