Showing posts with label LTE. Show all posts
Showing posts with label LTE. Show all posts

Monday 1 October 2012

LTE: What is a Tracking Area

Even though I have known tracking area for a long time, the other day I struggled to explain exactly what it is. I found a good explanation in this new book 'An Introduction to LTE: LTE, LTE-Advanced, SAE and 4G Mobile Communications By Christopher Cox'. An extract from the book and Google embed is as follows:

The EPC is divided into three different types of geographical area, which are illustrated in Figure 2.6. (see Embed below).

An MME pool area is an area through which the mobile can move without a change of serving MME. Every pool area is controlled by one or more MMEs, while every base station is connected to all the MMEs in a pool area by means of the S1-MME interface. Pool areas can also overlap. Typically, a network operator might configure a pool area to cover a large region of the network such as a major city and might add MMEs to the pool as the signalling load in that city increases.

Similarly, an S-GW service area is an area served by one or more serving gateways, through which the mobile can move without a change of serving gateway. Every base station is connected to all the serving gateways in a service area by means of the S1-U interface. S-GW service areas do not necessarily correspond to MME pool areas.

MME pool areas and S-GW service areas are both made from smaller, non-overlapping units known as tracking areas (TAs). These are used to track the locations of mobiles that are on standby and are similar to the location and routing areas from UMTS and GSM.

Tuesday 25 September 2012

LTE, M2M Device Addressing and IMSI


I was made aware of the following statement on the Verizon wireless brochure:

LTE’s inherent support for IPV6 addressing and IMSI-based telephone number identifiers makes mass deployments over LTE more easily achievable. The deployment of large numbers of mobile devices (think tens of thousands) becomes much more feasible because of LTE’s use of 15-digit IMSI telephone number identifiers for large-scale deployments, such as M2M or embedded wireless applications. 3G network technologies were limited by their use of 10-digit telephone number identifiers, which made large-scale deployments more difficult. With LTE, mass deployment of wireless services and applications, such as VoIP, smart metering, vending, and telematics, is now practical.

Now we know about the much touted 50 Billion connections by 2025 of which the majority would be M2M devices. So how are we going to handle the issue of addressing these many devices.

In the earlier presentation here, there was a mention of the direction for the solution as below:





The IMSI structure is as shown above. So depending on how it is used this can help alleviate the number shortage problem. 3GPP TR 23.888 gives the following information:


5.13      Key Issue - MTC Identifiers

5.13.1    Use Case Description

The amount of MTC Devices is expected to become 2 orders of magnitude higher than the amount of devices for human to human communication scenarios. This has to be taken into account for IMSI, IMEI and MSISDN. Regulatory bodies indicate shortages of IMSIs and MSISDNs.
The MTC Feature PS Only in TS 22.368 [2] includes a requirement that PS Only subscriptions shall be possible without an MSISDN. In principle an MSISDN is not used in any of the PS based signalling procedures. However, it will have to be assured that all PS procedures indeed work and subscriptions can be uniquely identified without providing an MSISDN. Furthermore, TS 22.368 [2] specifies that remote MTC Device configuration shall be supported for PS only subscriptions without an MSDISDN assigned. Current remote MTC Device configuration solutions (i.e. Device Management and Over-the-Air configuration) are based on SMS, which assumes the use of MSISDNs. So a solution to support remote MTC Device configuration that does not require the use of MSISDNs is needed.
The identifiers can be categorised into:
-     Internal Identifiers: used within the 3GPP system to identify a UE using a subscription (or the subscription itself e.g. when the UE is not registered).
-     External Identifiers: used from outside the 3GPP system (e.g. at the MTCsp interface), to refer to a UE using a subscription (or the subscription itself e.g. when the UE is not registered).

5.13.2    Required Functionality

-     It shall be possible to uniquely identify the ME.
NOTE 1:   This requirement relates to the ME which is generally identified by the IMEI.
-     It shall be possible to uniquely identify the UE using a subscription or the subscription itself.
NOTE 2:   The two requirements above also apply to human-to-human communications. However, for Machine-Type Communication identifiers will have to be able to cater for a number of identifiers up to two orders of magnitude higher than for human-to-human communications.
-     It shall be possible to use the following identifiers:
1.       IMSI, for internal usage within the 3GPP operator domain, and either
2.       E.164 MSISDN, for usage outside the 3GPP operator domain, or
3.       Unique identifier (e.g. FQDN), other than E.164 MSISDN, for usage outside the 3GPP operator domain.
NOTE 3: Use of IMSI outside the 3GPP operator domain is an operator option (i.e. not subject to standardization)
-     If no (unique or common) MSISDN is assigned to a PS only subscription, the Internal Identifier (IMSI) shall be used as charging identifier.
-     It shall be possible to associate one or more External Identifiers to the same Internal Identifier (e.g. several MSISDNs associated with the same IMSI).
-     Globally unique External Identifiers shall be supported for identifying UEs used for MTC that must be globally reachable (i.e. irrespective of which mobile operator owns the subscription)
-     Operator specific External Identifiers (e.g. based on a private numbering plan) may be supported for identifying UEs used for MTC that have to be reachable only from the operator domain to which they are subscribed.
-     The Internal Identifier shall be globally unique.
-     Remote MTC Device configuration shall still be supported for subscriptions without an MSISDN.
NOTE 4:   Current remote MTC Device configuration solutions (i.e. Device Management and Over-the-Air configuration) are based on SMS, which assumes the use of MSISDNs.


Any more information on this subject, more than welcome.

Wednesday 12 September 2012

UK: Spectrum, Operators, Vendors and LTE

So LTE (or '4G') is about to be launched in the UK as announced yesterday. Its going to be branded as 4GEE.

Here is a summary of the Spectrum in the UK that will be used for LTE and would be auctioned by Ofcom.


Here is the current allocation of Spectrum in the UK

The above pics are from a presentation by Ofcom in LTE World Summit 2012 in Barcelona, available here.



The last table is from an Ofcom document here. Its very interesting read. For example I didnt know that The L-band was the first major part of Ofcom spectrum awards programme relevant to mobile services. It consists of 40MHz between 1452MHz and 1492MHz. The auction took place in May 2008, in which Qualcomm won the entirety of the available spectrum.

Here is the summary of the operators working on LTE:


Everything Everywhere (EE = Orange + T-Mobile) - They are calling their '4G' service as EE, covering up to 70% of the UK by the end of 2013. Network kit provided by Huawei.

Three - Samsung will provide the Radio Access Network, and the core infrastructure, for Three's LTE (4G) network. That includes the base stations, and radio core. 3 UK has agreed to purchase 2 x 15 MHz of 1800 MHz spectrum from Everything everywhere, and plans commercial launch of LTE service in 2013.

Telefonica (O2) trial network - Equipment supplied by Nokia Siemens Networks (NSN) for both the Radio and Core network elements. Backhaul for the 4G trial network has been provided using Microwave Radio Equipment from Cambridge Broadband Networks Limited, NEC and Nokia Siemens Networks.

Updated 13/09/12 - 11:25

UK Broadband rolled out the first commercial TD-LTE network in London back in February (available to customers since May 2012). The equipment is provided by Huawei. They have 40MHz in Band 42 (3.5GHz) and 84MHz in band 43 (3.6GHz).

Vodafone - No news.


Anything else I missed?

Sunday 26 August 2012

Voice-Over-LTE (VoLTE) Signalling

MetroPCS has recently launched rolled out VoLTE in USA using LG connect phones. More operators would be rolling it out soon so here is example of Signaling in VoLTE.




To read in detail, please see the article from NTT Docomo technical journal here.

Sunday 12 August 2012

LTE, LTE-A and Testing


Some months back R&S held a technical forum where there were many interesting talks and presentations. They have now uploaded video of all these presentations that can be viewed on their website (no embedding allowed).

Available to be viewed here.

Monday 6 August 2012

LTE KPI's (Key Performance Indicators)


Key Performance Indicators of KPI's are indicators for if a device or equipment meets a certain reliability criteria for being ready for deployment.

