Pages

WebRTC Training Course

Showing posts with label WiFi. Show all posts
Showing posts with label WiFi. Show all posts

Sunday, 20 July 2014

LA-LTE and LAA


Recently came across a presentation by Ericsson where they used the term LA-LTE. I asked a few colleagues if they knew or could guess what it means and they all drew blank. I have been blogging about Unlicensed LTE (a.k.a. LTE-U) on the Small Cells blog here. This is a re-branding of LTE-U

LA-LTE stands for 'Licensed Access' LTE. In fact the term that has now been adopted in a recent 3GPP workshop (details below) is Licensed Assisted Access (LAA).

Couple of months back I blogged in detail about LTE-U here. Since then, 3GPP held a workshop where some of the things I mentioned got officially discussed. In case you want to know more, details here. I have to mention that the operator community is quite split on whether this is a better approach or aggregating Wi-Fi with cellular a better approach.

The Wi-Fi community on the other hand is unhappy with this approach. If cellular operators start using their spectrum than it means less spectrum for them to use. I wrote a post on the usage of Dynamic Spectrum Access (DSA) Techniques that would be used in such cases to make sure that Wi-Fi and cellular usage does not happen at the same time, leading to interference.

Here is a presentation from the LTE-U workshop on Use cases and scenarios, not very detailed though.



Finally, the summary presentation of the workshop. As it says on the final slide "The current SI proposal focuses on carrier aggregation operations and uses the acronym LAA (Licensed Assisted Access)", you would be seeing more of LAA.


Friday, 4 July 2014

Cell capacity and Opportunistic Use of Unlicensed and Shared Spectrum

One very interesting presentation from the LTE World Summit was about Improving the cell capacity by using unlicensed and shared spectrum opportunistically. Kamran Etemad is a senior advisor to FCC & UCMP and even though he was presenting this in his personal capacity, it reflected some interesting views that are quite prevalent in the USA.

If you don't know about Dynamic Spectrum Access Schemes, I wrote a post on the Small Cells blog here. The slide above is quite interesting as it shows the possibility of a 'Generalized' Carrier Aggregation in 3GPP Release-13. Personally, we believe that LTE + WiFi working together will be far more successful than LTE + LTE-U (unlicensed). As the blog readers would be aware, we have been pushing our vision of LTE + Wi-Fi working together; which we are calling as 4.5G. In case if you have not seen, our whitepaper is here.

The presentation is embedded below for reference:


Monday, 30 June 2014

4.5G: Integration of LTE and Wi-Fi networks


With LTE-A getting ready to meet the IMT-Advanced requirements and fulfilling the role of promised '4G', we believe the next phase of evolution before 5G will be successful interworking of LTE and Wi-Fi networks.


This whitepaper (embedded below) explores this feature, we call 4.5G, in detail.

Understanding WLAN offload in cellular networks by Anritsu

We are very thankful to Anritsu for kindly sponsoring this whitepaper. They have their own whitepaper on this topic which is also worth a read, available here.



Let us know what you think about this.

Friday, 27 June 2014

Voice over WiFi (VoWiFi)


One of the changes that I have noticed in the last year is that some of the operators who have been opposed to WiFi in the past have not only embraced it but are now trying to monopolise the same WiFi spectrum they billed as interference prone. Personally, I think the future of Wi-Fi is not just offloading but also working together with LTE. We are billing this as 4.5G and have recently produced a whitepaper, available here.

There has been a flurry of activity on Voice over Wi-Fi in the last few months. Recently the UK operators '3' and EE announced that they are both allowing WiFi calling and SMS. While '3' customers will have to use an OTT app for the time being, EE customers will experience this seamlessly.

I heard Taqua in the recent LTE World Summit talking about their solution and have offered to share their slides (embedded below). It was interesting to find out while having a discussion with them that their solution supports 'hand-in' and 'hand-out'. This takes away a major advantage that Small Cells offered, seamless roaming. Anyway, feel free to let me know of you have any opinion on this topic


Thursday, 26 June 2014

LTE-Broadcast: Reality check


When I wrote my blog post about why the 'Cellular Broadcast may fail again' for the Cisco SP Mobility blog, I did not realise that this would become so popular and there would be so many people writing to me to tell me why and how my assumptions are wrong and how they plan to succeed. I have not yet received a successful reasoning on why people disagree with my article and where I am wrong.

In the Video Over LTE Summit just concluded, I did not get a chance to see all the LTE-B presentations but the ones that I saw, were not convincing enough, except for one by Erol Hepsaydir, of '3' UK, that I explain in the end.

Here is my presentation from that event:



The conclusion is not self-explanatory so here it is in my own words.


I am not opposed to the operators trying LTE-B out. I wish more operators do try and hopefully we can have a model where the technology can succeed. When operators succeed in a new technology, it benefits the whole mobile ecosystem directly or indirectly. The operators have to be prepared that they may not see any return. This should not discourage them because the learnings from this may benefit in something else. The customer and their loyalty is more important. We should try and provide them with a value addition rather than think of this as a new source of revenue. People are not interested in watching the same stuff they watch on the terrestrial TV on their small devices; unique and maybe tailored content would help. Finally, don't make the billing model too complex so the users shy away from trying this new technology.

The final presentation of the event was delivered by Erol Hepsaydir of the UK operator '3'. He said that from their point of view, they are trying to have eMBMS to create additional capacity in the network. If they know that many people watch news on different apps and websites, they can offer this as a free service over broadcast. What this means is that they have gained customer loyalty and also free up the capacity for other users who are doing other data related activities. I think this is a very clever approach. He did mention though that they are only in the simulation stages and have not tried it out practically. 

Wednesday, 21 May 2014

Connected and Autonomous Car Revolution

Last week we had the Automotive and Transport SIG event in Cambridge Wireless. There is already some good writeup on that event here and here. In this post my interest in looking at the technologies discussed.

R&S (who were the sponsors) gave their introduction presentation quite well highlighting the need and approaches for the connected car. He also introduced the IEEE 802.11p to the group.

As per Wikipedia, "IEEE 802.11p is an approved amendment to the IEEE 802.11 standard to add wireless access in vehicular environments (WAVE), a vehicular communication system. It defines enhancements to 802.11 (the basis of products marketed as Wi-Fi) required to support Intelligent Transportation Systems (ITS) applications. This includes data exchange between high-speed vehicles and between the vehicles and the roadside infrastructure in the licensed ITS band of 5.9 GHz (5.85-5.925 GHz). IEEE 1609 is a higher layer standard based on the IEEE 802.11p."

Back in December, Dr. Paul Martin did an equally useful presentation in the Mobile Broadband SIG and his presentation is equally relevant here as he introduced the different terms live V2X, V2i, V2V, V2P, etc. I have embedded his presentation below:



Roger Lanctot from Strategy Analytics, gave us some interesting facts and figures. Being based in the US, he was able to give us the view of both US as well as Europe. According to him, “LTE is the greatest source of change in value proposition and user experience for the customer and car maker. Bluetooth, Wi-Fi, NFC and satellite connectivity are all playing a role, but LTE deployment is the biggest wave sweeping the connected car, creating opportunities for new technologies and applications.” His officially released presentation is embedded below (which is much smaller than his presentation on that day.



There were also interesting presentations that I have not embedded but other may find useful. One was from Mike Short, VP of Telefonica and the other was from Dr. Ireri Ibarra of MIRA.


The final presentation by Martin Green of Visteon highlighted some interesting discussions regarding handovers that may be required when the vehicle (and the passengers inside) is moving between different access networks. I for one believe that this will not be an issue as there may be ways to work the priorities of access networks out. Anyway, his presentation included some useful nuggets and its embedded below:


Saturday, 5 April 2014

Some interesting April Fools' Day 2014 Technology Jokes

Its very interesting to see all the companies proposing very interesting concepts on the 1st of April. I was told that not everyone knows what April Fools day means so here is the link to Wikipedia.

Samsung Fly-Fi: Samsung has come up with some interesting ideas, the first being Wi-Fi for everyone powered by Pigeons. They have a website here with Video.

Power of Pigeons


Looks like since we have Pigeons everywhere, so they are always used in one way or the other. The best prank ever in my opinion was the PigeonRank by Google, back in 2002. I spent a few hours that day trying to figure out how they were actually doing it.

Smart Wear was always going to be the big thing. Quite a few smart wearables this year.

Bonobos has done a good job with with TechStyle. See video below:



Samsung has a glove called Samsung Fingers here. The best thing I liked was 'Talk to the Hand'

Samsung Fingers_Talk to the hand

HTC came up with similar concept called Gluuv



Toshiba's DiGiT is as interesting. See the video:


Virgin Mobile, Canada has come up with SmartKicks. See here.



Roku Watch is not too bad:


Virgin America even convinced Sir Richard Branson to appear in the April Fools ad along with Tony Faddell, the CEO of Nest. Funny Youtube video here.

Sony Power Food was just okay, video here.

Toshiba Spehere is a funny Gaming concept, see here.

Nokia reviewed its most popular phone 3310 with modern day features here. Coloured screen with 41Megapixel camera.

Google wants to Emojify the web here.

Google Japan has a magic hand here.

Selfiebot by Orbotix is a cool concept, here.

Twitter Helmet didnt make me laugh though. See here.

Is there some others that I missed? Please feel free to add it in the comments.

Saturday, 8 March 2014

Mobile World Congress 2014 (#MWC14) Roundups

The worlds largest technology event came to a conclusion just over a week back so here is a summary of reports and roundups written by different people. Feel free to add yours in the comments:

The best way is to start with this Video of different gadgets by Orange (excuse their adverts)


Maravedis-Rethink has an excellent summary from Network point of view:

Now all the carriers have the same devices, and the all-you-can-eat offers are largely gone. This has shifted the competitive race to innovation in pricing and bundling; to services, even over-the-top ones; but most importantly to the one area which is still unique to MNOs, their licensed-spectrum networks. The race to implement more and more advanced features from the 3GPP menu is not just a carrier game of ‘mine’s bigger than yours’, but a truly necessary attempt, at least in the developed mobile markets, to differentiate themselves with the most advanced network capacity and capabilities.

In the network, new battle lines are being drawn, and the players are placing big bets on unproven technologies and new architectures. This is taking place on two levels – the well-understood but highly complex advances in RAN platforms, from the LTE-Advanced standards to small cells to Cloud-RAN; and the shift towards software-driven, if not yet fully software-defined networking, and towards virtualization.

Complete summary here.

Chetan Sharma has written a brilliant summary and covers all different topics:

All the progress that has been on the mobile economy has been on the back of trillions of dollars of investment over the last couple of decades. With declining margins, how long do operators continue to invest and at what pace? What’s the margin profile they are willing to live with? What’s the role of government in building out the infrastructure when high-speed mobile networks are concerned? Japan, Korea, Israel have all based their competitiveness on connected broadband world. Can others follow? The impact of Whatsapp launching voice services and Netflix/Comcast deal were hotly debated in the hallways. It is one thing to put out national broadband plans and it is entirely another reality to have an execution path to deliver on the plan. The broadband investment has much far reaching implications than most people and governments realize.

Complete article here.

Ian Poole from Radio Electronics has done a good job too with the summary and video:

There was a considerable amount of talk about connected cities, connected cars and the like. Many exhibitors at Mobile World Congress were showing their ideas and developments. There is a huge amount of work going on in these areas and this is reflected in the work and products being exhibited.
Said Mike Short, VP Telefonica: “Mobile World Congress is more of a data World Congress . . . . . . . there are many software companies, many special network companies, other companies providing billing and customer care and there are solutions for the whole digital economy”
Talking to a variety of people across Mobile World Congress, it was obvious there is a large amount of work going on.
In terms of the auto mobile industry there is a lot of interest and development. While it is not expected all of the work will come to fruition in the short term, such as mesh networked cars where the networking elements can be used for crash avoidance, etc, there are other areas for in car connectivity that will be implemented in the shorter term.
Qualcomm were even demonstrating an electric racing car that not only used wireless communications technology, but also utilised wireless charging. In this way they were incorporating two developing technologies.
In addition to this, technologies like Weightless – the white space data cellular system have moved forwards. The original aim was for the technology to be used in the television white space to provide low powered data communications particularly for remote sensors and actuators. For these applications, cellular technology is too heavy. Dealing with complex waveforms like OFDM requires considerable processing and this is not conducive to long battery life – some devices ae expected to operate for months or even years from the same battery.
Neul has been working to develop the ideas further. They are now looking at using unlicensed spectrum instead of the TV white space. They have found that in urban areas, little white space often exists. Unfortunately it is often in urban environments where population levels are highest and there will be the greatest need for low power data communications.
In another move announced at Mobile World Congress Orange announced that it is helping start up companies who are developing products for the IoT. Orange states that it wants to help them accelerate development and assist with marketing. This move is possibly a long term move, because it can only be approached with 4G, but with 5G anticipated to be more capable of meeting IoT requirements it should be able to enter the market more strongly when it arrives. It is anticipated that the main areas where IoT will start to grow initially are personal services, healthcare, the connected home and smart cities.
Complete report and the video here.

Finally, an excellent summary on Small Cells and related by ThinkSmallCell:

The official Small Cell conference track was pretty tame - Vodafone have deployed 300K Small Cells in total, KT (Korea Telecom) and Radisys spoke of 18K LTE deployed in mostly indoor metropolitan areas. Vodafone said they continue to drive vendors to deliver multi-technology small cell and backhaul products with high operational efficiency and look for added value to help the business case. By contrast, the Small Cell Forum booth hosted extensive and popular presentations and is perhaps outgrowing its booth format.
A key network equipment vendor theme was SDN (Software Defined Network) and NFV (Network Function Virtualisation). We can expect next year to see this evolving to orchestration - better methods of managing and manipulating these virtualised software components, but in the short term it means slightly less or cheaper hardware. Frankly, I was more impressed to see Huawei now supporting any of 2G, 3G or LTE (FDD&TDD) on the same physical macrocell radio hardware modules - true software definable radio. We are beginning to see that capability for Small Cells too, but it's not quite as mature yet.
Most of the Small Cell activity is around 3G indoor (Enterprise) and LTE outdoor (Urban), with 3G still important indoors (for voice) and LTE HetNets seen as the longer term solution for capacity. At least four DAS vendors announced lower cost, simpler products intended to address larger buildings and stadia - highlighting the growing demand for in-building cellular solutions. Many new LTE Small Cell vendors are appearing on the scene. Residential femtocells still have a place in the market especially where integrated into a broadband modem or set-top box, driven by a different business case than before. There were some signs that the radical approach of Free France, who are shipping many 10Ks of femtocells a month, may be emulated by others.

Complete report here.

Ronald Gruia from Frost&Sullivan has created a summary presentation on Slideshare that is embedded below:



Other Summaries worth reading:


There was also a Carrier Wi-Fi Summit going on in parallel to the main MWC. A summary of that is available on the WBA website here: Day 1, Day 2, Day 3 and Day 4.

SKTelecom2

Claus Hetting has also added an excellent summary of the Carrier Wi-Fi Summit on his blog here.

Tuesday, 25 February 2014

Beacons, Bluetooth, NFC and WiFi


Not sure if you have heard about some kind of Beacons that will be used to guide us everywhere. There are Bluetooth Beeacons, iBeacon, Paypal Beacon, probably more. So here is an attempt to understand some of these things.

The first is this introductory presentation which seems to be extremely popular on Slideshare:



Once we understand the concept of Beacons, there is another presentation that helps us understand iBeacons and Paypal Beacons as follows:



Bluetooth Beacons vs Wifi vs NFC is an interesting article comparing the Beacons with WiFi & NFC. Read it here


Why Beacons may be NFC killer, GigaOm has a good answer here:
iBeacon could be a NFC killer because of its range. NFC tags are pretty cheap compared to NFC chips, but NFC tags are required on each product because NFC works only in very close proximity. In theory, NFC range is up to 20cm (7.87 inches), but the actual optimal range is less than 4cm (1.57 inches). Also, mobile devices need to contain a NFC chip that can handle any NFC communications. On the other hand, iBeacons are a little expensive compared to NFC chips, but iBeacons range is up to 50 meters. Not all phones have NFC chips, but almost all have Bluetooth capability.
Many years back there was a proximity marketing craze using Bluetooth. Then the craze died down and everyone started focussing on other approaches for LBS. I also suggested a Small Cells based approach here. Its good to see that we are going to use a new Bluetooth based approach for similar functions.

By the end of the year we will hopefully know if this is a new hype or a successful technology. Issues with battery drains, security, interoperability, etc. will need to be sorted asap for its success.

Tuesday, 12 November 2013

Mobile Video Offload using Wi-Fi is the only solution in the coming years

A very interesting infographic from Skyfire some months back highlighted some very valid issues about Video on mobiles.


Personally, I do watch quite a bit of video on my phone and tablet but only when connected using Wi-Fi. Occasionally when I am out, if someone sends me video clip on Whatsapp or some link to watch Video on youtube, I do try and see it. Most of the time the quality is too disappointing. It could be because my operator has been rated as the worst operator in UK. Anyway, as the infographic above suggests, there needs to be some kind of an optimisation done to make sure that end users are happy. OR, the users cn offload to Wi-Fi when possible to get a better experience.

This is one of the main reasons why operators are actively considering offloading to Wi-Fi and have carrier WiFi solutions in place. The standards are actively working in the same direction. Two of my recent posts on the topic of 'roaming using ANDSF' and 'challenges with seamless cellular/Wi-Fi handover' have been quite popular.



Recently I attended a webinar on the topic of 'Video Offload'. While the webinar reinforced my beliefs about why offload should be done, it did teach me a thing or two (like when is a Hotspot called a Homespot - see here). The presentation and the Video is embedded below. Before that, I want to show the result of a poll conducted during the webinar where the people present (and I would imagine there were quite a few people) were asked about how they think MNO will approach the WiFi solution in their network. Result as follows:



Here is the presentation:



Here is the video of the event:


Monday, 4 November 2013

Key challenges with automatic Wi-Fi / Cellular handover

Recently in a conference I mentioned that the 3GPP standards are working on standards that will allow automatic and seamless handovers between Cellular and Wi-Fi. At the same time operators may want to have a control where they can automatically switch on a users Wi-Fi radio (if switched off) and offload to Wi-Fi whenever possible. It upset quite a few people who were reasoning against the problems this could cause and the issues that need to be solved.

I have been meaning to list the possible issues which could be present in this scenario of automatically handing over between Wi-Fi and cellular, luckily I found that they have been listed very well in the recent 4G Americas whitepaper. The whitepaper is embedded below but here are the issues I had been wanting to discuss:

In particular, many of the challenges facing Wi-Fi/Cellular integration have to do with realizing a complete intelligent network selection solution that allows operators to steer traffic in a manner that maximizes user experience and addresses some of the challenges at the boundaries between RATs (2G, 3G, LTE and Wi-Fi).
Figure 1 (see above) below illustrates four of the key challenges at the Wi-Fi/Cellular boundary.
1) Premature Wi-Fi Selection: As devices with Wi-Fi enabled move into Wi-Fi coverage, they reselect to Wi-Fi without comparative evaluation of existing cellular and incoming Wi-Fi capabilities. This can result in degradation of end user experience due to premature reselection to Wi-Fi. Real time throughput based traffic steering can be used to mitigate this.
2) Unhealthy choices: In a mixed wireless network of LTE, HSPA and Wi-Fi, reselection may occur to a strong Wi-Fi network, which is under heavy load. The resulting ‘unhealthy’ choice results in a degradation of end user experience as performance on the cell edge of a lightly loaded cellular network may be superior to performance close to a heavily loaded Wi-Fi AP. Real time load based traffic steering can be used to mitigate this.
3) Lower capabilities: In some cases, reselection to a strong Wi-Fi AP may result in reduced performance (e.g. if the Wi-Fi AP is served by lower bandwidth in the backhaul than the cellular base station presently serving the device). Evaluation of criteria beyond wireless capabilities prior to access selection can be used to mitigate this.
4) Ping-Pong: This is an example of reduced end user experience due to ping-ponging between Wi-Fi and cellular accesses. This could be a result of premature Wi-Fi selection and mobility in a cellular environment with signal strengths very similar in both access types. Hysteresis concepts used in access selection similar to cellular IRAT, applied between Wi-Fi and cellular accesses can be used to mitigate this.
Here is the paper:



Tuesday, 29 October 2013

ANDSF: Evolution and Roaming with Hotspot 2.0


Access Network Discovery and Selection Function (ANDSF) is still evolving and with the introduction of Hotspot 2.0 (HS 2), there is a good possibility to provide seamless roaming from Cellular to Wi-Fi, Wi-Fi to Wi-Fi and Wi-Fi to Cellular.


There is a good paper (not very recent) by Alcatel-Lucent and BT that explains these roaming scenarios and other ANDSF policies related information very well. Its embedded below:




Monday, 15 July 2013

What's next with 802.11!


From another brilliant presentation by R&S from their LTE Summit 2013. Last year I had a similar overview from Agilent here. This one is much more detailed on what's coming next for WiFi.



Friday, 8 March 2013

802.11u, Passpoint and Hotspot 2.0 (HS 2.0)

Came across this interesting Video on Youtube explaining 802.11u that is embedded below.




A bit more detailed presentation on the same topic by Ruckus is also embedded below:


Related posts:


Wednesday, 27 February 2013

Wi-Fi & Packet Core (EPC) Integration

Yesterday I wrote a blog post on whether Wi-Fi is the third RAN in the Metrocells blog. Today I am posting this excellent presentation that details how this Wi-Fi integration with EPC will be done.



Saturday, 2 February 2013

Friday, 4 January 2013

Energy-efficient femtocell implementation

In an earlier post, we saw an idea on how to have energy efficient Femtocell. Here is a practical implementation from ALU on energy efficient Femtocell.



Thursday, 27 December 2012

Small Cells 'Terminology' and 'Comparison'


Here is AT&T's attempt in comparing the small cells. The above comparison is probably based on the assumption that LTE Small cells are not yet widely available. Once they are, then LTE can be put in for most columns in the Technology part.

See also:



Thursday, 29 November 2012

Hotspot 2.0, Next Generation Hotspot (NGH), etc.


From ZDNET:


Hotspot 2.0 is about certifying the hotspot itself, providing authentication using SIMs or certificates and the 802.11i standard, and using the recent 802.11u standard to provide performance and other information about the hotspots visible to a device. This will allow you to roam onto a hotspot with good connectivity that you have the right account to use, doing away with the need to select the network or enter your details into a web page, as you do today.

The Wi-Fi Alliance deals with the Wi-Fi hardware and the authentication specification under the name Passpoint, but this certification doesn't cover everything. The Wireless Broadband Alliance is a group of mobile and Wi-Fi operators that takes the Passpoint certification and ensures interoperability with other parts of the network — including authenticating to carriers' remote access RADIUS (Remote Authentication Dial-In User Service) servers, as well as roaming and billing.

"Next Generation Hotspot is the implementation of Hotspot 2.0 into a real, live network", explains Nigel Bird, the NGH Standardisation Manager at Orange Group.

From Next Generation Hotspot whitepaper:


A new program called Next Generation Hotspot (NGH) - using the latest HotSpot 2.0 specification1 - allows a mobile subscriber to connect automatically and securely to Hotspots using his service provider credentials while maintaining roaming visibility for the operator. NGH enables operators to continuously monitor and manage “cellular-like” service over Wi-Fi domestically and internationally so as to enhance performance and meet the demand for mobile data services over heterogeneous RANs - cellular and Wi-Fi. This enables mobile operators to simultaneously optimize backhaul throughput, offload specific traffic rapidly (e.g. video) and achieve better economics than traditional, cellular-only solutions.

The Wireless Broadband Appliance (WBA) and Small Cells Forum recently announced collaboration on this topic, see here.

More details are available in this presentation embedded below: