Friday 17 August 2007

'3' starts MBMS trials

The mobile operator '3' has again taken a major step forward by starting Mobile-TV trials using Multimedia Broadcast Multicast Service (MBMS). The trials are in conjunction with Ericsson. The following from the press release:
3 Italy uses DVB-H for its Mobile TV offering. However, MBMS is being developed under the auspices of the global 3GPP standards body.

MBMS uses existing 3G networks and spectrum for content delivery, building on existing infrastructure. To deliver MBMS, upgrades are made to the existing network as well as content and broadcast servers. 3G mobile phones with support for MBMS are expected to be available in 2008, said the company.

MBMS is a different approach to Mobile TV combining both broadcast and unicast shows (though multicast is more accurate). It also gives consumers opportunity to interact by voting, sending messages, accessing downloads of related content and special promotions from advertisers.

"MBMS as part of the 3G evolution is an attractive technology not only because of its flexibility and efficiency, but because it's quick and easy to deploy and leverages existing infrastructure," said Kursten Leins, Strategic Marketing Manager - Multimedia, Ericsson. "MBMS allows an unlimited number of users to watch the same mobile TV program at the same time in the same area, as well as enabling valuable user interaction with advertisements, campaigns and programs."

"3 pioneered 3G in Australia, so it was a great opportunity to see the country's first MBMS technology trial run on Australia's first 3G network," Leins added. Since the MBMS signal can be pin pointed to specific geographies, it's also possible to broadcast different mobile TV programs to different areas, giving a locally-specific customer experience and also providing highly targeted mobile advertising opportunities.
"We are very happy with the trial - the technology worked well and apart from delivering a good customer experience, it's extremely efficient in terms of network traffic and capacity, and provides new levels of customer involvement with their programs," said Michael Young, Director Technology & Services, 3 Australia.
The technical trial was held in 3's Sydney Head office over 6 weeks and run by Ericsson who developed the trial system. Using four specially designed prototype handsets, Ericsson also installed equipment to simulate the content and broadcast servers on a section of 3's network so the customer and network experience could be seen.

"The trial has been very interesting, and we'll continue to work with Ericsson to keep a close eye on the technology and the handsets to support MBMS as they develop," Young added.
More on MBMS can be found here.

Thursday 16 August 2007

FMC: Fixed Mobile Convergence

FMC will enable single device to perform myriad functions. The main points of interest are:

Dynamic increase of IP based services especially driven by fixed access
VoIP replaces circuit switched service in fixed networks
VoIP will replace circuit switched voice in mobile networks
The border between fixed and mobile networks dissapears

Source: LTE from a handset perspective, LG Electronics, 'LTE 2007', May 2007

Monday 13 August 2007

Beginning of the Cablefree world

With UWB becoming popular and more devices about to be rolled out, the cable connections between TV, VCR, DVD players, Camcorders, etc can be a thing of past.

In UK, OFCOM removed the restrictions for the use of UWB devices upto a range of 30 metres. In the US and Japan, UWB home hubs are a popular way of sharing domestic broadband.

Ultra-Wideband (UWB) can be used to send huge amounts of information between electronic devices, making it suitable for connecting items such as digital TV decoders and DVD players to television sets, or digital cameras to computers.

It could also be used to wirelessly link satellite dishes or cable TV connections to set-top boxes, doing away with the need for cables to be poked through walls and run around skirting boards. Satellite broadcaster Sky, for instance, is understood to be looking at whether UWB could be integrated into its equipment.

Described by techies as "Bluetooth on steroids", UWB can operate over distances of up to 30 metres. Japanese electronics manufacturers are already producing modems that use UWB, while Cambridge-based chip maker ARM Holdings has deals with several companies that plan to make UWB devices.

Separately, Vodafone yesterday joined the Wimax Forum which is creating standards and specifications for a new longer-range wireless broadband technology. The company stressed that it is taking a neutral stance on the next generation of wireless technologies, but the move raised eyebrows in the mobile phone industry.

Wimax, which can operate over many miles, is seen as a competitor to another next generation wireless technology, which is being developed by the mobile phone companies and builds on the existing 3G standard. LTE, or Long Term Evolution, is an mobile industry-led project designed to upgrade the existing 3G service. The LTE group is supposed to come up with recommendations on a new standard next month.

Earlier this year Vodafone's chief executive Arun Sarin warned that the process of getting a new wireless standard was taking too long. "As an industry it takes us a long time to get things done - we need to move faster or others will eat our lunch," he said.

Meanwhile The European Commission is opening up the wireless technology market by discarding out-dated rules limiting the areas of available radio spectrum. Next-generation wireless technologies such as BlackBerrys and smartphones work best over low frequencies that, until now, were reserved for GSM mobile phones. According to a statement last week, the Commission will allow new services to co-exist alongside GSM. The aim is to establish a more flexible, market-driven approach to spectrum management, says European Union telecoms commissioner Viviane Reding.

Sunday 12 August 2007

Training on Latest 3G/4G Topics

As i have mentioned in my posts before, i provide training on behalf of eXplanoTech. Some of the latest training available are:
Introduction to 3G/UMTS - 1-5 days
High Speed Downlink Packet Access (HSDPA) - 1 day
High Speed Uplink Packet Access (HSUPA) - 1 day
High Speed Packet Access (HSPA/HSPA+) - 2 days
Introduction to MBMS - ½ day
MBMS and Mobile TV - 1 day
Advanced MBMS - 1-2 day(s)
IP Multimedia Subsystem (IMS) - 2 days
Robust Header Compression (RoHC) - ½ day
Long Term Evolution (LTE) - 1 day
TCP/IP Refresher Course - 1 day
TCP/IP Overview for Telecom Engineers - 2 days
WiMAX and 4G Wireless - 1 day
New Wireless PAN (WPAN) Standards - 1 day
If any of these trainings interest you or your company the please drop me an email.
We also offer one to one training to executives and top decision makers. We can also offer personal one to one training to professionals looking to enhance their skills and yes we offer free seminars to interested universities. For anything that interests you, do drop me an email.

Thursday 9 August 2007

Vodafone plays the WiMAX card

Vodafone announced that it is to become a member of the WiMAX Forum, the organisation which tests and certifies interoperability for products based on the WiMAX standards. Vodafone sees the move as a means of taking a more technology-neutral approach to the future development of its business, by placing WiMAX on a strategic par with 3G LTE for a potential role in the next generation of mobile technology. Although mobile WiMAX is less mature than LTE at present, Vodafone believes it may have an important role to play for some of its national operating companies. Vodafone therefore wants to understand WiMAX better, and to play an active role in developing end-to-end specifications for possible future deployment.

WiMAX standard is often compared to Wi-Fi, though the comparison is unfair as WiMAX isn't based on a 20-year-old wired standard but was designed for wireless use (at least, the bits not borrowed from DOCSIS were). WiMAX offers greater speed and range than Wi-Fi, but most importantly it offers quality of service guarantees that make VoIP and streaming applications easier to manage.

"Our membership of the WiMAX Forum will complement our existing memberships of other key industry bodies such as the GSMA, 3GPP, and the Next Generation Mobile Network initiative," Vodafone global chief technology officer Steve Pusey said.

WiMAX has been heavily pushed by Intel, which intends to build it into laptop chipsets, encouraging rapid adoption of a technology in which it owns key intellectual property.

According to Ovum analysis:

Although a slightly crude generalisation, it's basically accurate to see the WiMAX Forum as the wireless Internet camp; the 3GPP as the wireless telecoms camp. There was a time when those two camps represented philosophies which were mutually exclusive and frequently antagonistic. These days, it makes less sense to see the world in those terms, because convergence between telecoms and the Internet - though far from complete - is now well under way. But at this early phase of the transition to convergence, it's not yet clear whether the predominant technologies and business models will eventually be those of telecoms, or those of the Internet. It's sensible, therefore, to remain interested in (and influential over) both possible outcomes, so long as they both remain possible.

Seen in that context, it seems perfectly natural that a large mobile operator would decide to join the WiMAX Forum. In Vodafone's case, the move is especially logical because of its increasing presence in emerging markets. The prospects for WiMAX to play an important role in the future development of mobile are better in those parts of the world where large numbers of people do not yet have access to telecoms or the Internet. If alternative models are going to take root, it's most likely to happen in areas with less legacy. On the other hand, the telecoms model will predominate for the forseeable future in more mature markets. Vodafone clearly needs to be involved in the development of both types of model, since its business encompasses both types of market.

It says something about the way mobile has changed since the turn of the century, that joining the WiMAX Forum just seems like an obviously sensible thing for Vodafone
to do.

Tuesday 7 August 2007

Which Mobile TV technology to go for?

There is aa lot of confusion regarding which mobile TV technology to go for. An article in Telecoms Online gives an idea regarding which way the Chinese market is going for mobile TV.

A recent survey shows more than 40 percent of cell phone users in China like the idea of watching TV on handsets. Some pundits even predict the number of mobile TV users in China will jump to nearly 60 million in 2008, and revenue from handset sales and programming will generate 1.3 billion yuan (US$170m).

The road to mobile TV, however, most likely will be bumpy. Current trials have found several vulnerabilities, such as handset display hang-up when video content is loaded, short battery life and overheating, that must be fixed.

What’s really hindering mobile TV development in China (and, arguably, in other geographical regions), however, is lack of agreement on one standard. In June, a government agency overseeing the mobile TV industry reaffirmed CMMB (China Mobile Multimedia Broadcasting) as the official standard for 3G video service. The reason: CMMB is homegrown and completely free of foreign IPRs.

The State Administration of Radio, Film and TV developed CMMB last October, but a tug-of-war over the standard has undermined SARFT’s efforts to implement it this year. Despite a slow start, SARFT has obtained 25MHz in bandwidth on 2.5GHz for CMMB service and plans to build networks for the Olympics in six cities, including Beijing, Shanghai and Qingdao.

The other contenders CMMB must fight are DVB-H (Europe), Media-FLO (United States), T-DMB (Korea), DMB-TH (a digital TV spec modified for handheld developed by Tsinghua University), T-MMB (Nufrontsoft, which is aligned with MII, the Chinese telecom regulatory body) and CMB (Huawei).

For now, CMMB appears to be most appealing because of SARFT backing. SARFT’s control of programming and distribution in China gives CMMB a huge regulatory and cost advantage over rival mobile TV standards.
Recognizing that CMMB has clout in China, a large industry alliance of 120 companies backs the standard, including heavyweights such as Nokia, Motorola and Sony Ericsson, and Chinese firms like Lenovo, Huawei and ZTE.

One of the main benefits of CMMB, according to SARFT, is that it does not charge royalties for two years, saving an estimated 1 billion yuan (US$130m) in foreign IPR payments. SARFT hopes the savings will encourage handset manufacturers to cooperate in perfecting the standard and expediting proliferation.

There are other concerns. Some Chinese standards are not really independent but a hodgepodge of foreign versions. Reports say T-MMB, developed by Nufrontsoft, incorporates certain core DAB patents like DMB that will be in effect until 2013. Critics say if Chinese handset makers adopt T-MMB they will have to dole out hefty royalties–about US$6 per set or up to US$120m to US$300m per year.

CMMB and T-MMB use different approaches to video transmission and delivery. T-MMB uses a streaming overlay on top of mobile infrastructure, so that it shares the total bandwidth and download speed for the service, like the current video service. CMMB relies on a tuner installed in the handset to receive video signals over the air.

The T-MMB advocates say adding a tuner will compromise other features affecting handset and overall performance, while the CMMB supporters predict T-MMB will be dead on arrival because video traffic will crash the network and cost will skyrocket.

The debate over mobile TV standards is not just about patriotism and technology. SARFT has jurisdiction over broadcasting via various media outlets, including handheld devices, while T-MMB is a brainchild of MII which, by default, only provides a transmission conduit to end users but not content and distribution.

The problem is that both sides see mobile TV as a golden opportunity but want to run the market on their own terms. At this time, the central government sees it as a market issue and is reluctant to provide guidelines, so tussle over mobile TV probably will go on for some time before technical issues are straightened out.

Monday 6 August 2007

UMA is not Dead

I did not hear about UMA for long time and i was starting to think that this would be one of the dead technologies that never saw the light of the day. I was wrong. It was pointed out to me by a colleague that T-Mobile (U.S.) recently announced Hotspot @ home that will allow UMA access to the Mobile while within a WiFi coverage area.
Note: UMA or Unlicensed Mobile Access is no longer called UMA but by its new name GAN or Generic Access Network
T-Mobiles GAN service lets users make phone calls over their in-home WiFi networks or over T-Mobile's national cellular network, depending on whether the customer is inside a T-Mobile HotSpot or not. The big problem with UMA, though, is that users must use dual-mode phones. T-Mobile's HotSpot@Home plan currently costs $10 a month after the purchase of a dual-mode phone and WiFi router, if one isn't owned already.
AT&T (again U.S) is also planning a similar move but its going the FemtoCell Way. Industry sources have revealed that AT&T has filed a request for proposal (RFP) to suppliers that may be interested in participating in AT&T's in-home femtocell service, according to wireless trade publication Unstrung. Femtocells are access points that act as repeaters to strengthen cellular communication signals inside homes, offices, and underground areas like subways. T-Mobile is trying to accomplish a similar task with its HotSpot@Home service, which brings better call quality to subscribers through the use of WiFi routers.
Although AT&T's femtocells would likely require a broadband internet connection, femtocells don't use the WiFi routers that most people already have in their homes. Instead, users would need to buy a new plug-and-play unit that could cost in the area of $200. Companies like picoChip currently develop reference designs for units that could be used by AT&T or its suppliers.

Because femtocells do not use WiFi signals, they don't require dual-mode handsets, which opens up the market to customers that don't want to ditch their current phones just to get the benefits of a stronger in-home signal. Meanwhile, potential T-mobile HotSpot@Home customers can only choose between two phones (the Nokia 6086 and Samsung T409), which means existing customers have to ditch their current mobile phones for a dual-mode device. Blackberry 8820 will soon be available in U.S. which has support of UMA.
Meanwhile Kineto Wireless, the innovator and pioneer of UMA, recently joined femtoforum. In addition to the promotion of femtocell deployment, the forum is focused on addressing several key technical issues, including radio planning and control, provisioning and management, and device-to-core network connectivity. As the core network technology behind a growing number of large-scale, dual-mode handset deployments, the 3GPP UMA standard is now being recognized as the de-facto standard for device-to-core network connectivity in the femtocell market as well. Recently, Kineto initiated interoperability testing between femtocell access points and its industry leading UMA Network Controller (UNC), and has already completed testing with Ubiquisys, the number one femtocell access point vendor.
"The femtocell industry is starting to appreciate the three year head start
UMA has over proprietary approaches being proposed for device-to-core network connectivity," said Patrick Tao, Kineto's vice president of technology. "As the
technology behind successful l dual-mode handset services, such as unik from
FT/Orange and T-Mobile's Hotspot @Home, the 3GPP UMA standard has already identified and addressed the real-world deployment issues operators face in
bringing femtocells to market. These issues include security, device
authentication, access controls, handover, regulatory compliance, as well as
scalability to support millions of endpoints."
One thing to remember here is that not all mobiles supporting WiFi will support UMA. On the other hand all phones that support UMA will support WiFi.
An Introduction on UMA can be found here or here.

Friday 3 August 2007

Certified Wireless USB is finally here

Two manufacturers of laptop PCs and two designers of wireless hubs and adapters are the first companies to receive consumer product certifications from the Universal Serial Bus Implementers Forum (USB-IF). The Certified Wireless USB products are expected to be in stores for the back-to-school and holiday gift season.

Previously certified silicon from Alereon, Intel Corp., NEC Corp., Realtek Corp., and WiQuest Communications are integrated into the products, according to the USB-IF.

The two laptop companies are Dell Computer for its Inspiron 1720 notebook and Lenovo for its ThinkPad T61/T61p 15.4-inch Widescreen Notebook. Networking companies D-Link and IOGear each had a wireless hub and also an adapter certified. Certification of the Wireless USB protocol by the USB-IF assures the interoperability of devices from a variety of manufacturers.

Certified Wireless USB is based on the WiMedia Alliance's Ultra-WideBand (UWB) common radio platform, which is capable of PHY-layer data rates of 480 Mbit/s at distances up to 3 meters and 110 Mbit/s at up to 10 meters.

From an engineering perspective, the question of co-existence with other wireless technologies in the 3 GHz band has been a persistent question for Wireless USB.

Dell and Lenovo have announced the first notebooks with embedded Certified Wireless USB chips - the Dell Inspiron 1720 and Lenovo ThinkPad T61and T62p. The laptops connect wirelessly to USB peripherals hooked up to Certified Wireless USB hubs such as those released by D-Link and IOGear. They will carry a Certified Wireless USB logo. In the interim, until peripherals catch up with the technology, they will need to be plugged into a wireless USB hub. This will allow the Dell and Lenovo laptops to communicate with a peripheral device such as a conventional printer plugged into the hub.

Tuesday 31 July 2007

2G is Dead, Long live 3G

Two bands of spectrum — at 900MHz and 1800MHz respectively — were set aside in the 1980s for use by the emerging 2G/GSM mobile-phone market. However, since 3G/UMTS became a reality earlier this decade, many users have switched over to the new standard, which operates at the higher-frequency 2100MHz.
This development has reduced the demand for the lower frequencies, and some mobile operators have been arguing for some time that those spectrums should "refarmed" for 3G services. Those operators have pointed out that lower frequencies allow the signal to be transmitted over greater distances and have suggested that, because 3G infrastructure has been deployed mainly in urban areas where the maximum return on investment can be made, refarming would allow greater use of 3G "mobile internet" services in rural areas.
However, one issue remains unresolved in the refarming debate. O2 and Vodafone use 900MHz for their GSM services, while T-Mobile and Orange use 1800MHz. The smallest UK operator, 3, has no GSM spectrum at all. Because lower frequencies transmit further, the EC's proposals have the potential to give O2 and Vodafone the chance to have greater 3G coverage, at a lower cost, than their rivals. 3 stands to be the most disadvantaged network as it has no GSM spectrum to refarm.

Neither Orange, T-Mobile nor 3 had responded to a request for comment on the EC's proposals at the time of writing.
Even more space could become available for 3G services next year when Ofcom auctions off 192MHz of spectrum around the 2.6GHz frequency. However, that spectrum could also be used for alternative mobile broadband services, like mobile WiMax. Pending a formal green light from the European Commission, Reding's proposals on refarming should be in place by the end of this year.

BT Movio ... going ... going ... gone

UK national telecommunication company British Telecom (BT) has closed its mobile broadcast branch BT Movio. The delivery platform developed by BT Movio supports the only mobile broadcast TV service in the UK. The service is retailed by UK largest mobile virtual network operator (MVNO) Virgin Mobile. The operator declared that the service will carry on until the beginning of next year. BT has cancelled its contract with GCap Media which provided access to the Digital Audio Broadcast (DAB) spectrum. GCap mentioned that the cancellation will take effect on 9 June 2008. GCap subsidiary Digital One which is in charge of the spectrum is currently seeking other partners to replace BT Movio.
Virgin had released only one handset — the HTC-manufactured "Lobster phone" — which supported the technology, and sales of that device were poor. The Lobster phone was seen by critics as an unattractive handset and, being based on Windows Mobile, it was not ideally suited to the consumer sector.
However, the final straw for BT was the recent backing given by the European Commission to the mobile broadcast technology Digital Video Broadcasting — Handheld (DVB-H). BT Movio was based on the rival Digital Audio Broadcasting — IP (DAB-IP) standard, which reused digital radio spectrum to deliver a handful of TV channels and a range of digital radio stations. DVB-H promises more channels, but spectrum availability for that technology had looked uncertain until it became apparent last week that the European Commission would force member states to adopt the standard.
According to screendigest:
Unicast mobile TV (i.e. distributed through 3G networks) has been relatively successful in the UK with three major operators launching services with more than 25 TV channels on average. According to Screen Digest, they were almost 450,000 mobile TV subscribers at the end of 2006. While unicast mobile TV can offer a wide range of TV content, the infrastructure can only sustain a limited number of users. In order to support mass market adoption mobile broadcast TV networks must be deployed. BT Movio launched the broadcast mobile TV service with Virgin Mobile in September 2006. The service showed poor uptake during the first 3 months with less than 10,000 subscribers. Factors blamed for the poor uptake include a lack of content and poor handset availability. The upcoming UK auction for L-Band spectrum could have given BT Movio the opportunity to increase the capacity of the current platform and improve the channel line-up. However, the BT Movio platform requires IP compatibility from the broadcast network technology. DVB-H, DAB and MBMS support IP encapsulation. T-DMB, the preferred technology for the L-Band spectrum auction, does not support IP. Therefore, BT Movio was stuck with a platform which cannot draw enough attention from mobile operators, handset manufacturers and inevitably mobile subscribers.
The UK operator '3' is keen to big up its own mobile TV and video services in the wake of BT's announcement. 3 UK says its customers have:
  • Downloaded more than a million reality TV clips in the last year.
  • Downloaded over a million SeeMeTV clips every month, with £100,000 being made by budding directors in the process.
  • Last summer watched World Cup TV on their mobiles nearly 4 million times.
Among the live streamed channels 3 offers are BBC1, BBC3 and ITV1, with access starting at 49p a day. Its also allows customers to access TV from their set-top's with a Slingbox app.