In [1] the following KPI's are defined

Accessibility
Retainability
Integrity
Availability
Mobility

[2] gives the requirements related to the above KPI's. Take for instance Accessibility, [2] defines the requirements as follows:


Business level requirements: If an end user cannot access a service it is hard to charge for the service. Also, if it happens often that an end-user cannot access the provided service, the end-user might change wireless subscription provider, i.e. loss of income for the network operator. Hence, to have a good accessibility of the services is important from a business point of view. This measurement assists the network operator with information about the accessibility provided to their customers.

Specification level requirements: The accessibility of an end-user application covers a wider area than just the E-UTRAN part. Hence it is important to realize that a KPI for this in E-UTRAN shall be limited to the parts that E-UTRAN has control of, i.e. the E-UTRAN KPI shall be defined so that it indicates the E-UTRAN contribution to the end-user impact, NOT attempt to take responsibility of the whole end-to-end part of service accessibility.

The service provided by E-UTRAN for this KPI shall be E-RAB. It shall be possible to measure the accessibility of E-RABs in E-UTRAN. Accessibility measurement should be available as a success rate for the attempts. 

As for defining an attempt, it shall be considered an attempt first when the eNodeB can be certain that is a request for an E-RAB. As for defining a success, it shall be considered a success when the eNodeB have completed its task to setup resources and the result of the E-RAB establishment can be informed to the requester of the E-RAB. The KPI shall be available per QoS group.

Use case description: In providing end-user services to wireless end-users, the first step is to get access to the wireless service. First after access to the service has been performed, the service can be used. If an accessibility measurement is not considered OK, then the network operator can investigate which steps that are required to improve the accessibility towards their customers. This measurement should be used for observing the impact of E-UTRAN on end-users service accessibility.


From the above, we can create certain tests to test the Accessibility KPI. Example cases as follows:

1. RRC Connection Setup for Registration success rates

2. RRC Connection Setup for Services success rates

3. Initial E-RAB Setup Success rates

4. Successive E-RAB Setup Success rates

5. Call (VoIP) setup success rates


[1] 3GPP TS 32.450: Key Performance Indicators (KPI) for Evolved Universal Terrestrial Radio Access Network (E-UTRAN): Definitions

[2] 3GPP TS 32.451: Key Performance Indicators (KPI) for Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Requirements

More example of KPI's is available from this document:


Friday 27 July 2012

PCC developments to take advantage of LTE capabilities

Another interesting presentation from the LTE World Summit 2012. The part that I find most interesting is slide 10 onwards that talks about Evolution of the PCC to include user Engagement. There is also a scope for 'Sponsored Data Connectivity'.



Tuesday 24 July 2012

LTE-Direct (rebranded Flashlinq) by Qualcomm

I blogged about Flashlinq before and also about the Proximity based Services (ProSe) and AllJoyn which probably is part of Release-12. Qualcomm is now proposing LTE-Direct that looks like a rebranded Flashlinq here. A video of that is embedded here.


From PCWorld:


Qualcomm is promoting a peer-to-peer cellular technology as a potential new standard called LTE Direct, which it says would make location-based services faster and more efficient.
The proposal grew out of FlashLinq, a system Qualcomm developed in its own labs. FlashLinq lets two cellular devices communicate over the air without relying on a fixed network infrastructure. Qualcomm sees two main applications for the technology: public safety communications in areas where mobile networks are down or unavailable, and a "discovery mode" that provides information about what interesting things and people are nearby. Qualcomm is primarily interested in the discovery mode, which it says has more commercial potential.
LTE Direct eliminates steps in the location process, allowing users to find things more quickly, Qualcomm says. Though the technology can be used for ongoing communication at high speeds, including streaming video, in discovery mode it would only broadcast tiny 128-bit packages of data. Those packages, called "expressions," would contain basic information about the device or user. Each LTE Direct device would look for expressions nearby, choosing among them using filters customized for the user or for specific applications.
"What you do is, every so often, you broadcast this 128 bits of information, which are expressing your desire ... so devices and services around you can listen to (your expressions) and figure out what you're interested in," said Mahesh Makhijani, senior director of technical marketing at Qualcomm.
Mobile consumers as well as businesses could send and receive expressions. If an application detects an expression that's relevant to what it does, that application can then go into action, providing something to the user. For example, if two friends have devices that are sending out expressions, then a social-networking app that both of them use might pop up notifications for each saying the other friend is nearby. A classic example of an application that might take advantage of discovery mode is the location check-in app Foursquare, Makhijani said.
Decentralized process
Current location-based services rely on a central database of location data. Every party's location, determined by GPS or other methods, has to be collected in that database and then sent out to other interested parties who request it, Makhijani said. LTE Direct finds nearby devices directly over the air.
Finding a match between one user and other people or services nearby is also quicker, because "service layer" information is contained in the 128-bit expression, Makhijani said. That service layer information determines whether something is of interest to you, such as whether someone uses Facebook and is a friend, or whether your favorite store nearby is offering a deal. To determine these things with LTE Direct, it's not necessary to query a central server over the Internet or even to establish a dedicated connection with the nearby device, he said.
LTE Direct isn't intended to provide exact location or replace GPS for finding out exactly where you are, but it could complement existing location systems and speed up the process of finding out where you are, Makhijani said. Its benefits include the speed of proximity-based location as well as its ability to work indoors, where GPS often has trouble getting a fix because it relies on satellites, he said.

Monday 25 June 2012

LTE Small Cells, SON and HetNets



From a presentation by Prof. Shahram G Niri, NEC in the LTE World Summit, Barcelona.

The complete presentation is available here.

Monday 18 June 2012

3GPP Release-12 and beyond


3GPP Recently held a workshop on "Release 12 and Onward" to identify common requirements for future 3GPP radio access technologies. The goal of the workshop is to investigate what are the main changes that could be brought forward to evolve RAN toward Release 12 and onward. It is recommended that presentations in the workshop include views on:
- Requirements
- Potential technologies
- Technology roadmap for Releases 12, 13 and after

The discussions from the workshop should be used to define the work plan for Release 12 and onward in TSG-RAN.

The list of presentations and links, etc. are below and I have also embedded the Summary and Draft report, both of which can be downloaded from 3GPP website or slideshare. Here is a list of different topics and the presentations that covered them:


AdHoc Networks
AdHoc Networks - RWS-120035


Antennas, Beamforming, Transmitters, Receivers
3D-beamforming - RWS-120002
Vertical sectorization/3D beamforming via AAS - RWS-120005
Advanced receivers and joint Tx/Rx optimisation - RWS-120005
Network assistance for IC receivers - RWS-120005
Support of Active Antenna Systems - RWS-120006
Advanced transmitter beamforming - RWS-120010
Advanced receiver cancellation - RWS-120010
Vertical and 3D beamforming - RWS-120011
MIMO Enhancements - RWS-120014
New antenna configurations and 3D MIMO - RWS-120014
UE AAS (Active Antenna System) [Detailed] - RWS-120015 / RWS-120049
Cloud of Antennas (CoA) Concept - RWS-120016
Support of Massive MIMO Technology - RWS-120016
Full Dimension MIMO (FD-MIMO) System [Detailed] - RWS-120021 / RWS-120046
Cloud-RAN: Benefits and Drawbacks - RWS-120021 / RWS-120046
Further Enhanced Receivers - RWS-120022
Multiple antenna evolution - RWS-120025
3D beamforming - RWS-120026
Vision of 3D MIMO - RWS-120029
Massive MIMO & 3D MIMO - RWS-120034
Potential MIMO Enhancements - RWS-120035
Advanced Antenna Technology - RWS-120035
DL MIMO Enhancement - RWS-120037
Performance Requirement for 8Rx at eNB - RWS-120037
UE Receiver Enhancements - RWS-120039
DL MU-MIMO Enhancement - RWS-120039
Enhancement of MIMO, CoMP - RWS-120040
Advanced MIMO - RWS-120040
MIMO and COMP - RWS-120041
Role of Advanced Receivers - RWS-120041
Advanced Interference Handling - RWS-120041
Interference Suppression Subframes (ISS) and IRC Receiver [Detailed] - RWS-120051


Applications (Apps)
Efficiency for diverse small data applications - RWS-120011
Device Service/Application Awareness - RWS-120018
I-Net:”I”-centric mobile network design philosophy - RWS-120024
Application Aware Comm - RWS-120036 / RWS-120050


Backhaul and Relay
Relay backhaul enhancement - RWS-120011
LTE Backhaul - RWS-120013
Relay - RWS-120025
CoMP, backhaul and X2 interface - RWS-120027 / RWS-120048
Mobile Relay And Relay Backhaul Enhancement - RWS-120029


Baseband
Baseband resource pooling and virtualization - RWS-120011


Capacity and Coverage
Higher system capacity - RWS-120010
Capacity for Mobile Broadband: Requirements and Candidate technologies - RWS-120012
Increase N/W capacity by 1000 times - RWS-120020
Coverage Enhancement - RWS-120037
Capacity Enhancement - RWS-120038 / RWS-120047
Cell-edge Throughput Improvement - RWS-120038 / RWS-120047


Carrier Aggregation, Flexible Bandwidths and Multiflow
LTE multiflow / Inter-site CA - RWS-120002
LTE/HSDPA Carrier Aggregation - RWS-120002
Multiflow Enhancements - RWS-120002
Multi-Stream Aggregation - RWS-120006
Provide mechanisms for Flexible Bandwidth Exploitation - RWS-120008
Carrier aggregation enhancement - RWS-120019
Inter-eNB Carrier Aggregation - RWS-120021 / RWS-120046
Evolution of Carrier Aggregation - RWS-120036 / RWS-120050
CA of Alternative Spectra - RWS-120042


Cells, Carriers, C/U Planes
C/U plane split & Phantom cell - RWS-120010
Phantom cell by single/separate nodes - RWS-120010
Phantom cell: Other topics - RWS-120010
New Carrier Type for Primary Component Carrier - RWS-120011
Flexible/Reconfigurable Cells - RWS-120023
New carrier-type (NCT) enhancements - RWS-120026
Amorphous cells - RWS-120034
New Carrier Types - RWS-120035
Non-Orthogonal Access - RWS-120039
Dynamic Area Construction for UE - RWS-120040


Cognitive Radio
Cognitive radio - RWS-120034
Cognitive Networking - RWS-120036 / RWS-120050


Coordinated MultiPoint (CoMP)
CoMP Enhancements - RWS-120014
CoMP/ICIC enhancement - RWS-120019
CoMP Enhancements - RWS-120023
CoMP enhancements - RWS-120026
CoMP Technologies - RWS-120027 / RWS-120048
Enhanced CoMP - RWS-120029
Potential CoMP Enhancements - RWS-120035
CoMP - RWS-120037
CoMP Enhancement for Indoor Environment - RWS-120040
Overhauling DL CoMP - RWS-120042


Device, Handsets, UE's
Additional UE Enhancements - RWS-120018
Coordination : Multi-mode UE - RWS-120024


D2D / Device-to-Device
Device-to-Device - RWS-120003
LTE Device to Device - Proximity Based Services - RWS-120004
LTE device to device - RWS-120007
LTE direct communication - RWS-120007
Device-to-Device Communications - RWS-120014
D2D Discovery/Communication - RWS-120016
3GPP Proximity Services (ProSe) / D2D - RWS-120022
Device-to-Device communications - RWS-120026
Device-to-Device communication - RWS-120036 / RWS-120050


Data Rates and Throughputs
Higher data rate and user-experienced throughput - RWS-120010
Fairness of user throughput - RWS-120010


Deployments
LTE in Local Area Deployments & Enhancements - RWS-120004
Energy Efficient Local Area Deployments - RWS-120004
Scaling for Mass Deployment - RWS-120008
Flexible and cost-efficient NW deployments - RWS-120010
Considerations on dense NW deployment - RWS-120019


Energy Consumption, Efficiency and Savings
Energy efficiency - RWS-120005
Reduce energy consumption - RWS-120008
Energy Saving - RWS-120014
UE Power Saving - RWS-120036 / RWS-120050
NB Power Saving - RWS-120036 / RWS-120050
Energy Saving Enhancements with CoMP - RWS-120040
Energy Saving with Centralized eNB - RWS-120040


Herogeneous Networks (HetNets)
Optimisation of Het Nets performance - RWS-120005
Improved Support for Heterogeneous Networks - RWS-120006
Network hyper-densification: LTE HetNet2.0 - RWS-120007
Multi-layer HetNet Deployments - RWS-120016
HetNet for HSPA - RWS-120017
HetNet Enhancements - RWS-120023
HetNet Mobility - RWS-120029
Small cells & HetNet - RWS-120031
HetNet - RWS-120037
HetNet Enhancements for HeNB - RWS-120040


HSDPA / HSUPA / HSPA+ Enhancements
HSPA UL Enhancements - RWS-120003
Uplink Enhancements - RWS-120006
UMTS evolution: enhancing CS voice on DCH - RWS-120007
High Speed Packet Access - RWS-120012
HSPA RRM enhancement - RWS-120024
HSPA+ further evolution - RWS-120034


Interworking (HSPA, LTE)
Coordination : HSPA/LTE e-interworking - RWS-120024
Inter-RAT Coordination/CA - RWS-120037


Local-Area Access (Small Cells)
Local-Area Access - RWS-120003
LTE in Local Area Deployments & Enhancements - RWS-120004
LTE Local Area Enhancements - RWS-120004
LTE Local Area Enhancement Areas - RWS-120004
enhanced Local Area (eLA) - RWS-120010
Local Area Enhancements - RWS-120022
Improved Local Area Mobility - RWS-120022


LTE
LTE for Nomadic and Fixed Use - RWS-120018
E-PDCCH enhancement - RWS-120019
Efficiency : Paging Optimization - RWS-120024


LTE Hotspot and Indoor Enhancements (LTE-Hi)
Hotspot and Indoor Enhancements (LTE-Hi) - RWS-120006
Hotspot/indoor Scenario (LTE-Hi) - RWS-120025
Indoor & Hotspot Enhancements (LTE-Hi) [Detailed] - RWS-120029
Possible Study Items for Indoor Environment - RWS-120040


M2M / Machine Type Communications (MTC)
Machine Type Communications - RWS-120003
Improved Support for MTC - RWS-120006
Machine-to-Machine: The Internet of Things - RWS-120014
Machine Type Communications: a new ecosystem - RWS-120014
Wireless MTC and RAN optimizations for MTC - RWS-120016
Low-Cost MTC UE - RWS-120017
MTC + eDDA (enhanced Diverse data application) - RWS-120019
Further Enhancements to Support MTC - RWS-120023
MTC - RWS-120025
MTC enhancements - RWS-120026
M2M - RWS-120029
MTC and migration of traffic from 2G - RWS-120031
Machine Type Communications enhancements - RWS-120034
Machine Type Communications - RWS-120035
Extension triggered by growing M2M traffic - RWS-120038 / RWS-120047
LTE-based M2M - RWS-120041


MBMS / eMBMS
eMBMS Enhancements - RWS-120007
eMBMS - RWS-120013
UHD Multimedia Broadcast/Multicast Service - RWS-120036 / RWS-120050


Mesh Networks
Mesh Networks - RWS-120018


Network Density
Network density: Scenarios - RWS-120010


Network Architecture and Operation
Easier network operation, tolerance to failure - RWS-120005
System Architecture - RWS-120032
Evolution of LTE Networks - RWS-120034


Positioning
Positioning Enhancements - RWS-120006


Public Safety
Public Safety - RWS-120030
Operation of Public Safety System via LTE - RWS-120031
Public safety’s future in LTE [Detailed] - RWS-120033


Self Organising Networks (SON) and Minimisation of Drive Testing (MDT)
SON Evolution - RWS-120002
Enhanced MDT - RWS-120011
Network Self-Optimisation - RWS-120014
SON and MDT - RWS-120017
HetNet SON - RWS-120029
MDT & Energy Saving - RWS-120029
Autonomous Interference Coordination - RWS-120029
Large scale multi-layer centralized cooperative radio - RWS-120034
MDT Enhancement - RWS-120036 / RWS-120050
SON Enhancements - RWS-120036 / RWS-120050
MDT and eDDA - RWS-120041


Small Cells (HNB/HeNB)
UMTS evolution: small cells - RWS-120007
Wide & Local area enhancements - RWS-120010
Small Cells - RWS-120014
Small Cell Enhancement in Rel-12 - RWS-120021 / RWS-120046
HeNB Enhancement - RWS-120036 / RWS-120050
Efficient Usage of Macro and Small Cells - RWS-120038 / RWS-120047
Low-cost Low Power Nodes (LC-LPN) - RWS-120038 / RWS-120047
Small-Cell Improvements: System Aspects - RWS-120041


Spectrum
Enhanced spectrum efficiency - RWS-120005
Spectrum efficiency: eLA topics - RWS-120010
Scenarios for spectrum extension - RWS-120010
Spectrum and spectrum usage - RWS-120012
Wider Spectrum Utilization - RWS-120016
Spectral efficiency for LTE - RWS-120017
New Spectrum for Mobile Broadband Access - RWS-120021 / RWS-120046
Enabling Technologies for New Spectrum - RWS-120021 / RWS-120046
Radio Propagation - RWS-120021 / RWS-120046
Opportunistic Use of Unlicensed Spectrum for D2D Local Traffic - RWS-120023
Flexible Spectrum Utilization - RWS-120024
Spectrum Related: New Bands And CA Band Combinations - RWS-120029
Spectrum - RWS-120032
Hybrid access scheme - RWS-120034
Spectrum - RWS-120035
Spectrum and Transmission Efficiency - RWS-120039
Spectrum-Agile LTE - RWS-120041


TDD / TD-LTE
TD-LTE - RWS-120014
TDD-specific aspects - RWS-120014
TDD adaptive reconfiguration - RWS-120034
Efficient Usage of Dual Duplex Modes - RWS-120038 / RWS-120047
LTE TDD Small-Cell versus WiFi - RWS-120041


Testing
Testing and Certification - RWS-120022


Traffic and Signalling Overhead
Efficient support of diverse traffic characteristics - RWS-120005
Efficient support for variety of traffic types - RWS-120010
Enhancements for variety of traffic types - RWS-120010
Very high traffic (and signalling) scenarios - RWS-120017
Control Plane Overhead Reduction - RWS-120021 / RWS-120046
Further Enhancements to Support Diverse Data Applications - RWS-120023
Efficiency : Small data services in high mobility - RWS-120024


User Experience
Improve User experience - RWS-120009
User Challenges - RWS-120032


Video streaming, call
RAN Enhancements for Video Streaming QoE - RWS-120023
RAN Enhancements for Internet Video Call - RWS-120023


WiFi / WLAN
Cooperation between LTE/HSPA and WiFi - RWS-120005
Unlicensed spectrum: LTE & WLAN - RWS-120007
LTE integration with other RATs - RWS-120014
WiFi integration: For Beyond Rel-12 - RWS-120017
LTE-WLAN Interworking - RWS-120023
Coordination With WiFi - RWS-120029
Smarter opportunistic usage of Wi-Fi - RWS-120031
LTE TDD Small-Cell versus WiFi - RWS-120041


Others
Other identified techniques for LTE - RWS-120005
Efficient Transactions - RWS-120035
Link Enhancement Considerations - RWS-120035
Intra-RAT cooperation / Inter-RAT cooperation - RWS-120036 / RWS-120050


Here is the summary from the workshop:

Complete list of Presentations

RWS-120002Release 12 and beyond for C^4 (Cost, Coverage, Coordination with small cells and Capacity)NSN
RWS-120003Views on Rel-12Ericsson & ST-Ericsson
RWS-120004LTE evolving towards Local Area in Release 12 and beyondNokia Corporation
RWS-120005Views on Release 12Orange
RWS-120006Views on Rel-12 and onwards for LTE and UMTSHuawei Technologies, HiSilicon
RWS-1200073GPP RAN Rel-12 & BeyondQualcomm
RWS-120008New Solutions for New Mobile Broadband ScenariosTelefonica
RWS-120009Telecom Italia requirements on 3GPP evolutionTelecom Italia
RWS-120010Requirements, Candidate Solutions & Technology Roadmap for LTE Rel-12 OnwardNTT DOCOMO, INC.
RWS-120011Where to improve Rel-12 and beyond: Promising technologiesNEC
RWS-120012Deutsche Telekom Requirements and Candidate TechnologiesDeutsche Telekom
RWS-120013Release 12 Prioritization ConceptsDish Networks
RWS-120014Towards LTE RAN EvolutionAlcatel-Lucent
RWS-120015UE AAS (Active Antenna System)Magnolia Broadband
RWS-120016Requirements and Technical Considerations for RAN Rel.12 & OnwardsFujitsu Limited
RWS-120017Operator requirements on future RAN functionalityTeliaSonera
RWS-120018AT&T View of Release 12 in the North America MarketplaceAT&T
RWS-120019Major drivers, requirements and technology proposals for LTE Rel-12 OnwardPanasonic
RWS-120020Efficient spectrum resource usage for next-generation N/WSK Telecom
RWS-120021Technologies for Rel-12 and onwardsSamsung Electronics
RWS-120022LTE Rel-12 and BeyondRenesas Mobile Europe
RWS-120023LTE Rel-12 and Beyond: Requirements and Technology ComponentsIntel
RWS-120024Considerations on further enhancement and evolution of UMTS/LTE network in R12 and onwardsChina Unicom
RWS-120025Views on LTE R12 and BeyondCATT
RWS-120026A proposal for potential technologies for Release 12 and onwardsETRI
RWS-120027A view on requirements on Rel-12 and onwards from an operator’s viewpointSoftbank Mobile
RWS-120028India market Requirements for Rel. 12 and beyondCEWiT
RWS-120029Views on LTE Rel-12 & BeyondCMCC
RWS-120030LTE addressing the needs of the Public Safety CommunityIPWireless
RWS-120031Vodafone view on 3GPP RAN Release 12 and beyondVodafone
RWS-120032An Operator’s View of Release 12 and BeyondSprint
RWS-120033Public Safety Requirements for Long Term Evolution REL-12U.S. Department of Commerce
RWS-120034Views on 3GPP Rel-12 and BeyondZTE
RWS-120035Considerations for LTE Rel-12 and beyondMotorola Mobility
RWS-120036LG’s view on evolution of LTE in Release 12 and beyondLG Electronics
RWS-120037Views on REL-12 and OnwardsChina Telecom
RWS-120038KDDI’s Views on LTE Release 12 onwardsKDDI
RWS-120039Evolving RAN Towards Rel-12 and BeyondSHARP
RWS-120040Views on enhancement of system capacity and energy efficiency toward Release12 and onwardHitachi
RWS-120041Beyond LTE-A: MediaTek’s view on R12MediaTek
RWS-120042Potential Technologies and Road Map for LTE Release 12 and BeyondITRI, HTC
RWS-120043New concept to maximize the benefit of interference rejection at the UE receiver: interference suppression subframes (ISS)Broadcom
RWS-120046Technologies for Rel-12 and onwardsSamsung Electronics
RWS-120047KDDI’s Views on LTE Release 12 onwardsKDDI
RWS-120048A view on Rel-12 and onwards from an operator’s viewpointSoftbank Mobile
RWS-120049UE AAS (Active Antenna System)Magnolia Broadband
RWS-120050LG’s view on evolution of LTE in Release 12 and beyondLG Electronics
RWS-120051New concept to maximize the benefit of interference rejection at the UE receiver: interference suppression subframes (ISS)Broadcom

More technically minded people want to explore the 3GPP website for the workshop links here: http://3gpp.org/ftp/workshop/2012-06-11_12_RAN_REL12/

Draft report that gives more insight into the presentations as follows: