Showing posts with label HSPA. Show all posts
Showing posts with label HSPA. Show all posts

Tuesday 13 April 2010

HSPA finds success with Mobile Broadband Growth


Another GSA report titled "Mobile Broadband Growth - Reports from HSPA Operators Worldwide". As the name suggests, this contains report from different operators on their Mobile Broadband revenues growth.

Some interesting bits from the report:
  • According to a report from AdMob, smartphonedata traffic grew 193% year-over-year in the month of February 2010. Smartphonesaccounted for 48% of its traffic in February 2010, up from 35% the year before. AdMobattributed this primarily to iPhoneand Android traffic.
  • Deutsche Telekom CEO RenĂ© Obermann is expected to double revenues by 2015 with €10 billion coming from mobile data traffic. Obermann said it would double the number of 3G smartphonesin the network to around 8 million by the end of 2010
  • A recent report by In-Stat, stated that mobile broadband is now the second-largest access technology behind DSL, making up 18% subscribers
  • Telia Sonera reported that the strong demand for mobile devices, including mobile broadband and Apple iPhone™, continued. Mobile data traffic in Nordic and Baltic operations increased close to 200% while the number of mobile broadband subscriptions rose by more than 60% during 2009.
  • AT&T reported that Text messaging grew 50% YoY and picture messaging grew 130%
  • According to IDC's Worldwide Quarterly Mobile Phone Tracker, vendors shipped a total of 54.5 million units Q4 09, up 39.0% from Q4 08. Vendors shipped a total of 174.2m units in 2009, up 15.1% from the 151.4m units in 2008. Converged mobile devices accounted for 15.4% of all mobile phones shipped in 2009, up slightly from 12.7% in 2008
  • The number of people subscribing to broadband internet services in Australia grew rapidly with wireless broadband and 3G mobile services continuing strong growth in 2009, according to a new report by ACMA (Australian Communications and Media Authority). 3G now accounts for more than 50% of all mobile subscriptions, an annual increase of 44%. Internet subscriptions reached 8.4 million in June 2009, compared to 7.2 million in June 2008. Broadband subscriptions increased from 5.66 million to 6.72 million in the same period, with wireless subscribers gaining 162% to 2.1 million
  • Vodafone's Data traffic has risen 300% in the past two years. Data now represents 11% of all European service revenues. Smartphones represent 20% of handsets sales. Around 40% of the company's European 3G/HSPA networks now support 7.2 Mbps. In the coming 6 months, Vodafone plans to upgrade 20-25,000 sites across Europe to HSPA+
  • UK consultancy firm, Coda Research Consultancy, has predicted that mobile data consumption in the US is set to reach 327,000 terabytes a month by 2015, indicating a 40-fold rise in mobile data consumption over 5 years
  • Mobile data traffic from PC modems and routers is forecast to increase 4-fold between 2010 and 2014, according to a report by ABI Research. 2,000 petabytes of data will be sent and received in 2010, a figure that will rise to about 8,000 petabytesin 2014
  • Semiannual US wireless industry survey was released at CTIA in March 2010 revealing that wireless service revenues totaled $77 billion for the last half of the year. The real growth is coming from wireless data services -mobile Web, text messages, and other non-voice services. In the latter half of last year, revenue for wireless data service totaled > $22 billion, nearly a third of overall wireless services revenue and up 26% YoY. Steve Largent, President and CEO of CTIA, said in a statement. "Mobile broadband will increasingly play a vital role in people’s lives."
  • A new study by Juniper Research has forecast that more than 1 in 10 mobile subs will either have a ticket delivered to their mobile phone or buy a ticket with their phone by 2014, representing a five-fold growth over the next five years.
  • Strategy Analytics recently forecast that the number of active mobile broadband subscriptions worldwide is expected to rise to around 1.3 billion by 2014
  • ABI Research announced that shipments of mobile broadband-enabled consumer products, which includes e-book readers, mobile digital cameras, camcorders, personal media players, personal navigation devices and mobile gaming devices will increase 55-fold between 2008 and 2014 with total shipments reaching 58 million units per year in 2014

Thursday 11 March 2010

HSPA+ to reach 168Mbps in Release-10


Just when we thought that we have squeezed every bit out of HSPA, a surprise waiting is the speeds of upto 168Mbps in the downlink. Going back to the 3G Americas report, there is a section in the end that details HSPA+ enhancements for Rel-10:

Rel-8 introduced dual-carrier HSDPA operation in the downlink while Rel-9 similarly introduced dual-carrier HSUPA operation in the uplink and also enhanced the dual-carrier HSDPA operation by combining it with MIMO.

Further enhanced multi-carrier HSDPA operation is being specified for Rel-10, where the base station will be able to schedule HSDPA transmissions over three or four carriers simultaneously to a single user with the carriers are spread over one or two frequency bands. Solutions specified in earlier releases can be reused to a large extent. The difference is that now it is possible to configure a UE with one primary serving cell and up to three secondary serving cells. As in earlier releases, the secondary serving cells can be activated and deactivated dynamically by the base station using so-called “HS-SCCH orders.” With MIMO transmission on all four carriers, the peak rate would be doubled to 168 Mbps compared to Rel-9 and for typical bursty traffic the average user throughput would also experience a substantial increase.

Remember, I posted a blog on data rates calculation? The maximum data rate in Release-8 HSDPA is 42Mbps. With Dual-carrier operation, this could be doubled to 84Mbps. As you can probably guess, with 4 carriers, this will become 168Mbps ;)

For people who are less technically inclined, can check this Ericsson presentation on HSPA+ data rates. For people who may become sleepless without some technical references can check this report from RAN WG#1 meeting#59. If you are not sure what RAN WG#1 is, check quick tutorial on 3GPP here.

Going back to the 3GPP report, section 5.4 lists the details of 4 carriers HSDPA. It would be interesting to see what happens in cases where initially there were 4 carriers but then in a particular spot it changed to 2 carriers, and vice-versa. People who have yet to work on LTE may not have to worry too much as HSPA is being future proofed against the threats of LTE and WiMAX.

Interestingly enough, HSPA+ offers a better and cleaner solution at the moment especially with regards to voice calls and handing over to GSM then LTE or WiMAX.

It wont come as a surprise if the HSPA+ camp are able to pull out some new tricks from their bag just in time for Release-11.

Monday 8 February 2010

3G Americas Publishes New Report on Technology choices for Mobile Broadband

3G Americas, a wireless industry trade association representing the GSM family of technologies including LTE, announced that it has published its highly anticipated resource report on 3rd Generation Partnership Project (3GPP) standards and their evolution to IMT-Advanced, or 4G. The white paper, 3GPP Mobile Broadband Innovation Path to 4G: Release 9, Release 10 and Beyond: HSPA+, SAE/LTE and LTE-Advanced, provides in-depth examination of 3GPP technology standards from a technical, business and applications standpoint.

“The 3GPP technology standards deliver mobile connectivity to more than 4 billion users worldwide today and have been developed to continue evolving to higher levels of performance with mobile broadband innovation,” said Chris Pearson, president of 3G Americas. “GSM operators can choose to evolve their networks in ways that best suit their assets and business environments with benefits that offer flexibility, scalability and economic advantages, whether they choose HSPA+ or LTE.”



