Showing posts with label Multi-Band Cell. Show all posts
Showing posts with label Multi-Band Cell. Show all posts

Friday, 26 August 2022

How Multiband-Cells are used for MORAN RAN Sharing

In the previous blog post I have explained the concept of multi-band cells in LTE networks and promised to explain a bit deeper how such cells can be used in Multi-Operator RAN (MORAN) scenarios. 

MORAN is characterized by the fact that all network resources except the radio carriers and the Home Subscriber Server (HSS) are shared between two or more operators. 

What this means in detail can be see in Step 1 of the figure below. 

The yellow Band #1 spectrum of the multi-band cell is owned by Network Operator 1 while the blue spectrum of Band #2 and Band #3 belongs to Network Operator 2.

Band #1 is the default band. This means if a UE enters the cell is always has to establish the initial RRC signaling connection on Band #1 as shown in step 1.

The spectrum owned by Network Operator 2 comes into the game as soon as a dedicated radio bearer (DRB), in the core network known as E-RAB, is established in this RRC connection. 

Then we see intra-frequency (intra-cell) handover to Band #2 where the RRC signaling connection is continued. Band #3 is added for user plane transport as a secondary "cell" (the term refers to the 3GPP 36.331 RRC specification). 

The reason for this behavior can be explained when looking a frequency bandwidths. 

The default Band #1 is a low frequency band with a quite small bandwidth, e.g. 5 MHz. as it is typically used for providing good coverage in rural areas. Band #2 is also a lower frequency band, but Band #3 is a high frequency band with maximum bandwidth of 20 MHz. So Band #3 brings the highest capacity for user plane transport and that is the reason for the handover to the spectrum owned by Network Operator 2 and the carrier aggregation used on these frequency bands. 

However, due to the higher frequency the footprint of Band #3 is lower compared to the other two frequency bands. 

For UEs at the cell edge (or located in buildings while being served from the outdoor cell) this leads quite often to situations where the radio coverage of Band #3 becomes insufficient. In such cases the UE typically sends a RRC measurement event A2 (means: "The RSRP of the cell is below a certain threshold."). 

If such A2 event is received by the eNB it stops the carrier aggregation transport and releases the Band #3 resources so that all user plane transport continues to run on the limited Band #2 resources as shown in step 3.

And now in the particular eNB I observed a nice algorithm starts that could be seen as a kind of zero-touch network operation although it does not need big data nor artificial intelligence. 

10 seconds after the secondary frequency resources of Band #3 have been deleted they are added again to the connection, but if the UE is still at the same location the next A2 will be reported soon and carrier aggregation will be stopped again for 10 seconds and then the next cycle starts.

This automation loop is carried out endlessly until the UE changes its location or the RRC connection is terminated. 

Related Posts:

Thursday, 16 June 2022

What is a Multi-Band Cell?

Multi-band cells became very popular in modern RAN environment and beside many benefits they also come with some challenges for performance measurement and radio network optimization.

A multi-band cell consists of a default band that shall be used by UEs for initial cell selection and a set of additional frequency band carriers that typically become involved as soon as a dedicated radio bearer (DRB) for payload transmission is established in the radio connection.

The exact configuration of a multi-band cell including all available frequency bands is broadcasted in SIB 1 as shown in the example below.

Different from legacy RAN deployments where – to take the example of a LTE cell – a pair of PCI/eARFCN (Physical Cell Identity/eUTRAN Absolute Radio Frequency Number) always matches a particular ECGI (eUTRAN Cell Global Identity) the multi-band cell has many different PCI/eARFCN combinations belonging to a single ECGI as you can see in the next figure.

Now performance measurement (PM) counters for e.g. call drops are typically counted on the cell ID (ECGI) and thus, in case of mulit-band cells do not reveal on which frequency a radio link failure occurred.

However, knowing the frequency is essential to optimize the radio network and minimize connectivity problems. More detailed information must be collected to find out which of the different frequency bands performs well and which need improvement.

This becomes even more interesting if multi-band cells are used in MORAN RAN sharing scenarios.

In my next blog post I will have a closer look at this special deployment.

Related Posts: