Showing posts with label Environment and Green Issues. Show all posts
Showing posts with label Environment and Green Issues. Show all posts

Tuesday 10 April 2012

Mobile Energy Efficiency (MEE) Optimisation project

Recently read that Telefonica, Germany has identified that it can save €1.8 million per year with the help of GSMA's MEE Optimisation service. Here is a detailed case study from GSMA:

Also, found a presentation that explains a bit more about what MEE (Mobile Energy Efficiency) is:
Maybe a good idea for other operators to start looking into how they can be saving with this initiative as well.

More details on MEE here.

Tuesday 19 October 2010

LTE Self Optimizing Networks (SON) enhancements for Release-10

Capacity and Coverage Optimisation (CCO) was already nominally part of the Release-9 WI, but could not be completed due to amount of work related to other use cases.

Energy Savings are a very important topic, especially for operators, as solutions derived for this use case can significantly limit their expenses. According to TR 36.902 this solution should concern switching off cells or whole base stations. This may require additional standardised methods, once there is need identified for.

Basic functionality of Mobility Load Balancing (MLB) and Mobility Robustness Optimisation (MRO), also listed in TR 36.902, were defined in Rel.9. However, successful roll-out of the LTE network requires analysing possible enhancements to the Rel.9 solutions for MLB and MRO. In particular, enhancements that address inter-RAT scenarios and inter-RAT information exchange must be considered. These enhancements should be addressed in Rel.10.

There may also be other use cases for LTE for which SON functionality would bring optimisations.

Although, it is of primary interest to provide coverage to users during a roll-out, it is equally important to enhance the capacity of the network during operation. As such, both coverage and capacity are considered in the use case and supported by the SON function. The CCO SON function should be configured through appropriate objectives and targets in order to meet the operator’s requirement on coverage and capacity, and the prioritization between them.

The following use cases and scenarios are planned for Release-10:

Coverage and Capacity Optimisation (CCO)
The use case is to enable detection of following problems:
Priority 1: coverage problems, e.g. coverage holes
Priority 2: capacity problems

Mobility Robustness Optimisation (MRO) enhancements
The use case is to enable detection and to provide tools for possible correction of following problems:
Connection failures in inter-RAT environment:
o Priority 1: at HOs from LTE to UMTS/GSM
o Priority 2: at HOs from UMTS/GSM to LTE
Obtaining UE measurements in case of unsuccessful re-establishment after connection
failure
Ping-pongs in idle mode (inter-RAT and intra-LTE environment)
Ping-pongs in active mode (inter-RAT)
HO to wrong cell (in intra-LTE environment) that does not cause connection failure (e.g. short stay problem)

Mobility Load Balancing (MLB) enhancements
The use case is to fulfil following objectives:
Improving reliability of MLB in intra-LTE scenarios
Improving functionality of the MLB in inter-RAT scenarios (the transport method agreed for R9 should be used for R10).

For more info see 3GPP TS 32.521: Self-Organizing Networks (SON) Policy Network Resource Model (NRM) Integration Reference Point (IRP); Requirements; Release-10

There is also a Self-Organising Networks Conference that I am attending next month and I plan to give SON lots of coverage before and after the event.

If you havent read the 3G Americas whitepaper on SON, it is definitely worth a read. I have embedded it below.



Tuesday 5 October 2010

3GPP Green activities / Energy Saving initiatives


3GPP has been working on Energy saving initiatives for Release-10 and Release-11. Here is a very quick summary of some of these items.

Telecommunication management; Study on Energy Savings Management (ESM)

Most mobile network operators aim at reducing their greenhouse emissions, by several means such as limiting their networks' energy consumption.

In new generation Radio Access Networks such as LTE, Energy Savings Management function takes place especially when mobile network operators want e.g. to reduce Tx power, switch off/on cell, etc. based on measurements made in the network having shown that there is no need to maintain active the full set of NE capabilities.

By initiating this Work Item about Energy Savings Management, 3GPP hopes to contribute to the protection of our environment and the environment of future generations.

The objective of this technical work is to study automated energy savings management features. Usage of existing IRPs is expected as much as possible, e.g. Configuration Management IRP, etc. However, this technical work may identify the need for defining a new IRP.

The following operations may be considered in this study item (but not necessarily limited to):
• Retrieval of energy consumption measurements
• Retrieval of traffic load measurements
• Adjust Network Resources capabilities


OAM aspects of Energy Saving in Radio Networks

There are strong requirements from operators on the management and monitoring of energy saving functions and the evaluation of its impact on the network and service quality. Therefore an efficient and standardized Management of Energy Saving functionality is needed. Coordination with other functionalities like load balancing and optimization functions is also required.

The objectives of this work item are:
• Define Energy Savings Management OAM requirements and solutions for the following use cases,
• eNodeB Overlaid
• Carrier restricted
• Capacity Limited Network
• Define OAM requirements and solutions for coordination of ESM with other functions like
• Self-Optimization
• Self Healing
• Traditional configuration management
• Fault Management
• Select existing measurements which can be used for assessing the impact and effect of Energy Saving actions corresponding to above Energy Saving use cases.
• Define new measurements which are required for assessing the impact and effect of Energy Saving actions, including measurements of the energy consumption corresponding to above Energy Saving use cases.


Study on impacts on UE-Core Network signalling from Energy Saving

Energy Saving (ES) mechanisms are becoming an integral part of radio networks, and consequently, of mobile networks. Strong requirements from operators (for reasons of cost and environmental image) and indirectly from authorities (for the sake of meeting overall international and national targets) have been formulated. With the expected masses of mobile network radio equipment as commodities, in the form of Home NB/eNBs, this aspect becomes even more crucial.

It is necessary to ensure that ES does not lead to service degradation or inefficiencies in the network. In particular:
• the activation status of radio stations (on/off) introduces a new scale of dynamicity for the UE and network;
• mass effects in signalling potentially endanger the network stability and need to be handled properly.

It is unclear whether and how currently defined procedures are able to cope with, and eventually can be optimized for, ES conditions; thus a systematic study is needed.

The study aims, within the defined CT1 work areas, at:
• analysing UE idle mode procedures and UE-Core Network signalling resulting from frequent switch on/off of radio equipment in all 3GPP accesses, including home cell deployment and I-WLAN;
• performing a corresponding analysis for connected mode UEs;
• analysing similar impacts from activation status of non-3GPP access networks;
• documenting limitations, weaknesses and inefficiencies in these procedures, with emphasis on mass effects in the UE-Core Network signalling;
• studying potential optimizations and enhancements to these procedures;

The study shall also evaluate and give recommendations on potential enhancements to 3GPP specifications (whether and where they are seen necessary).


Study on Solutions for Energy Saving within UTRA Node B

Due to the need to reduce energy consumption within operators’ networks, and considering the large amount of UMTS network equipment deployed in the field around the world, the standardisation of methods to save energy in UMTS Node Bs is seen as an important area of study for 3GPP.There has not been a large amount of focus on energy-saving in UMTS networks so far in 3GPP, although some solutions have been agreed in Release 9. Therefore it is proposed to start an initial study phase to identify solutions and perform any initial evaluation, such that a subset of these proposals can be used as the basis for further investigation of their feasibility.

The objective is to do an initial study to identify potential solutions to enable energy saving within UMTS Node-Bs, and do light initial evaluation of the proposed solutions, with the aim that a subset of them can be taken forward for further investigation as part of a more focused study in 3GPP.

The solutions identified in this study item should consider the following aspects:
• Impacts on the time for legacy and new UEs to gain access to service from the Node B
• Impacts on legacy and new terminals (e.g. power consumption, mobility)

Some initial indication of these aspects in relation to the proposed solutions should be provided.


Study on Network Energy Saving for E-UTRAN

The power efficiency in the infrastructure and terminal should be an essential part of the cost-related requirements in LTE-A. There is a strong need to investigate possible network energy saving mechanisms to reduce CO2 emission and OPEX of operators.

Although some solutions have been proposed and part of them have been agreed in Release-9, there has not been a large amount of attention on energy saving for E-UTRAN so far. Many potential solutions are not fully shown and discussed yet. Therefore, it is proposed to start an initial study phase to identify solutions, evaluate their gains and impacts on specifications.

The following use cases will be considered in this study item:
• Intra-eNB energy saving
• Inter-eNB energy saving
• Inter-RAT energy saving

Intra-eNB energy saving, in EUTRAN network, a single cell can operate in energy saving mode when the resource utilization is sufficiently low. In this case, the reduction of energy consumption will be mainly based on traffic monitoring with regard to QoS and coverage assurance.

A lot of work on Inter-eNB energy saving has already been done for both LTE and UTRA in Rel-9. This Study Item will investigate additional aspects (if any) on top of what was already agreed for R9.

Inter-RAT energy saving, in this use case, legacy networks, i.e. GERAN and UTRAN, provide radio coverage together with E-UTRAN. For example E-UTRAN Cell A is totally covered by UTRAN Cell B. Cell B is deployed to provide basic coverage of the voice or medium/low-speed data services in the area, while Cell A enhances the capability of the area to support high-speed data services. Then the energy saving procedure can be enabled based on the interaction of E-UTRAN and UTRAN system.

The objective of this study item is to identify potential solutions for energy saving in E-UTRAN and perform initial evaluation of the proposed solutions, so that a subset of them can be used as the basis for further investigation and standardization.

Energy saving solutions identified in this study item should be justified by valid scenario(s), and based on cell/network load situation. Impacts on legacy and new terminals when introducing an energy saving solution should be carefully considered. The scope of the study item shall be as follows:
• User accessibility should be guaranteed when a cell transfers to energy saving mode
• Backward compatibility shall be ensured and the ability to provide energy saving for Rel-10 network deployment that serves a number of legacy UEs should be considered
• Solutions shall not impact the Uu physical layer
• The solutions should not impact negatively the UE power consumption

RAN2 will focus on the Intra-eNB energy saving, while RAN3 will work on Inter-RAT energy saving and potential additional Inter-eNB energy saving technology.


Study on Solutions for GSM/EDGE BTS Energy Saving

There has not been a large amount of focus on energy-saving in GSM/EDGE networks so far in 3GPP, although some solutions have been agreed in previous Releases, notably MCBTS. Therefore it is proposed to start an initial study phase to identify solutions and perform any initial evaluation, such that a subset of these proposals can be used as the basis for further investigation of their feasibility.

The objective is to study potential solutions to enable energy saving within the BTS (including MCBTS and MSR), and evaluate each proposed solutions in detail. These potential solutions shall focus on the following specific aspects
• Reduction of Power on the BCCH carrier (potentially enabling dynamic adjustment of BCCH power)
• Reduction of power on DL common control channels
• Reduction of power on DL channels in dedicated mode, DTM and packet transfer mode
• Deactivation of cells (e.g. Cell Power Down and Cell DTX like concepts as discussed in RAN)
• Deactivation of other RATs in areas with multi-RAT deployments, for example, where the mobile station could assist the network to suspend/minimise specific in-use RATs at specific times of day
• And any other radio interface impacted power reduction solutions.

The solutions identified in this study item shall also consider the following aspects:
• Impacts on the time for legacy and new mobile stations to gain access to service from the BTS
• Impacts on legacy and new mobile stations to keep the ongoing service (without increasing drop rate)
• Impacts on legacy and new mobile stations implementation and power consumption, e.g. due to reduction in DL power, cell (re-)selection performance, handover performance, etc.
• Impacts on UL/DL coverage balance, especially to CS voice

Solutions shall be considered for both BTS energy saving non-supporting and supporting mobile stations (i.e. solutions that are non-backwards compatible towards legacy mobile stations shall be out of the scope of this study).

Friday 13 August 2010

Home Energy-Management solution using Femtocells



A recent demonstration from ip.access and AlertMe.com showed how femtocells can be integrated into smart-home energy-management solutions. With femtocell integration, the AlertMe Energy service can automatically detect when the house is empty and power down lights, televisions, and other home appliances. The service also can switch the services back on when the resident returns home.
For the demo, ip.access combined the AlertMe Energy service with its own femtocell technology. The solution works by allowing electrical appliances to switch on and off automatically in response to the presence or absence of mobile phones in the home. This “presence” information, which is routinely gathered by the femtocell, is normally only used to route cell-phone traffic and set tariffs.
In the demonstration, however, the AlertMe integration enables the presence information to be used to set light and power preferences, which are activated automatically when a subscriber arrives at home. Preset electrical outlets also can switch off automatically to save energy a few minutes after the last person has left the house.
The demonstration shows how supplementary service codes on the phone can be personalized through the femtocell when the phone is at home. For example, the phone can be used to remotely switch appliances on and off.
“One automatic trigger could be to switch the kettle on as soon as you arrive home,” says Dr. Andy Tiller, Vice President Marketing at ip.access. “But there is more to this than just tea and convenience. Using a femtocell to personalize supplementary service codes is a new and unique idea. It enables the mobile phone to become a powerful controller for all kinds of applications in the home. And because it’s a network-enabled feature, it works with any handset. There are no applications to install.”
According to AlertMe.com Founder Pilgrim Beart, “The mobile phone is increasingly the remote-control for your life. Most people carry their handset everywhere they go, making it an ideal control device for the AlertMe Energy service.”
The demo also shows how the AlertMe Hub (the central device that receives instructions via the Internet and controls the electrical plugs in the home) can be integrated inside a femtocell access point. It will then rely on the femtocell for power and its Internet connection. In this way, a mobile operator could offer a smart-home energy-management solution as an integrated option to its femtocell subscribers.
You can see the Video of the demo here. (Sorry no embed allowed)

Via: Andy Tiller in 3G in the Home.

Friday 6 August 2010

The Indian entrepreneur spirit


In India you can fix and recycle anything and everything. The last time I visited India, I took an old Nokia phone whose screen and buttons were not working. The charger socket was damaged. There was no battery. The cover was damaged and there was nothing right in that. It did have sentimental value for someone who wanted it fixed if possible.

I gave it to someone to get it fixed and then when I saw it again after a week it was all nice and new. I has to pay 1400 Rupees (approx. £20/$30) but it was invaluable for the person who wanted it fixed.

I read a very interesting Blog article by Shekhar Kapur yesterday and I decided to share it with you. Shekhar Kapur is well known actor/director of movies and his well known international movies as director include Elizabeth and Bandit Queen.

You can read the complete blog article here.

Back in UK, I do nowadays see mobile repair shops springing up in different places but I still think they are far behind these Indian repair shops which dont have much equipment and components but can still fix your item miraculously.

I also found another Interesting blog that has some interesting articles on the theme of 'Indian Entrepreneur Spirit'. See here.

Tuesday 8 June 2010

Running live networks on Renewable Energy sources

We have been hearing for years that Solar energy could be used to run remote BTS/Node B so i was glad to see that they are deployed in practise and are working well. It was very interesting to see hear Pradeep de Almeida, Group Chief Technology Officer, Dialog Telekom Plc, Sri Lanka in the LTE World Summit.

The picture above lists the features from an ideal renewable energy powered BTS or Node B (or eNodeB for that matter). The picture below shows one of the real life deployments in Sri Lanka.


It was very interesting to hear that the power generated using the Solar and Wind approach is generally in surplus and this extra energy could be sold to the power companies or can be used to provide an outlet point where the people can come and charge their phones.

The return of investment (ROI) for these kind of deployments could be as low as 2 years and can be as high as 4 years. The time for ROI will be reduced for countries where diesel (used for generators) is expensive and will be increased when diesel is cheap. That is why we may not find environmently friendly approaches in Middle East for quite some time because of cheap oil.

You can read more about the Dialog Telekom green energy initiative here and here.

Wednesday 2 June 2010

ZTE shows off its green credentials

ZTE has long been focussing on green(er) network and recycling. They launched their new generation 'green base stations back in 2006. They have also been recently cited for their energy saving technology. They also have a solar powered phone which is unfortunately not available in UK. Their Omni-RAN network can help reduce the OPEX by two thirds. Their focus has not only been on Mobile phones and networks but on the fixed lines as well.

So it was not at all surprising to hear Xiaodong Zhu, CTO of ZTE European marketing in the LTE World Summit talking about the end to end green networks. Green technology is not only helpful to for the 'green credentials' but it can also help reduce Opex which can help recover any additional investments (if any).

More manufacturers will hopefully follow the lead.

Saturday 21 November 2009

Updates from GSMA Asia Mobile Congress 09 - Day 2


Summary of interesting facts from the GSMA Mobile Asia Congress 09, Via Tomi Ahonen's, Communities Dominate Brands:

  • 55% of Japan has migrated past 3G to 3.5G
  • Japanese mobile content industry is worth 14 Billion dollars annually
  • 50% of mobile data in Japan is consumed in the home, the peak time for mobile data consumption is between 9 PM and 10 PM; and smartphone users consume 10 times more data than non-smartphone users.
  • Japan's Softbank will turn off their 2G network already in March of next year, 2010.
  • Allen Lew, Singtel's CEO, said that in Singapore almost 50% of smartphone owners are shifting web surfing activity away from PCs.
  • Jon Fredrik Baksaas, Telenor's President and CEO, spoke about the eco-friendly initiatives they have, such as solar powered cellular network base stations etc, but an interesting tidbit that came out, is that in Europe, Telenor has installed 870,000 household electricity meters that are remote digital meters and operate on the GSM cellular network, in Sweden. As Sweden's population is only about 7 million people that is probably a third of all households.
  • Rajat Mukarji of Idea (one of India's largest mobile operators), told us of the Indian market, where the average price of a voice minute is 1 cent (US). He Mr Mukarji also said that in India mobile is the first screen, not the fourth screen; and mobile is the first internet connectivity opportunity for most people of India.
  • Tony Warren, GM of Regulatory Affairs at Telstra, told that 60% of phones in Australia are 3G already, and over half of mobile data is now non-SMS type of more advanced mobile data. And he said that MMS is experiencing enormous growth, grew 300% in the past year.

You can read the summary of first day here.

Read the complete report here.

Wednesday 19 August 2009

Greener Base stations are must for the future

Its while now since the launch of the femtocell, the small box in the home that links to the broadband network and provides a mini base station for 3G phones to improve coverage and provide some interesting new services.

UK certainly is positioned well in femtocells which are lead by two companies - ip.access in Cambridge and Ubiquisys in Swindon, UK. PicoChip in Bath is another company which is providing silicon for the vast majority of the 3G femtocell rollouts.


But there is now significant competition, both from new divisions of companies such as Pirelli, established telecoms companies such as Sagem and Alcatel-Lucent (who have joined together to provide the Vodafone femtocell) and large players such as Huawei of China which ships equipment to 60m broadband subscribers and is a major supplier to the Chinese mobile operators.

However there is new factor which start to develop from the past year or so, i.e the factor of energy costs. It’s not a secret for anybody how energy process has soared in the past few years and now the telecoms are getting affected by this as well. Energy costs, both to build and run mobile networks, are getting increasingly important. Operators use a phenomenal amount of power, 400GW - or 200,000 tons of carbon - and over half of this is on the radio access. While this seems a lot, this equates to 25kg per user, or the same as an hour's drive on the motorway.

There is now research in place in order to study the whole energy chain, from the carbon cost of building the base stations, macrocells and femtocells, to the running costs.

In my view after looking at the femtocells especially at the Green Radio at the Wireless2.0 conference in Bristol recently, it's not clear whether femtocells are a lower energy solution, even though they provide a way of filling in the network at lower cost for the operators. Having a mini base station in your home obviously brings the access point closer for the mobile phone and hence the power consumed may be less. Bit how much of this is true I don’t know.

There is no doubt that energy factor is going to have a significant impact on the design and manufacture of femtocells and traditional mobile phone cells. If, as expected, the market takes off with millions of devices, this is going to have a huge energy cost.

As mentioned by Nick Flaherty in his blog that the carbon emission will also be a challenge for the home grown suppliers to provide low energy solutions, both in operations and also in the manufacturing to provide truly green radio. And this will help the UK expertise and innovation drive green radio technologies and processes into the industry.

There is no choice for the companies to look for the alternative and green solution. As costs of deploying solar and wind power falls and energy costs rise, carriers have started looking toward green cell sites.

Once such company who is taking a lead in this prospect is Alcatel-Lucent. It’s planning to have alternative energy-powered cellsites matches that of electrically powered cell sites, which could prompt a new wave of solar-and wind-powered base stations, even in areas where an electrical connection is available. In my opinion there is no other way round as the cost of traditional energy is increasing manifolds (together with carbon emission), the price of green technology falls and networks become more efficient, using alternative energy to provide all or part of the energy at cell sites is becoming less prohibitive

Alcatel-Lucent has been working with alternative energy in wireless for five years, but it has deployed only 300 sites, mainly in Africa and the Middle East until now, which rely entirely on alternate fuels. But in the last year especially after the recent recession the alternative energy solution become a priority which resulted in a surge in interest in those technologies.

Every body in this credit crunch are finding means to cur the cost and the operators are looking to avoid the enormous costs of transporting diesel to their remote cell.

The recession has certainly given some momentum to the alternative energy cell sites and there is no doubt acceleration towards this genuine cause.

This is purely simple Economics as Electricity is a large part of an operator’s operational budget as it feeds massive quantities of power to a highly distributed network of cell sites to support not just the base station power amplifiers and radios on-site but also the air-conditioning units necessary to power them. The increase in energy costs is being largely offset with the increased power efficiencies of most vendors’ equipment. The huge site cabinets are now getting replaced with compact modular base stations, which not only consume less power but also require far less cooling. The current generation of equipment has cut power consumption between one-third and one-half. Many new radio systems also are coming equipped with energy-saving software, which powers down the base station during non-peak hours or when relatively few customers are on the cell.

Current economic climate and energy efficiency factor will definitely serve to promote green energy sooner rather than push it off to a later date. Furthermore as the market for alternative energy solutions grows in other industries the cost of the technology goes down for telecom, sending the price of solar panels and wind turbines down. Combining the above trend together with regulatory and political environments the alternative energy solution is imminently favorable as a green solution.

Saturday 15 August 2009

Kenya gets Solar Charged Phones



Kenya is home to at least 17 million mobile-phone customers, but only one million have regular access to electricity, making it difficult to recharge a mobile phone.


But the first solar-powered handset could change Kenya's telecommunication industry.

Monday 15 June 2009

Nokia developing self-recharging phone


Standby mode is often accused of being the scourge of the planet, insidiously draining resources while offering little benefit other than a small red light and extra convenience for couch potatos. But now Nokia reckons a mobile phone that is always left in standby mode could be just what the environment needs.

A new prototype charging system from the company is able to power itself on nothing more than ambient radiowaves – the weak TV, radio and mobile phone signals that permanently surround us. The power harvested is small but it is almost enough to power a mobile in standby mode indefinitely without ever needing to plug it into the mains, according to Markku Rouvala, one of the researchers who developed the device at the Nokia Research Centre in Cambridge, UK.

This may sound too good to be true but Oyster cards used by London commuters perform a similar trick, powering themselves from radiowaves emitted by the reader devices as they are swiped. And similarly old crystal radio sets and more recently modern radio frequency identification (RFID) tags, increasingly used in shipping and as antitheft devices, are powered purely by radiowaves.

The difference with Nokia's prototype is that instead of harvesting tiny amounts of power (a few microwatts) from dedicated transmitters, Nokia claims it is able to scavenge relatively large amounts of power — around a thousand times as much — from signals coming from miles away. Individually the energy available in each of these signals is miniscule. But by harvesting radiowaves across a wide range of frequencies it all adds up, said Rouvala.

Such wireless transfer of energy was first demonstrated by Nikola Tesla in 1893, who was so taken with the idea he attempted to build an intercontinental transmission tower to send power wirelessly across the Atlantic. Nokia's device is somewhat less ambitious and is made possible thanks to a wide-band antenna and two very simple circuits. The antenna and the receiver circuit are designed to pick up a wide range of frequencies — from 500 megahertz to 10 gigahertz — and convert the electromagnetic waves into an electrical current, while the second circuit is designed to feed this current to the battery to recharge it.

The trick here is to ensure that these circuits use less power than is being received, said Rouvala. So far they have been able to harvest up to 5 milliwatts. Their short-term goal is to get in excess of 20 milliwatts, enough power to keep a phone in standby mode indefinitely without having to recharge it. But this would not be enough to actually use the phone to make or receive a call, he says. So ultimately the hope is to be able to get as much as 50 milliwatts which would be sufficient to slowly recharge the battery.
would be a remarkable achievement. . "Radio frequency power falls off exponentially with distance," he says. Earlier this year researchers at Intel and the University of Washington, in Seattle, showed that they could power a small sensor using a TV signal 4.1 kilometres away.

Wireless charging is not intended as a sole energy source, but rather to be used in conjunction with other energy harvesting technologies, such as handset casings embedded with solar cell materials. According to Technology Review magazine, the phone could be on the market in three to five years.

Thursday 12 February 2009

E-books readers: Good or Bad?

Quite a shocking news item from Guardian:

My iLiad ebook reader is sleek and beautiful. It's a pleasant object to hold, and with its useful page-turning bar, one-handed reading is simple. The matt non-backlit screen is easy on the eye, the design is elegant and unfussy, and it is simple to make notes in the text using the stylus, or to make the font larger or smaller. Perhaps my attachment to the physical form of the book was a little childish. After all, the words are the same whatever format I read them in, and surely it's the words that matter.

It's been striking to me how many book-lovers can immediately see the use of an ebook reader. I've taken my iLiad to writers' gatherings, book launches and meetings with editors. The very people I'd have expected to resist it - bookish people, who both read and write a lot - are the people who have looked at it, played with it, cooed over it and said decisively, "I need one of these." If these people take to the ebook reader with ease, the future of books may indeed be electronic.

And will this be a good thing for the environment? It's hard to judge. A report by the US book industry study group last year found that producing the average book releases more than 4kg of carbon dioxide into the atmosphere - that's the equivalent of flying about 20 miles. Then there's the cost of warehousing and transport to consider and the waste and toxic chemicals produced by paper mils.

What about the electronic alternative? While the digital books themselves have a relatively low impact - recent figures suggest that transferring one produces around 0.1g of CO2 - there are other factors to take into account. Charging the reader and turning virtual pages all have an energy cost, as does turning on your computer and downloading a file. Even so, the balance may still favour the hi-tech alternative. A 2003 study by the University of Michigan concluded that "electricity generation for an e-reader had less of an environmental impact than paper production for the conventional book system".

The heaviest burden, though, will be in making the reader itself. If one were to buy an ebook reader, then keep it for 30 years, the impact would be small. But many electronic devices don't last that long, and with the constant advances in processing power and functionality it's unlikely that we would want to keep a single ebook reader as long as we might keep a book.

Disposal of electronic items is extremely problematic. More than 6m electronic items are thrown away in the UK every year, and the cadmium from one discarded mobile phone is enough to pollute 600,000 litres of water. Even recycling electronic equipment - or processing them into constituent parts - isn't without environmental damage. A recent study by Hong Kong Baptist University examining the environment around a Chinese village intensely involved in e-waste recycling, showed that lead levels in the area - including schools - were raised to an extent that might be dangerous. Paper books are, at least, eventually biodegradable, while ebook readers might pose a lasting environmental problem.

Read the complete article here.

Tuesday 19 August 2008

Nokia Eco Sensor Concept Mobile

Though this is not new, i havent seen it anywhere and found it recently while working on a report.

A visionary design concept is a mobile phone and compatible sensing device that will help you stay connected to your friends and loved ones, as well as to your health and local environment. You can also share the environmental data your sensing device collects and view other users’ shared data, thereby increasing your global environmental awareness.

The concept consists of two parts – a wearable sensor unit which can sense and analyze your environment, health, and local weather conditions, and a dedicated mobile phone.

The sensor unit will be worn on a wrist or neck strap made from solar cells that provide power to the sensors. NFC (near field communication) technology will relay information by touch from the sensors to the phone or to or to other devices that support NFC technology.

Both the phone and the sensor unit will be as compact as possible to minimize material use, and those materials used in the design will be renewable and/or reclaimed. Technologies used inside the phone and sensor unit will also help save energy.

To help make you more aware of your health and local environmental conditions, the Nokia Eco Sensor Concept will include a separate, wearable sensing device with detectors that collect environment, health, and/or weather data.

You will be able to choose which sensors you would like to have inside the sensing device, thereby customizing the device to your needs and desires. For example, you could use the device as a “personal trainee” if you were to choose a heart-rate monitor and motion detector (for measuring your walking pace).
The Nokia Eco Sensor Concept is built upon all three of these underlying principles of waste reduction. Emphasis will be placed on materials use and reuse in the phone’s construction.

To complete the Nokia Eco Sensor Concept, the phone and detector units will be optimized for lower energy consumption than phones in 2007 in both the manufacturing process and use. Alternative energy sources, such as solar power, will fuel the sensor unit’s power usage.

Please note that this is a concept phone so you wont be seeing this in a shop near you anytime soon.