UMTS-HSPA is the world’s leading 3G technology and is the preferred choice for the majority of wireless operators and subscribers today and into the future. The global demand for wireless data services continues to drive the rapid growth of HSPA technology with 303 commercial HSPA networks and over 454 million UMTS-HSPA subscriptions reported at the end of 2009 by Informa Telecoms & Media. Informa has further projected that by year-end 2012, worldwide subscriptions to UMTS-HSPA will reach nearly 1.4 billion; by year-end 2013, global UMTS-HSPA subscriptions are expected to exceed 2 billion, rising to 2.8 billion by the end of 2014. GSM-UMTS-HSPA subscriptions provide the foundation for future evolutions to 3GPP Release 9, Release 10 and beyond with HSPA+, LTE and LTE-Advanced.

“Wireless data consumption is increasing faster now than ever before,” said Adrian Scrase, 3GPP Head of Mobile Competence Center. “Smartphone usage is experiencing higher volumes and the superior user experience offered by such devices is resulting in quickly rising demand and escalating use of wireless data applications. This is consequently driving the need for continued innovations that are supported by the efficient and successful 3GPP technology path.”


3GPP Mobile Broadband Innovation Path to 4G: Release 9, Release 10 and Beyond: HSPA+, SAE/LTE and LTE-Advanced, is a comprehensive resource intended to assist members of the wireless industry as well as interested members of the general public in understanding details of the work in 3GPP on Release 9 and Release 10. In addition, the report further describes the features of Release 8 that were closed in March 2009.

Release 9, which is targeted for completion by March 2010, will provide increased feature functionality and performance enhancements to both HSPA and LTE. The report reviews additional multi-carrier and MIMO options for HSPA and features and enhancements to support emergency services, location services and broadcast services for LTE. Other Release 9 enhancements include those to support Home NodeB/eNodeB (i.e. femtocells), Self-Organizing/Self-Optimizing Networks (SON) and the evolution of the IP Multimedia Subsystem (IMS) architecture.

LTE will serve to unify the fixed and mobile broadband worlds. As an all IP-based technology, LTE will allow expansion of the Internet experience on mobile devices and deliver multimedia content to the screen of choice. The vast majority of leading operators, device and infrastructure manufacturers support LTE as the mobile broadband technology of the future and, according to Informa Telecoms & Media, 130 global operators have announced trials or intentions to evolve their networks to LTE. Two commercial networks have already been launched in Norway and Sweden by TeliaSonera in 2009 and as many as 20 will be launched in 2010.

“All roads lead to LTE – for GSM, CDMA, newly licensed and potentially even WiMAX mobile operators,” Pearson added. “The appeal of the 3GPP technology roadmap is no longer suited for only GSM operators.”

While work for Release 9 is nearing completion, significant progress has already been made in 3GPP on work for Release 10, which includes LTE-Advanced. In fact, 3GPP already submitted a proposal in October 2009 based on LTE-Advanced for the IMT-Advanced evaluation and certification process led by the International Telecommunication Union (ITU). The ITU has defined requirements that will officially define and certify technologies as IMT-Advanced, or 4G, and is expected to evaluate submitted proposals by standards organizations for potential certification in the 2010 timeframe; certified 4G/IMT-Advanced technology specifications are projected to be published by early 2011.

As part of Release 10, some of the key LTE-Advanced technology enhancements include carrier aggregation, multi-antenna enhancements and relays. Assuming LTE-Advanced is certified to be IMT-Advanced compliant, 3GPP targets completion of the Release 10 specification by year-end 2010.

“The white paper by 3G Americas provides an excellent overview of the work by 3GPP in determining the standards on the path to 4G,” Scrase said.

The popular white paper, 3GPP Mobile Broadband Innovation Path to 4G: Release 9, Release 10 and Beyond: HSPA+, SAE/LTE and LTE-Advanced, was written collaboratively by members of 3G Americas and is available for free download here.

Monday 11 January 2010

Technologies and Standards for TD-SCDMA Evolutions to IMT-Advanced

Picture Source: http://www.itu.int/dms_pub/itu-t/oth/21/05/T21050000010003PDFE.pdf

This is a summary of a paper from IEEE Communications Magazine, Dec 2009 issue titled "Technologies and Standards for TD-SCDMA Evolutions to IMT-Advanced" by Mugen Peng and Wenbo Wang of Beijing University of Posts and Telecommunications with my own comments and understanding.

As I have blogged about in the past that China Mobile has launched TD-SCDMA network in China and the main focus to to iron out the basic problems before moving onto the evolved TD-SCDMA network. Couple of device manufacturers have already started working on the TD-HSPA devices. Couple of months back, 3G Americas published a whitepaper giving overview and emphasising the advantages of TDD flavour of LTE as compared to FDD. The next milestone is the IMT-Advanced that is under discussion at the moment and China has already proposed TD-LTE-Advanced which would be compatible with the TD-SCDMA technology.

For anyone who does not know the difference between TDD, FDD and TD-SCDMA please see this blog.

The TD-SCDMA technology has been standardised quite a while back but the rollout has been slow. The commercial TD-SCDMA network was rolled out in 2009 and more and more device manufacturers are getting interested in the technology. This could be due to the fact that China Mobile has a customer base of over 500 million subscribers. As of July 2009 over 100 device manufacturers were working on TD-SCDMA technology.

The big problem with TD-SCDMA (as in the case of R99 3G) is that the practical data rate is 350kbps max. This can definitely not provide a broadband experience. To increase the data rates there are two different approaches. First is the Short Term Evolution (STE) and the other is Long Term Evolution (LTE).

The first phase of evolution as can be seen in the picture above is the TD-STE. This consists of single carrier and multi-carrier TD-HSDPA/TD-HSUPA (TD-HSPA), TD-MBMS and TD-HSPA+.

The LTE part is known as TD-LTE. There is a definite evolution path specified from TD-SCDMA to TD-LTE and hence TD-LTE is widely supported by the TD-SCDMA technology device manufacturers and operators. The target of TD-LTE is to enhance the capabilities of coverage, service provision, and mobility support of TD-SCDMA. To save investment and make full use of the network infrastructure available, the design of TD-LTE takes into account the features of TD-SCDMA, and keeps TD-LTE backward compatible with TD-SCDMA and TD-STE systems to ensure smooth migration.

The final phase of evolution is the 4G technology or IMT-Advanced and the TD-SCDMA candidate for TD-LTE+ is TD-LTE-Advanced. Some mature techniques related to the TD-SCDMA characteristics, such as beamforming (BF), dynamic channel allocation, and uplink synchronization, will be creatively incorporated in the TD-LTE+ system.

Some academic proposals were also made like the one available here on the future evolution of TD-SCDMA but they lacked the industry requirements and are just useful for theoretical research.

The standards of TD-SCDMA and its evolution systems are supervised by 3GPP in Europe and by CCSA (Chinese Cellular Standards Association) in China. In March 2001 3GPP fulfilled TD-SCDMA low chip rate (LCR) standardization in Release 4 (R4). The improved R4 and Release 5 (R5) specifications have added some promising functions including HSDPA, synchronization procedures, terminal location (angle of arrival [AOA]-aided location), and so on.

When the industry standardizations supervised by CCSA are focusing on the integration of R4 and R5, the N-frequency TD-SCDMA and the extension of HSDPA from single- to multicarrier are presented. Meanwhile, some networking techniques, such as N-frequency, polarized smart antenna, and a new networking configuration with baseband unit plus remote radio unit (BBU+RRU), are present in the commercial application of TD-SCDMA.

TD-SCDMA STE

For the first evolution phase of TD-SCDMA, three alternative solutions are considered. The first one is compatible with WCDMA STE, which is based on HSDPA/HSUPA technology. The second is to provide MBMS service via the compatible multicast broadcast single-frequency network (MBSFN) technique or the new union time-slot network (UTN) technique. The last is HSPA+ to achieve similar performance as LTE.

On a single carrier, TD-HSDPA can reach a peak rate of 2.8 Mb/s for each carrier when the
ratio of upstream and downstream time slots is 1:5. The theoretical peak transmission rate of a three-carrier HSDPA system with 16-quadrature amplitude modulation (QAM) is up to 8.4 Mb/s.

Single-carrier TD-HSUPA can achieve different throughput rates if the configurations and parameters are varied, including the number of occupied time slots, the modulation, and the transport block size in bytes. Considering the complexity of a terminal with several carriers in TD-HSUPA, multicarrier is configured in the Node B, while only one carrier is employed in the terminal.

In Rel-7 based TD-HSPA+, In order to match the performance of orthogonal frequency-division multiple access (OFDMA)-based TD-LTE systems, some advanced techniques are utilized, such as multiple-input multiple-output (MIMO), polarized BF, higher modulation and coding schemes (64-QAM is available), adaptive fast scheduling, multicarrier techniques, and so on. Theoretically, 64-QAM can improve performance by a factor of 1.5 compared to the current 16-QAM; for single-carrier the peak rate reaches 4.2 Mb/s, and three-carrier up to 12.6 Mb/s.

For the MIMO technique, double transmit antenna array (D-TxAA), based on the pre-coding method at the transmitter, has been employed in frequency-division duplex (FDD)-HSPA+ systems, while selective per antenna rate control (S-PARC), motivated by the Shannon capacity limit for an open loop MIMO link, has been applied in TD-HSPA+ systems.

TD-SCDMA LTE

The TD-SCDMA LTE program was kicked off in November 2004, and the LTE demand report was approved in June 2005. The LTE specified for TD_SCDMA evolution is named TD-LTE.

LTE systems are supposed to work in both FDD and TDD modes. LTE TDD and FDD modes have been greatly harmonized in the sense that both modes share the same underlying framework, including radio access schemes OFDMA in downlink and SC-FDMA in uplink, basic subframe formats, configuration protocols, and so on.

TD-LTE trials have already started last year with some positive results.

TD-SCDMA LTE+

IMT-Advanced can be regarded as a B3G/4G standard, and the current TD-SCDMA standard migrating to IMT-Advanced can be regarded as a thorough revolution. TD-LTE advanced (TD-LTE+) is a good match with the TD-SCDMA revolution to IMT-Advanced.

It is predicted that the future TD-SCDMA revolution technology will support data rates up to approximately 100 Mb/s for high mobility and up to approximately 1 Gb/s for low mobility such as nomadic/local wireless access.

Recently, some advanced techniques have been presented for TD-LTE+ in China, ranging from the system architecture to the radio processing techniques, such as multi-user (MU)-BF, wireless relaying, and carrier aggregation (CA).

For MU-BF see the paper proposed by Huawei, CHina Mobile and CATT here (http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_55b/Docs/R1-090133.zip).

For Wireless Relaying see the ZTE paper here (http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_56b/Docs/R1-091423.zip).

To achieve higher performance and target peak data rates, LTE+ systems should support bandwidth greater than 20 MHz (e.g., up to 100 MHz). Consequently, the requirements for TD-LTE+ include support for larger transmission bandwidths than in TD-LTE. Moreover, there should be backward compatibility so that a TD-LTE user can work in TD-LTE+ networks. CA is a concept that can provide bandwidth scalability while maintaining backward compatibility with TD-LTE through any of the constituent carriers, where multiple component carriers are aggregated to the desired TD-LTE+ system bandwidth. A TD-LTE R8 terminal can receive one of these component carriers, while an TD-LTE+ terminal can simultaneously access multiple component carriers. Compared to other approaches, CA does not require extensive changes to the TD-LTE physical layer structure and simplifies reuse of existing implementations. For more on Carrier Aggregation see CATT, LGE and Motorola paper here (http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_56b/Docs/R1-091655.zip).

Finally, there are some interesting developments happening in the TD-SCDMA market with bigger players getting interested. Once a critical mass is reached in the number of subscribers as well as the manufacturers I wouldnt be surprised if this technology is exported beyond the Chinese borders. With clear and defined evolution path this could be a win-win situation for everyone.

Thursday 3 December 2009

MBMS and AMR-WB


Nokia publicly underlined its commitment to broadcast-mobile-TV standard DVB-H with the recent unveiling of the mobile TV edition of the Nokia 5330 and its pretax, presubsidy price tag of €155 (US$230), after some in the industry had questioned its enthusiasm for launching new DVB-H devices. Nokia also quelled any suggestions that it might start supporting the MBMS standard with its future device launches.

The price is a massive drop from the €550 price tag carried by Nokia’s last fully DVB-H-compatible handset, the N96, which launched in 3Q08. So the official line from Nokia is this: “All is well on the good ship DVB-H.”

Read more here.

Meanwhile, In China, China Unicom has launched 3G telecom services in 268 cities across the country, said Li Gang, another deputy general manger for Unicom Group, noting that the WCDMA network supports a 14Mbps download data transmission speed and a 7.2Mbps upload data transmission speed.

Notably, the carrier has adopted the most advanced R6 technology in its core WCDMA network to smooth a WCDMA-to-EPS migration in the future, according to Mr. Zhang.

The China Unicom network is expected to support MBMS and HSPA+64QAM technology in the first phase of a further evolution, shore up a HSPA+MIMO technology in the Phase II evolution, and prompt a LTE technology in the Phase III evolution, said Mr. Zhang, adding that the network will present a 100Mbps download speed and a 50Mbps upload speed after the Phase III evolution.

Read more here.
Back in September, Orange Moldova announced the launch of the world's first mobile telephone service offering high-definition (HD) sound. The service will provide customers with a significantly improved quality of service when making calls. Unlike for other mobile technologies such as multimedia capabilities, this is the first time since the 1990s that mobile voice technologies have been subject to a significant evolution.

This is the second step in Orange’s HD voice strategy, following on from the launch of a high-definition voice service for VoIP calls in 2006. Over 500,000 Livephone devices have already been sold in France and the range will be extended to other Orange countries over the coming months.

The first mobile handset integrating high-definition voice capability that will be launched by Orange Moldova is the Nokia 6720c. This innovative handset integrates the new WB-AMR technology, which is widely expected within the industry to become a new standard for mobile voice communications.

Thanks to the Adaptive Multi Rate-WideBand (AMR-WB) codec, double the frequency spectrum will be given over to voice telephony over traditional voice calling. Orange boasts that the result is "near hi-fi quality" and "FM-radio quality", which seems an odd comparison.

Saturday 21 November 2009

Updates from GSMA Asia Mobile Congress 09 - Day 2


Summary of interesting facts from the GSMA Mobile Asia Congress 09, Via Tomi Ahonen's, Communities Dominate Brands:

  • 55% of Japan has migrated past 3G to 3.5G
  • Japanese mobile content industry is worth 14 Billion dollars annually
  • 50% of mobile data in Japan is consumed in the home, the peak time for mobile data consumption is between 9 PM and 10 PM; and smartphone users consume 10 times more data than non-smartphone users.
  • Japan's Softbank will turn off their 2G network already in March of next year, 2010.
  • Allen Lew, Singtel's CEO, said that in Singapore almost 50% of smartphone owners are shifting web surfing activity away from PCs.
  • Jon Fredrik Baksaas, Telenor's President and CEO, spoke about the eco-friendly initiatives they have, such as solar powered cellular network base stations etc, but an interesting tidbit that came out, is that in Europe, Telenor has installed 870,000 household electricity meters that are remote digital meters and operate on the GSM cellular network, in Sweden. As Sweden's population is only about 7 million people that is probably a third of all households.
  • Rajat Mukarji of Idea (one of India's largest mobile operators), told us of the Indian market, where the average price of a voice minute is 1 cent (US). He Mr Mukarji also said that in India mobile is the first screen, not the fourth screen; and mobile is the first internet connectivity opportunity for most people of India.
  • Tony Warren, GM of Regulatory Affairs at Telstra, told that 60% of phones in Australia are 3G already, and over half of mobile data is now non-SMS type of more advanced mobile data. And he said that MMS is experiencing enormous growth, grew 300% in the past year.

You can read the summary of first day here.

Read the complete report here.

Monday 21 September 2009

HSPA Functions and Benefits

Very interesting diagram summarising HSPA Functions and Benefits

Source: 3G Americas Whitepaper, HSPA to LTE-Advanced: 3GPP Broadband Evolution to IMT-Advanced (4G)

Thursday 17 September 2009

Wireless Subscribers Forecast 2014



Source: Informa Telecoms & Media, WCIS+, June 2009

Via: 3G Americas Whitepaper, HSPA to LTE-Advanced: 3GPP Broadband Evolution to IMT-Advanced (4G)

Thursday 10 September 2009

New report on Mobile Broadband Evolution from HSPA to LTE-Advanced


The white paper, HSPA to LTE-Advanced: 3GPP Broadband Evolution to IMT-Advanced (4G), discusses the 3GPP evolution of EDGE, HSPA and LTE, their capabilities and their positions relative to other primary competing technologies and how these technologies fit into the ITU roadmap that leads to IMT-Advanced.

The following are some of the important observations and conclusions of the report:

  • HSPA Evolution (HSPA+) provides a strategic performance roadmap advantage for GSM-HSPA operators. Features such as dual-carrier operation, MIMO and higher-order modulation offer operators multiple options for improving their networks, and some of these features are simply network software upgrades.
  • Persistent innovation in developing HSPA and HSPA+ is bringing UMTS to its full potential providing mobile broadband to the mass market; in current deployments, HSPA users regularly experience throughput rates well in excess of 1 Mbps under favorable conditions, on both downlinks and uplinks, with 4 Mbps downlink speed commonly being measured. Planned enhancements such as dual-carrier operation will double peak user-achievable throughput rates.
  • LTE has become the next-generation platform of choice for GSM-HSPA and CDMA/EV-DO operators.
  • The 3GPP OFDMA approach used in LTE matches or exceeds the capabilities of any other OFDMA system providing the most powerful wide area wireless technology ever developed. Peak theoretical downlink rates are 326 Mbps in a 20 MHz channel bandwidth.
  • 3GPP has made significant progress investigating how to enhance LTE to meet the requirements of IMT-Advanced in a project called LTE-Advanced.

With a customer base of 4 billion connections today, the GSM family of technologies is available on nearly 800 networks in 219 countries worldwide. Building on this base, UMTS-HSPA – the world’s dominant mobile broadband technology today – has proven to be the most widely deployed and adopted 3G technology of all time, with more than 352 operators in various stages of deployment, including 277 commercial HSPA networks in 116 countries.

The white paper explains the tremendous opportunity afforded to GSM-HSPA operators via the 3GPP roadmap to HSPA+. While OFDMA systems such as LTE and WiMAX have attracted a great amount of attention, evolving HSPA to exploit available radio technologies can significantly enhance its performance capabilities and extend the life of sizable operator HSPA infrastructure investments. Techniques include advanced receivers, MIMO, Continuous Packet Connectivity, Higher-Order Modulation and One Tunnel Architecture, many of which are included in the standardization of 3GPP Release 7 and Release 8.

Depending on the features implemented, HSPA+ can exceed the capabilities of IEEE 802.16e-2005 (Mobile WiMAX Release-1) in the same amount of spectrum. Beyond the peak data rate of 42 Mbps for HSPA+ in Release 8 (with 2X2 MIMO, DL 64 QAM and UL 16 QAM), Release 9 may specify 2X2 MIMO in combination with dual-carrier operation, which would further boost peak theoretical downlink network rates to 84 Mbps. In addition to the increased speeds, HSPA+ also will more than double HSPA capacity and has the potential of reducing latency to below 25 milliseconds.

HSPA and HSPA+ will continue to dominate mobile broadband subscriptions worldwide for the remainder of this decade and well into the next. However, announcements have already begun in support of the next 3GPP evolutionary step, LTE. Trials and deployments of LTE will begin in 2010 by leading operators including AT&T, China Mobile, China Telecom, NTT DoCoMo, Verizon and Vodafone. In fact, today there are more than 2 billion subscriptions represented by combining the total existing customer bases of the more than 100 operators, both GSM and CDMA operators, who have announced indications of their intention to deploy LTE networks.

The deployment of LTE and its coexistence with UMTS-HSPA will be analogous to the deployment of UMTS-HSPA and its coexistence with GSM-EDGE.

Whitepaper available to download here.
Accompanying slide presentation available here.

Monday 24 August 2009

3G or 4G: What should India do?

The first thing I should mention as I always do, please stop calling LTE as 4G as its commonly called as 3.9G. Labelling it as 4G does make it sound better (or sexy, some would say) but its not correct. Maybe the authors who label LTE as 4G dont want to try hard and do some research or its just to make the end users panic that India has missed a complete generation of mobile technology. LTE-Advanced will be the 4G technology and its still long way away (part of Rel-10).

Last week I wrote about Indian subscribers getting taste of 3G as the state owned MTNL and BSNL have launched some services. I am not sure what has been launched but all I can say is there is a dismal takeup as of yet. I read an article today about how Motorola is testing 4G [sic] and this can spoil the governments plan of rasing Rs 35,000 crore (£4.6Billion: 1Billion = 100 crores).

People may start panicking that investing in 3G is now doomed and it can just cause problems for the operators in future. The reality though is much more simpler. In a simple sentence, I would say that going for 3G or LTE does not matter much. Read on.

Lets first get Hardware out of the way. Most of the Base Stations (NodeB's, eNodeB's, RNC, etc) have a major part as SDR's or Software Defined Radios. The advantage of this is that if you have bought a 3G Node B, with just software change it should be upgradable to LTE eNode B. I have come across quite a few products where the equipment manufacturers are claiming that their 3G equipment is fully upgradeable to LTE. I did blog about some of this in this post here.

The second point we should get out of the way is the terminology. For a layman, 3G is something that was introduced 10 years back in 2000 so its quite an obsolete technology. In reality, 3G is commonly used to refer to even the new developments within the 3G spectrum. For example some of the people may have heard of HSDPA which is actually referred to as 3.5G in the mobile domain. Similarly we have HSUPA which is 3.75G and so on. The latest development is going on around 3.8G and 3.85G as part of Release 8. In general usage 3.5G, 3.75G, etc. is referred to as 3G but its more than 3G (3G+ ;). The good thing is that this 3G+ is till evolving. Release 8 was finalised in Dec. 2008 and the terminals based on that are still being tested. It should hopefully be available soon.

So whats the difference between LTE and HSPA+ (also known as 3G even though its 3.8/3.85G). Not much I would say from a general users point of view. Please note I am not arguing about the fundamental technologies because 3G+ uses WCDMA and LTE uses OFDMA/SC-FDMA technologies. OFDM based technologies will generally be always superior to WCDMA ones but it doesnt matter much. The main enhancement that has happened with LTE as compared to 3G is that in 3G the bandwidth is fixed to 5MHz whereas in case of LTE the bandwidth is flexible and can go all the way to 20MHz. Now if we compare the data speeds in 5MHz spectrum then there may not be much difference between them. Now how many operators will be rolling out services across 20MHz bandwidth? More general case will be using 10MHz.

In case of HSPA+, there is a new feature that allows a UE to use couple of cells. In this case even though the bandwidth is 5MHz but due to Dual Cell feature the UE would effectively see 10MHz bandwidth. This will definitely enhance the speeds.

Now coming to devices. 3G/HSPA/HSPA+ technologies have evolved over quite few years. There are some nice sleek and cheap handsets available. The technology in it as been rigourously tested. As a result the handsets are quite stable and many different design and models available.

LTE is yet to come. NTT DoCoMo and Verizon will be the first one to roll it out probably end 2010. Initial plan is to roll out the dongles then handsets will the eventually arrive. The initial ones will have problems, crashes, etc. Will take atleast till 2010 to sort out everything.

The big problem with LTE as many of us know is that the standards have to support for the old style CS voice and SMS. This should be fixed in Release 9 which is going to be standardised in Dec. 2009 (Mar. 2010 practically). There are different approaches and maybe untill LTE is rolled out we wont know which of them is better.

Last thing I should mention is the spectrum. The consensus is that 3G operates in 2.1GHz spectrum mostly worldwide. LTE would initially be deployed in 2.6GHz spectrum. The digital dividend spectrum when it becomes available will also be used for LTE. Most of the devices for LTE will be designed that way. As a result, 3G will continue to operate as it is in the 2.1GHz band. The devices will always be available and will be usable for long time.

Considering all the facts above, I think 3G (HSPA/HSPA+) is the best option in India or as a matter of fact in any country that is thinking of jumping directly from 2G to LTE. When the time is right, it should not be difficult to move from 3G to LTE.

Friday 10 April 2009

HSPA based Laptop Enabler/Disabler

Ericsson (NASDAQ:ERIC) today unveiled its most advanced mobile broadband module, uniquely designed with innovative features to provide a richer and cost-effective internet experience for all. The next-generation module marks the latest milestone for Ericsson, furthering the company's vision of an all-connected world.

Ericsson's F3607gw mobile-broadband module for HSPA/GPRS/EDGE networks, to be released in June, will provide enhanced functionality and convenience through its innovative features, reduced power consumption, prolonged battery life and an increased level of integration, reducing the number of necessary components and therefore cost. The new module will also provide built-in mobile broadband support for Microsoft Windows 7.

Mats Norin, Vice President of Ericsson Mobile Broadband Modules, says: "The combination of leading technology and innovative design in the next-generation module is key to delivering a superior user experience at an affordable price. This module release confirms Ericsson's commitment to making the benefits of connectivity available to everyone."

An important facet of the F3607gw is the unique wake-on wireless feature. By remaining connected while a notebook or netbook is in sleep mode, the module's wake-on wireless feature enables users to remotely wake up the device. This innovative technology will allow a new set of applications to be built into the computer to further enhance security and instant-on functionalities, such as the ability to disable the computer in case of theft, or instant distribution of important messages and security updates.

Operators can also combine the wake-on wireless feature and embedded GPS functionality to create a range of differentiating services for consumers and the enterprise market, including remote manageability, security updates, asset protection and tracking and geo-fencing. The module can also be used for content push services, such as podcasts, public warnings, traffic updates and database updates.

Specifically, the wake-on wireless feature supports security solutions based on Intel's Anti-Theft PC Protection Technology. An anti-theft management service in the network can send a message via SMS to the mobile-broadband module inside the notebook, which securely transfers the message to Intel's Anti-Theft function inside the processor platform. This takes appropriate actions, such as completely locking the computer and making it unusable. When the notebook is located and recovered, an unlock message can be sent to the notebook that makes the data accessible again.

Thursday 2 April 2009

Fundamental difference between HSDPA and HSUPA

It has been long time since HSDPA and HSUPA came into existence. Untill now we have read and implemented many features related to HSDPA and HSUPA. However following are the basic difference between HSDPA and HSUPA:
  • In the downlink, the shared resource is transmission power and the code space, both of which are located in one central node, the NodeB. In the uplink, the shared resource is the amount of allowed uplink interference, which depends on the transmission power of multiple distributed nodes, the UEs.
  • The scheduler and the transmission buffers are located in the same node in the downlink, while in the uplink the scheduler is located in the NodeB while the data buffers are distributed in the UEs. Hence, the UEs need to signal buffer status information to the scheduler.
  • The WCDMA uplink, also with Enhanced Uplink, is inherently non-orthogonal, and subject to interference between uplink transmissions within the same cell. This is in contrast to the downlink, where different transmitted channels are orthogonal. Fast power control is therefore essential for the uplink to handle the near-far problem. The E-DCH is transmitted with a power offset relative to the power-controlled uplink control channel and by adjusting the maximum allowed power offset, the scheduler can control the E-DCH data rate. This is in contrast to HSDPA, where a (more or less) constant transmission power with rate adaptation is used.
  • Soft handover is supported by the E-DCH. Receiving data from a terminal in multiple cells is fundamentally beneficial as it provides diversity, while transmission from multiple cells in case of HSDPA is cumbersome and with questionable benefits as discussed in the previous chapter. Soft handover also implies power control by multiple cells, which is necessary to limit the amount of interference generated in neighbouring cells and to maintain backward compatibility and coexistence with UE not using the E-DCH for data transmission.
  • In the downlink, higher-order modulation, which trades power efficiency for bandwidth efficiency, is useful to provide high data rates in some situations, for example when the scheduler has assigned a small number of channelization codes for a transmission but the amount of available transmission power is relatively high. The situation in the uplink is different; there is no need to share channelization codes between users and the channel coding rates are therefore typically lower than for the downlink. Hence, unlike the downlink, higher order modulation is less useful in the uplink macro-cells and therefore not part of the first release of enhanced uplink.

Saturday 28 March 2009

Implementation of CQI Reporting in HSPA

In HSDPA the channel quality indicator is a measure of the mobile channel which is send regularly from the UE to the Node B. These measurements are used to adapt modulation and coding for the corresponding UE and it can be also used for the scheduling algorithms.

The CQI measurement is implemented in the HSPA module and the measurement interval as well as the influence of measurement errors can be parameterised. The results can be given in form of maps or in a statistical manner as histogram for each cell.

Information about the instantaneous channel quality at the UE is typically obtained through a 5-bit Channel-Quality Indicator (CQI) in HS-SCCH, which each UE feed back to the NodeB at regular intervals. The CQI is calculated at the UE based on the signal-to-noise ratio of the received common pilot. Instead of expressing the CQI as a received signal quality, the CQI is expressed as a recommended transport-block size, taking into account also the receiver performance.

The reason for not reporting an explicit channel-quality measure is that different UEs might support different data rates in identical environments, depending on the exact receiver implementation. By reporting the data rate rather than an explicit channel-quality measure, the fact that a UE has a relatively better receiver can be utilized to provide better service (higher data rates) to such a UE. It is interesting to note that this provides a benefit with advanced receiver structures for the end user.

This is appropriate as the quantity of relevance is the instantaneous data rate a terminal can support rather than the channel quality alone. Hence, a terminal with a more advanced receiver, being able to receive data at a higher rate at the same channel quality, will report a larger CQI than a terminal with a less advanced receiver, all other conditions being identical.

Each 5-bit CQI value corresponds to a given transport-block size, modulation scheme, and number of channelization codes. Different tables are used for different UE categories as a UE shall not report a CQI exceeding its capabilities. For example, a UE only supporting 5 codes shall not report a CQI corresponding to 15 codes, while a 15-code UE may do so. Therefore, power
offsets are used for channel qualities exceeding the UE capabilities. A power offset of x dB indicates that the UE can receive a certain transport-block size, but at x dB lower transmission power than the CQI report was based upon. UEs belonging to category 1–6 can only receive up to 5 HS-DSCH channelization codes and therefore must use a power offset for the highest CQI values, while category 10 UEs are able to receive up to 15 codes.

The CQI values listed are sorted in ascending order and the UE shall report the highest CQI for which transmission with parameters corresponding to the CQI result in a block error probability not exceeding 10%.

Specifying which interval the CQI relates to allows the NodeB to track changes in the channel quality between the CQI reports by using the power control commands for the associated downlink (F-) DPCH. The rate of the channel-quality reporting is configurable in the range of one report per 2–160 ms. The CQI reporting can also be switched off completely.

In addition to the instantaneous channel quality, the scheduler implementation in the NodeB should typically also take buffer status and priority levels into account before finalising the data rate for the UE. Obviously UEs for which there is no data awaiting transmission should not be scheduled. There could also be data that is important to transmit within a certain maximum delay, regardless of the channel conditions. One important example hereof is RRC signalling, for example, related to cell change in order to support mobility, which should be delivered to the UE as soon as possible. Another example, although not as time critical as RRC signalling, is streaming services, which has an upper limit on the acceptable delay of a packet to ensure a constant average data rate. To support priority handling in the scheduling decision, a set of priority queues is defined into which the data is inserted according to the priority of the data. The scheduler selects data from these priority queues for transmission based on the channel conditions, the priority of the queue, and any other relevant information.

Thursday 12 March 2009

HSPA+ to become more widely available in 2009


According to 3G Americas press release, 100 million new connections were added last year. On a worldwide basis, GSM totals 3.5 billion of the nearly 4 billion mobile subscriptions or 89% share of market at the end of December 2008. With 278 UMTS-HSPA networks in service in 121 countries, there are 290 million UMTS-HSPA subscriptions as of the end of 2008 compared to 186 million a year earlier—more than 100 million new 3G connections. UMTS-HSPA subscriptions are expected to more than double in 2009, according to Informa’s forecasts, and reach 455 million connections by the end of this year.

A survey last year by GSA showed that over 1000 HSPA devices have already been launched. Remember HSPA device could be HSDPA device only or HSDPA and HSUPA device. According to Dell'Oro group, Worldwide total mobile infrastructure market revenues grew 5% in 2008, driven by the nearly doubling and quadrupling of revenues of the WCDMA and WiMAX markets, respectively.

The focus is now moving towards HSPA+ (Release 7). HSPA+ is already becoming everyones favourite as it now has the potential to compete with LTE. The HSPA+ data rates will soon be able to rival that of LTE. No new spectrum will be required and enhancements will now allow multiple bands to be used at the same time thereby reducing the need to move to LTE for gaining higher data rates by use of higher bandwidth.

O2 Germany is planning to upgrade its network to HSPA+ by mid 2009. Vodafone also plans to upgrade its network to HSPA+ when more devices are available. Hong Kong operator CSLNWM is working with China's ZTE to upgrade their network to SDR based HSPA+ network that could easily be upgraded to LTE. Australia's Telstra has already announced at the Mobile World Congress in Barcelona that it is the first in the world to offer mobile broadband service with peak rates of 21 Mbps made possible through HSPA+ technology.

On the devices front Huawei has E182E HSPA+ slide USB stick supporting 21.6Mbps DL and 5.76Mbps in UL. Novatel surprisingly has the same specs for its MC996D modem. Qualcomm meanwhile has released a range of new HSPA+ capable chipsets. The MSM8260 supports 3GPP Release 7 HSPA+ for data rates of up to 28 Mbps. The MSM8660 adds support for 3GPP/3GPP2 multimode, and the MSM8270 adds support for Release 8 dual-carrier HSPA+ for even higher data rates of up to 42 Mbps. All three products offer full backward compatibility to previous generation networks and are pin-, software- and functionally-compatible.

Its just a matter of time before we will all be able to experience the HSPA+ speeds on our mobiles and mobile connected Laptops.

Wednesday 11 March 2009

HSPA Data rates

Martin has posted a HSPA data rates table on his blog so I decided to copy it and add a photograph that I took from an Ericsson presentation ;)
  • 3.6 MBit/s : Baseline HSPA with 16QAM modulation
  • 7.2 MBit/s : 16 QAM, more simultaneous channels)
  • 14.4 MBit/s : 16 QAM, even more simultaneous channels
  • 21 MBit/s : 64 QAM modulation
  • 28 MBit/s : MIMO (Multiple Input Multiple Output = 2 antennas) + 16 QAM, (3GPP Rel 7)
  • 42 MBit/s : MIMO + 64QAM (3GPP Release 8)
  • 42 MBit/s : 64QAM + Dual Carrier (3GPP Rel 8)
  • 82 MBit/s : MIMO + 64QAM + Dual Carrier (i.e. 2 x 5MHz) (3GPP Release 9)
  • + more in case 3GPP decides to increase the number of carriers that can be bundled in Rel 9 or beyond.

Friday 27 February 2009

Dual-Cell HSPA in Release 8 and beyond

Some interesting developments are ongoing in the 3GPP standardisation from Release-8 onwards. You must be aware that the current bandwidth in UMTS/HSPA is 5 MHz. Since most of the operators generally won bigger chunk of spectrum of contiguous 5MHz band, they can actually combine these chunks to create a larger spectrum and hence increase data rates.

In Release 8 in downlink, it is possible to increase data rates using either a combination of MIMO and 64QAM or dual-cell HSDPA for operation on two 5MHz carriers with 64QAM, data rates reach up to 42Mbps.

In deployments where multiple downlink carriers are available, the new multicarrier operation offers an attractive way of increasing coverage for high bit rates. Rel-8 introduces dual-carrier operation in the downlink on adjacent carriers. This technique doubles the peak rate from 21Mbps to 42Mbps without the use of MIMO – it doubles the rate for users with typical bursty traffic; therefore, it also doubles the average user throughput, which translates into a substantial increase in cell capacity.

You may remember that I mentioned earlier that the operators are not too keen on going for MIMO for non-LTE technology. This is because they will have to upgrade their hardware and the antennas which could increase their cost significantly for a technology that is not going to be around for long.

Another thing to note before it becomes too confusing is that there are two terms for 'DC' being used right now. One of them is 'Dual Carrier' and other is 'Dual Cell'. In Release 8, the term being used is Dual-Cell for HSDPA which is also known as DC-HSDPA. The Technical specification to follow is 3GPP, TR 25.825 “Dual-Cell HSDPA operation” V1.0.0, May 2008.

The Dual-Cell assumes that both the 5MHz bands are contiguous. If they are not then the better term to refer for DC is Dual-Carrier.

A dual-carrier user can be scheduled in the primary serving cell as well as in a secondary serving cell over two parallel HS-DSCH transport channels. All non-HSDPA-related channels reside in the primary serving cell, and all physical layer procedures are essentially based on the primary serving cell. Either carrier can be configured to function as the primary serving cell for a particular user. As a consequence, the dual-carrier feature also facilitates an efficient load balancing between carriers in one sector. As with MIMO, the two transport channels perform hybrid automatic repeat request (HARQ) retransmissions, coding and modulation independently. A difference compared to MIMO is that the two transport blocks can be transmitted on their respective carriers using a different number of channelization codes. In terms of complexity, adding a dual-carrier receiver to UEs is roughly comparable to adding a MIMO receiver. Because the two 5MHz carriers are adjacent, they can be received using a single 10MHz radio receiver, which is already be available if the UE is LTE-capable.

Following the introduction in Release 8 of dual-carrier operation in the downlink, 3GPP is now discussing operation on multiple 5MHz carriers. Multiband operation of multiple carriers allows a single user to simultaneously aggregate and use the spectrum distributed over different bands. This gives operators greater fl exibility when using available spectrum. Increasing the number of carriers that UEs receive from two to four doubles the peak rate and achievable user throughput. For bursty traffic, this translates into substantially greater capacity, either as a larger number of users at a given data rate, or as a higher data rate for a given number of users. To substantially boost spectral effi ciency, 3GPP is studying the combination of dual-carrier operation and MIMO with 64QAM in the downlink, thereby doubling the peak data rate to 84Mbps. Similarly, they are studying the combination of MIMO, 64QAM and up to four downlink carriers to support peak data rates of more than 100Mbps. The support for UE reception on two frequency bands is an enabler to DC-HSDPA for operators who do not have adjacent 5MHz carriers available in one band, and is therefore of key importance for the further evolution of multi carrier HSPA.

As a consequence of increased data rates in downlink, the uplink data rates need to be improved too. From the aggregation of multiple FDD downlink carriers, the paired FDD uplink carriers can be utilized for improved uplink transmissions. 3GPP studies the usage of two adjacent 5MHz carriers for dual carrier uplink transmissions (DC-HSUPA) supporting data rates of up to 23Mbps. A further benefit of utilizing two uplink carriers is the possibility to support more efficient load balancing in the uplink direction.

In summary, uplink multicarrier operation increases availability as well as coverage of high data rates in the uplink.

In Conclusion, Rel-8 defines improvements in HSPA to achieve higher rates through dual carrier or combined 64QAM+MIMO operation. With the Rel-8 specification nearing completion (targeted for March 2009), planning is already under way in 3GPP for Rel-9 and Rel-10. Further multi-carrier and MIMO options are being explored for HSPA in Rel-9 and Rel-10

If you want to explore this topic further see:

Wednesday 27 August 2008

HSPA: Milestone and bold predictions

GSMA announced last week that the number of HSPA mobile subscribers has reached 50 million. The number of HSPA subscribers last year at around this time was 11 million.

An old slide predicting the rise of HSPA subscribers can be seen above. I dont think that the number of subscribers reached 20 million in 2007 as predicted but they will definitely be more than 60 million by the end of 2008. Around 4 million people are converting to being HSPA subscribers every month.

GSMA also have a site dedicated to HSPA where they also maintain a live counter of the number of HSPA subscribers worldwide.
Finally, here are some HSPA related statistical facts from GSMA website:
  • 267 operator commitments in 111 countries
  • 191 commercial deployments in 89 countries
  • All EU countries have commercial HSPA deployments
  • 747 HSPA devices from 114 suppliers including:
    > 281 mobile handsets
    > 68 data cards
    > 120 notebooks
    > 40 wireless routers
    > 72 USB modems
    > 39 embedded modules
GSMA has also claimed that mobile will reach speeds of 100Mbps before landline will. This was in response to BT announcing FTTx technology to be available in 10 million homes by 2012. With the Fibre technology though the initial speeds will be 40Mbps, rising to 60Mbps later on. Sometime (quite far) in future it will eventually achieve 1000Mbps though.

Finally, Global mobile broadband connections in the first quarter of this year rose by 850% from the same period last year, according to Herns Pierre-Jerome, director for wireless broadband technologies of Qualcomm. The rapid growth, he said, illustrated how mobile broadband had become a mainstream data application of third-generation (3G) mobile phone technology, driven primarily by evolution-data optimised (EV-DO) and high-speed packet access (HSPA) systems.

The number of 3G subscribers globally totals 670 million in a market of 3.5 billion mobile users. The figure is forecast to reach 1.6 billion over the next four years, fuelled by declining costs of network equipment and devices. Telecom vendors and operators are expected to realise revenue of US$114 billion from 3G equipment and $394 billion from 3G services. Qualcomm earned $10 billion in revenue in 2007, out of overall industry revenue of $352 billion.

Wednesday 9 July 2008

Updated Paper on 3GPP Rel 7 and Rel 8 from 3G Americas

3G Americas, a wireless industry group supporting the GSM family of technologies in the Americas, has provided updates to its popular white paper titled UMTS Evolution from 3GPP Release 7 to Release 8: HSPA and SAE/LTE that explains the leading evolutionary roadmap for the GSM family of technologies to 3G and beyond. Globally, the demand for wireless data services is driving the growth of 3G UMTS/HSPA technology with more than 200 commercial HSDPA networks today and subscriptions to UMTS/HSPA estimated at over 236 million by Informa Telecoms and Media. With more than 3.1 billion subscriptions for the GSM family of technologies worldwide today, the potential for third generation HSPA technology is forecast to reach 1.39 billion subscriptions by year end 2012 and 1.8 billion by year end 2013 according to Informa.

UMTS Evolution from 3GPP Release 7 to Release 8: HSPA and SAE/LTE offers a further review of 3GPP Release-7 (Rel-7) upon its completion in the technology standardization process and an introduction to the improved features of 3GPP Release 8 (Rel-8). The paper explores the growing demands for wireless data and successes for a variety of wireless applications, the increasing Average Revenue per User (ARPU) for wireless services by operators worldwide, recent developments in 3GPP technologies by several leading manufacturers, and 3GPP technology benefits and technical features.


Upon the finalization of the Rel-8 standard later this year, 3G Americas will publish a new white paper on the 3GPP standards that will include the completion of Rel-7 HSPA+ features, voice over HSPA, SAE/EPC (Evolved Packet Core) specification and Common IMS among other new developments and features. Since HSPA+ enhancements are fully backwards compatible with Rel-99/Rel-5/Rel-6, the upgrade to HSPA+ has been made smooth and evolutionary for GSM operators. Additionally, Rel-7 standardizes Evolved EDGE with continuing development in Rel-8 which will improve the user experience across all wireless data services by reducing latency and increasing data throughput and capacity. Finalization of the Rel-8 standard by the end of this year will further progress market interest in commercial deployment of LTE. Leading operators worldwide are announcing their plans to deploy LTE as early as 2010 with trials already occurring today.

The popular white paper UMTS Evolution from 3GPP Release 7 to Release 8: HSPA and SAE/LTE was written collaboratively by members of 3G Americas and is available for free download here.

Wednesday 21 May 2008

Dell to power laptops with HSPA

Ericsson has a press release saying that Dell will use its high-speed HSPA mobile broadband technology in next-generation laptops due in the second quarter of 2008. The modules will be built in to the Dell laptops, according to a press release by both companies. By June, Intel is expected to roll out its next-generation "Montevina" mobile chipset, which will be used as the foundation for the next generation of Centrino notebooks.

Although Montevina was expected to usher in the next-generation WiMAX technology, the apparent delays underlying Clearwire's WiMAX rollout may have pushed Dell to seek an alternative broadband choice.

According to a Dell spokeswoman, the choice to include Ericsson's HSPA technology was as much about compatibility as throughput. If a customer takes a 3G-enabled laptop with him or her to Europe, it might work, "but it's not a seamless transition," Dell's Anne Camden said. The HSPA technology is more uniform throughout the globe, she said.

But it's also true that Dell wanted a broadband solution now. "Mobile broadband delievers a broadband experience today, and that is what we need," Camden said. "We want to deliver a great broadband experience. We're certainly looking at WiMAX support in future products."
Dell is the second major PC vendor to sign on to use Ericsson's HSPA technology, after Lenovo.

According to Ericsson, both Dell's business customers and consumers will use the new modules. Interestingly, Ericsson built in a GPS component into the HSPA modules, meaning that location services will be also be built in.

Market projections indicate that in 2011, approximately 200 million notebooks will ship annually and Ericsson anticipates that 50 percent of those notebooks will feature a built-in HSPA mobile broadband module. Users will increasingly have the option to take their broadband connections with them, delivering on the promise of full service broadband, which is anytime, anywhere access from the screen or device of choice.

Meanwhile:

Winners of Sweden's 2.6GHz spectrum auction can now look to rapid deployment of advanced mobile networks, with Ericsson poised to deliver end-to-end HSPA and LTE technology. The auction is the first held in the world to license according to the harmonized band arrangement decision by the European Conference of Postal and Telecommunications Administrations (CEPT).

As a front runner in allocating the 2.6GHz frequency band, the regulator Swedish Post and Telecom Agency has adopted a harmonized spectrum allocation as defined by CEPT. The allocation will facilitate economies of scale for operators and secure the availability of standardized terminals, allowing roaming between countries for users. Auctions of the 2.6GHz band in Austria, Netherlands, Italy and the UK are scheduled for 2008.
LTE and HSPA, the preferred technologies for the 2.6GHz band, enable a superior, mass-market user experience, enhancing demanding applications such as mobile video, blogging, advanced games, rich multimedia telephony and professional services.


Ericsson's solutions help operators leverage their network investments by providing optimal voice communication and mobile broadband services. Ericsson employs scalable architecture and allows seamless network expansion, providing an efficient migration path to broadband, regardless of the legacy technology in place.

Ericsson's offerings for the 2.6GHz band are based on its multi-standard RBS 3000 and RBS 6000 series. These energy efficient base stations support WCDMA/HSPA/LTE and GSM/EDGE/WCDMA/HSPA/LTE respectively. Ericsson's RBS suite offers the smallest base stations on the market and facilitates low-cost migration and easy network integration. HSPA is already commercially deployed in more than 185 networks in 80 countries, with more than 600 devices launched.

Friday 4 January 2008

HSPA Data Rates Calculation

People often get lost while calculating the data rates for HSDPA, HSUPA or HSPA+

Note: HSPA+ is better known as eHSPA or HSPAe where e stands for evolution or evolved

Most people are aware that the theoretical maximum for HSDPA is 14.4Mbps, so lets see how we reach 14.4Mbps:

In UMTS, in each slot the maximum number of bits transmitted is 2560. The correct term to use is chips rather than bits. If you want to know where this 2560 comes from or why chips then please refer 3GPP TS 25.211

There are 15 slots per 10ms frame so since the TTI for HSDPA is 2ms, there will be 3 slots. So there will be a total of 7680 chips.

QPSK has 2 bits per symbol = 7680 * 2 chips for 2ms = 15360 chips/2ms = 15360 * 1000 /2 chips per second

Now the SF is fixed at 16
= (15360 * 1000) / (2 * 16)
= 480 Kbps

Terminal that uses 15 QPSK codes will get 480 * 15 = 7.2Mbps

On other hand 16 QAM will have 4 bits per symbol so the rate would be 7.2 * 2 = 14.4Mbps



In HSPA+ we will also have 64QAM which has 6 bits per symbol (2^6 = 64) so the max rate would be 7.2 * 3 = 21.6Mbps.
The figure above is self explanatory and shows the data rate in case of eHSPA.