Join our LinkedIn group

Showing posts with label Cambridge Wireless. Show all posts
Showing posts with label Cambridge Wireless. Show all posts

Sunday, 28 June 2015

LTE-M a.k.a. Rel-13 Cellular IoT

Some months back I wrote about the LTE Category-0 devices here. While Rel-12 LTE Cat 0 devices are a first step in the right direction, they are not enough for small sensor type of devices where long battery life is extremely important. As can be seen in the picture above, this will represent a huge market in 2025.

To cater for this requirement of extremely long battery life, it is proposed that Rel-13 does certain modifications for these low throughput sensor type devices. The main modification would be that the devices will work in 1.4MHz bandwidth only, regardless of the bandwidth of the cell. The UE transmit power will be max of 20dB and the throughput would be further reduced to a maximum of 200kbps.

The presentation, from Cambridge Wireless Future of Wireless International Conference is embedded below:

See also:

Saturday, 23 May 2015

The path from 4.5G to 5G

In the WiFi Global Congress last week, I heard this interesting talk from an ex-colleague who now works with Huawei. While there were a few interesting things, the one I want to highlight is 4.5G. The readers of this blog will remember that I introduced 4.5G back in June last year and followed it with another post in October when everyone else started using that term and making it complicated.

According to this presentation, 3GPP is looking to create a new brand from Release-13 that will supersede LTE-Advanced (LTE-A). Some of you may remember that the vendor/operator community tried this in the past by introducing LTE-B, LTE-C, etc. for the upcoming releases but they were slapped down by 3GPP. Huawei is calling this Release-13 as 4.5G but it would be re-branded based on what 3GPP comes up with.

Another interesting point are the data rates achieved in the labs, probably more than others. 10.32Gbps in sub-6GHz in a 200MHz bandwidth and 115.20Gbps using a 9.6GHz bandwidth in above 6GHz spectrum. The complete presentation as follows:

Another Huawei presentation that merits inclusion is the one from the last Cambridge Wireless Small Cells SIG event back in February by Egon Schulz. The presentation is embedded below but I want to highlight the different waveforms that being being looked at for 5G. In fact if someone has a list of the waveforms, please feel free to add it in comments

The above tweet from a recent IEEE event in Bangalore is another example of showing the research challenges in 5G, including the waveforms. The ones that I can obviously see from above is: FBMC, UFMC, GFDM, NOMA, SCMA, OFDM-opt, f-OFDM.

The presentation as follows:

Saturday, 16 May 2015

Smart Homes of the Future and Technologies

Saw the above picture recently on Twitter. While its great to see how connected our future homes and even cities would be, it would be interesting to see what technologies are used for connecting these devices.

Cambridge Wireless had a smart homes event last month, there were some interesting presentations that I have detailed below.

The first of these technologies discussed is LoRa. As can be seen, its billed as ultimate long range (10 mile) and low power (10 year battery lifetime) technology. It uses spread-spectrum making it robust to channel noise. Here is the presentation:

The next technology is Zigbee 3.0. According to Zigbee Alliance:

The new standard unifies ZigBee standards found in tens of millions of devices delivering benefits to consumers today. The ZigBee 3.0 standard enables communication and interoperability among devices for home automation, connected lighting, energy efficiency and other markets so more diverse, fully interoperable solutions can be delivered by product developers and service providers. All device types, commands, and functionality defined in current ZigBee PRO-based standards are available to developers in the new standard.

ZigBee 3.0 defines the widest range of device types including home automation, lighting, energy management, smart appliance, security, sensors, and health care monitoring products. It supports both easy-to-use DIY installations as well as professionally installed systems. Based on IEEE 802.15.4, which operates at 2.4 GHz (a frequency available for use around the world), ZigBee 3.0 uses ZigBee PRO networking to enable reliable communication in the smallest, lowest-power devices. Current ZigBee Certified products based on ZigBee Home Automation and ZigBee Light Link are interoperable with ZigBee 3.0. A complete list of standards that have been merged to create ZigBee 3.0 can be seen on the website at

“The ZigBee Alliance has always believed that true interoperability comes from standardization at all levels of the network, especially the application level which most closely touches the user,” said Tobin J. M. Richardson, President and CEO of the ZigBee Alliance. “Lessons learned by Alliance members when taking products to market around the world have allowed us to unify our application standards into a single standard. ZigBee 3.0 will allow product developers to take advantage of ZigBee’s unique features such as mesh networking and Green Power to deliver highly reliable, secure, low-power, low-cost solutions to any market.”

Finally, we have Bluetooth Smart mesh.

CSRmesh enables Bluetooth® low energy devices not only to receive and act upon messages, but also to repeat those messages to surrounding devices thus extending the range of Bluetooth Smart and turning it into a mesh network for the Internet of Things.

While the CW event was not able to discuss all possible technologies (and believe me there are loads of them), there are other popular contenders. Cellular IoT (CIoT) is one if them. I have blogged about the LTE Cat-0 here and 5G here.

A new IEEE Wi-Fi standard 802.11ah using the 900MHz band has been in works and will solve the need of connectivity for a large number of things over long distances. A typical 802.11ah access point could associate more than 8,000 devices within a range of 1 km, making it ideal for areas with a high concentration of things. The Wi-Fi Alliance is committed to getting this standard ratified soon. With this, Wi-Fi has the potential to become a ubiquitous standard for IoT. See also this article by Frank Rayal on this topic.

Finally, there is SIGFOX. According to their website:

SIGFOX uses a UNB (Ultra Narrow Band) based radio technology to connect devices to its global network. The use of UNB is key to providing a scalable, high-capacity network, with very low energy consumption, while maintaining a simple and easy to rollout star-based cell infrastructure.

The network operates in the globally available ISM bands (license-free frequency bands) and co-exists in these frequencies with other radio technologies, but without any risk of collisions or capacity problems. SIGFOX currently uses the most popular European ISM band on 868MHz (as defined by ETSI and CEPT) as well as the 902MHz in the USA (as defined by the FCC), depending on specific regional regulations.

Communication on SIGFOX is secured in many ways, including anti-replay, message scrambling, sequencing, etc. The most important aspect of transmission security is however that only the device vendors understand the actual data exchanged between the device and the IT systems. SIGFOX only acts as a transport channel, pushing the data towards the customer's IT system.

An important advantage provided by the use of the narrow band technology is the flexibility it offers in terms of antenna design. On the network infrastructure end it allows the use of small and simple antennas, but more importantly, it allows devices to use inexpensive and easily customizable antennas.

Sigfox is also working on project Mustang, a three-year effort to build a hybrid satellite/terrestrial IoT (internet of things) network. According to Rethink Research:

The all-French group also contains aerospace firm Airbus, research institute CEA-Leti and engineering business Sysmeca. The idea is to use Sigfox as the terrestrial data link, with satellite backhaul and connections to planes and boats provided by a low-earth orbit (LEO) satellite constellation.
The satellite link could be added to either the end devices or the base station, so that if a device was unable to connect to the terrestrial Sigfox network, it could fall back to the satellite.

While the power requirements for this would be prohibitive for ultra-low power, battery-operated devices, for those with a wired power supply and critical availability requirements (such as smart meters, alarms, oil tankers and rigs) the redundancy would be an asset. These devices may transmit small amounts of data but when they do need to communicate, the signal must be assured.

The Sigfox base station could be fitted with a satellite uplink as a primary uplink as well as a redundancy measure in some scenarios where terrestrial network reach cannot be achieved. With a three-year lifecycle, Mustang’s participants are looking to create a seamless global network, and note that the planned dual-mode terrestrial/satellite terminal will enable switching between the two channels in response to resource availability.

The group says that the development of this terminal modem chipset is a priority, with later optimization of the communication protocols being the next step before an application demonstration using an airplane.

The project adds that the full potential of the IoT can only be achieved by offering affordable mobile communications at a global scale and reach. Key to this is adapting existing networks, according to the group, which explains why Sigfox has been chosen – given that the company stresses the affordability of its system.

Well, there are a lots of options available. We just have to wait and see which ones work in what scenarios.

Sunday, 15 February 2015

5G and NFV

In my 5G: A 2020 vision presentation, I argued that some of the technologies that will be necessary for 5G is in fact independent of 5G. One such technology is NFV. Having said that, I also argue that the minimum prototype for 5G would require an NFV based implementation.

Tieto gave an interesting presentation in our last Small Cell SIG event explaining how the network will be implemented based on NFV. The presentation is embedded below:

There is also an interesting paper that expands on this further, available from Slideshare here.

Tuesday, 3 February 2015

5G: A 2020 Vision

I had the pleasure of speaking at the CW (Cambridge Wireless) event ‘5G: A Practical Approach’. It was a very interesting event with great speakers. Over the next few weeks, I will hopefully add the presentations from some of the other speakers too.

In fact before the presentation (below), I had a few discussions over the twitter to validate if people agree with my assumptions. For those who use twitter, maybe you may want to have a look at some of these below:

Anyway, here is the presentation.


Friday, 12 December 2014

5G Spectrum and challenges

I was looking at the proposed spectrum for 5G last week. Anyone who follows me on Twitter would have seen the tweets from last weekend already. I think there is more to discuss then just tweet them so here it is.

Metis has the most comprehensive list of all the bands identified from 6GHz, all the way to 86GHz. I am not exactly sure but the slide also identifies who/what is currently occupying these bands in different parts of the world.

The FCC in the USA has opened a Notice of Inquiry (NoI) for using the bands above 24GHz for mobile broadband. The frequency bands above have a potential as there is a big contiguous chunk of spectrum available in each band.

Finally, the slides from ETRI, South Korea show that they want to have 500MHz bandwidth in frequencies above 6GHz.

As I am sure we all know, the higher the frequency, the lower the cell size and penetration indoors. The advantage on the other hand is smaller cell sizes, leading to higher data rates. The antennas also become smaller at higher frequencies thereby making it easier to have higher order MIMO (and massive MIMO). The only way to reliably be able to do mobile broadband is to use beamforming. The tricky part with that is the beam has to track the mobile user which may be an issue at higher speeds.

The ITU working party 5D, recently released a draft report on 'The technical feasibility of IMT in the bands above 6 GHz'. The document is embedded below.

xoxoxo Added Later (13/12/2014) xoxoxo
Here are some links on the related topic:

xoxoxo Added Later (18/12/2014) xoxoxo
Moray Rumney from Keysight (Agilent) gave a presentation on this topic in the Cambridge Wireless Mobile Broadband SIG event yesterday, his presentation is embedded below.

Tuesday, 14 October 2014

'Real' Full Duplex (or No Division Duplex - NDD?)

We all know about the two type of transmission schemes which are FDD and TDD. Normally, this FDD and TDD schemes are known as full duplex schemes. Some people will argue that TDD is actually half-duplex but what TDD does is that it emulates a full duplex communication over a half duplex communication link. There is also a half-duplex FDD, which is a very interesting technology and defined for LTE, but not used. See here for details.

One of the technologies being proposed for 5G is referred to as Full Duplex. Here, the transmitter and the receiver both transmit and receive at the same frequency. Due to some very clever signal processing, the interference can be cancelled out. An interesting presentation from Kumu networks is embedded below:

The biggest challenge is self-interference cancellation because the transmitter and receiver are using the same spectrum and will cause interference to each other. There have been major advances in the self-interference cancellation techniques which could be seen in the Interdigital presentation embedded below:

Thursday, 2 October 2014

Envelope Tracking for improving PA efficiency of mobile devices

I am sure many people would have heard of ET (Envelope Tracking) by now. Its a technology that can help reduce the power consumption by our mobile devices. Less power consumption means longer battery life, especially with all these new features coming in the LTE-A devices.
As the slide says, there are already 12 phones launched with this technology, the most high profile being iPhone 6/6 Plus. Here is a brilliant presentation from Nujira on this topic:

For people who are interested in testing this feature may want to check this Rohde&Schwarz presentation here.

Sunday, 13 July 2014

Case Study: LTE for real time news gathering by Sky News

Back in May, I had the pleasure of listening to a talk by Richard Pattison from Sky News where he talked about how they have managed to start replacing their Satellite trucks (which are extremely expensive to own and run) with the new solutions using LTE.

One of the advantage of LTE over 3G/HSPA+ is that the uplink is as good as the downlink which wasn't really the case in earlier generations. What this means is that you can use your phone to do a live video call and use that for broadcasting of real time information. The Sky News Tech team has some interesting tweets on this.

An example of the video quality could be seen from this clip here:

The Dejero App is an interesting one that can allow bonding of Cellular + WiFi and provide a combined data rate.

I was having a discussion yesterday on Twitter because we term this bonded cellular and WiFi as 4.5G. There are many proprietary solutions available for using them together but the standardised one is coming in standards soon.

Sky news have managed to set up new standards by having 12 feeds simultaneously broadcasting  (all based on Iphones and Ipads) during the European elections.

All this has been possible due to an amazing 4G network by EE and being able to negotiate a 500GB (0.5TB) data package.

Anyway, you can read the complete paper below:

Thursday, 10 July 2014

Taking 5G from vision to reality

This presentation by Moray Rumney of Agilent (Keysight) in Cambridge Wireless, Future of Wireless International conference takes a different angle at what the targets for different technologies have been and based on that what should be the targets for 5G. In fact he has an opinion on M2M and Public safety as well and tries to combine it with 5G. Unfortunately I wasnt at this presentation but from having heard Moray speak in past, I am sure it was a thought provoking presentation.

All presentations from the Future of Wireless International Conference (FWIC) are available here.

Wednesday, 21 May 2014

Connected and Autonomous Car Revolution

Last week we had the Automotive and Transport SIG event in Cambridge Wireless. There is already some good writeup on that event here and here. In this post my interest in looking at the technologies discussed.

R&S (who were the sponsors) gave their introduction presentation quite well highlighting the need and approaches for the connected car. He also introduced the IEEE 802.11p to the group.

As per Wikipedia, "IEEE 802.11p is an approved amendment to the IEEE 802.11 standard to add wireless access in vehicular environments (WAVE), a vehicular communication system. It defines enhancements to 802.11 (the basis of products marketed as Wi-Fi) required to support Intelligent Transportation Systems (ITS) applications. This includes data exchange between high-speed vehicles and between the vehicles and the roadside infrastructure in the licensed ITS band of 5.9 GHz (5.85-5.925 GHz). IEEE 1609 is a higher layer standard based on the IEEE 802.11p."

Back in December, Dr. Paul Martin did an equally useful presentation in the Mobile Broadband SIG and his presentation is equally relevant here as he introduced the different terms live V2X, V2i, V2V, V2P, etc. I have embedded his presentation below:

Roger Lanctot from Strategy Analytics, gave us some interesting facts and figures. Being based in the US, he was able to give us the view of both US as well as Europe. According to him, “LTE is the greatest source of change in value proposition and user experience for the customer and car maker. Bluetooth, Wi-Fi, NFC and satellite connectivity are all playing a role, but LTE deployment is the biggest wave sweeping the connected car, creating opportunities for new technologies and applications.” His officially released presentation is embedded below (which is much smaller than his presentation on that day.

There were also interesting presentations that I have not embedded but other may find useful. One was from Mike Short, VP of Telefonica and the other was from Dr. Ireri Ibarra of MIRA.

The final presentation by Martin Green of Visteon highlighted some interesting discussions regarding handovers that may be required when the vehicle (and the passengers inside) is moving between different access networks. I for one believe that this will not be an issue as there may be ways to work the priorities of access networks out. Anyway, his presentation included some useful nuggets and its embedded below:

Saturday, 17 May 2014

NFV and SDN - Evolution Themes and Timelines

We recently held our first Virtual Networks SIG event in Cambridge Wireless. There were some great presentations. The one by the UK operator EE summarised everything quite well. For those who are not familiar with what NFV and SDN is, I would recommend watching the video on my earlier post here.

One of the term that keeps being thrown around is 'Orchestration'. While I think I understand what it means, there is no easy way to explain it. Here are some things I found on the web that may explain it:
Orchestration means Automation, Provisioning, Coordination and Management of Physical and Virtual resources.  
Intelligent service orchestration primarily involves the principles of SDN whereby switches, routers and applications at Layer 7 can be programmed from a centralized component called the controller with intelligent decisions regarding individual flow routing in real time.
If you can provide a better definition, please do so.
There are quite a few functions and services that can be virtualised and there are some ambitious timelines.

ETSI has been working on NFV and as I recently found out (see tweet below) there may be some 3GPP standardisation activity starting soon.
Anyway, here is the complete presentation by EE:

There was another brilliant presentation by Huawei but the substance was more in the talk, rather than the slides. The slides are here in case you want to see and download.

Related post:

Saturday, 26 April 2014

LTE Deployment Dilemma

Earlier this month during our Cambridge Wireless Small Cells SIG event, I presented a small quiz in the final session. The first part of the quiz was titled "LTE Deployment Dilemma" and it generated lots of interesting discussions. After the event, I did a more detailed writeup of that and Cisco has kindly published it in their SP Mobility Blog. Since many people have told me that they cannot anonymously post comments there, I am now bringing it to this blog. I am interested in hearing what others think.

Here is the complete post

Thursday, 10 April 2014

LTE-Broadcast of the operator, by the operator, for the operator!

Heard an insightful talk from EE in the CW event this week. While I agree with the intentions and approaches, I still think there may be too many assumptions in the eMBMS business model. I have made my intentions known all but too well in my earlier blog post here.

Some of the insights that I have gained in the last couple of months with regards to the way operators are planning to use the LTE broadcast is through the OTT Apps. Take for instance an OTT application like iPlayer or Hulu and some popular program is about to be broadcast, that program can be sent using LTE-B. Now some people may watch on the time (linear) and some may watch at a later time (non-linear or time-shifted). The App can be intelligent enough to buffer the program so there is no delay required when the user wants to watch it. This can open all sorts of issues like the user may have watched one episode on his device while the current one is being watched on his digital television. While the program is being buffered the battery and memory of the device is being consumed. How long should a program be stored on the device. There can be many other open issues.

Another question I had was how would the users be billed for these things. Would it be free since the data was received over LTE-B. Matt Stagg from EE said that the users would be billed normally as if they received it in case of streaming. He was more pragmatic though. He clearly said that in the initial phase everything would have to be free. This will ensure that any technical issues are ironed out and at the same time the users become familiar with how all this works.

Finally a point worth remembering, users prefer watching videos on their tablets. Most tablets are WiFi only which means the LTE-Broadcast wont work on it.

The presentation is embedded as follows:

Thursday, 27 March 2014

A quick case study on Smartwatches

My presentation from the Cambridge Wireless Connected devices SIG event "On Trend – High Fashion meets High Technology" held today, is embedded below. One of my favourite ads that highlights our fascination with the smart watches has been shown very well in a advert by Samsung mobile USA as follows:

I believe there is an opportunity and a market for the smart wear and smartwatches. There is a need for just the right kind of products to capitalise on the demand.

Saturday, 8 February 2014

100 years of Wireless History

Recently attended the Cambridge Wireless Inaugural Wireless Heritage SIG event, “100 years of radio”. Some very interesting presentations and discussions on the wireless history. I have collected all the presentations and merged them into one and embedded them below. All presentations can be downloaded individually from CW website here. A combined one is available from Slideshare.

Presentations are:

  • Colin Smithers, Chairman, Plextek - 1914 to 1934: The wireless wave
  • Geoff Varrall, Director, RTT Online - 1934 to 1945: The wireless war
  • Steve Haseldine, Chairman, Deaf Alerter - 1945 to 1974: The cold war - radio goes underground
  • Prof Nigel Linge, Professor of Telecommunications, University of Salford - 1974 to 1994
  • Andy Sutton, Principal Network Architect, EE and Visiting Professor, University of Salford - 1994 to 2014: Mass consumer cellular and the mobile broadband revolution - Broadband radio, digital radio, smart phone and smart networks

Monday, 3 February 2014

5G and the ‘Millimeter-Wave' Radios

There were quite a few interesting talks in the Cambridge Wireless Radio Technology SIG event last week. The ones that caught my attention and I want to highlight here are as follows.

The mobile operator EE and 5GIC centre explained the challenges faced during the Practical deployments. Of particular interest was the considerations during deployments. The outdoor environments can change in no time with things like foliage, signage or even during certain festivals. This can impact the radio path and may knock out certain small cells or backhaul. The presentation is available to view and download here.

Another interesting presentation was from Bluwireless on the 60GHz for backhaul. The slide that was really shocking was the impact of regulation in the US and the EU. This regulation difference means that a backhaul link could be expensive and impractical in certain scenarios in the EU while similar deployments in the US would be considerably cheaper. This presentation is available here.

Finally, the presentation from Samsung highlighted their vision and showed the test results of their mmWave prototype. The presentation is embedded below and is available here.

Finally, our 5G presentation summarising our opinion and what 5G may contain is available here. Dont forget to see the interesting discussion in the comments area.

Monday, 9 December 2013

Rise of the "Thing"

Light Reading carried an interesting cartoon on how M2M works. I wouldnt be surprised if some of the M2M applications at present do work like this. Jokes apart, last week the UK operator EE did a very interesting presentation on Scaling the network for the Rise of the Thing.

A question often asked is "What is the difference between the 'Internet of Things' (IoT) and 'Machine to Machine' (M2M)?". This can generate big discussions and can be a lecture on its own. Quora has a discussion on the same topic here. The picture above from the EE presentation is a good way of showing that M2M is a subset of IoT. 

Its also interesting to note how these 'things' will affect the signalling. I often come across people who tell me that since most M2M devices just use small amounts of data transfer, why is there a need to move from GPRS to LTE. The 2G and 3G networks were designed primarily for Voice with Data secondary function. These networks may work well now but what happens when the predicted 50 Billion connected devices are here by 2020 (or 500 Billion by 2030). The current networks would drown in the control signalling that would often result in congested networks. Congestion control is just one of the things 3GPP is working on for M2M type devices as blogged earlier here. In fact the Qualcomm presentation blogged about before does a decent job of comparing various technologies for IoT, see here.

The EE presentation is embedded as follows:

Another good example website I was recently made aware of is - worth checking how IoT would help us in the future.

Sunday, 13 October 2013

Handset Antenna Design

Came across this presentation on Handset Antenna design from a recent Cambridge Wireless event here. Its interesting to see how the antenna technology has evolved and is still evolving. Another recent whitepaper from 4G Americas on meeting the 1000x challenge (here) showed how the different wavelengths are affecting the antenna design.

Maybe its better to move to higher frequencies from the handset design point of view. Anyway, the Cambridge Wireless presentation is embedded below: