Showing posts with label Network Architecture. Show all posts
Showing posts with label Network Architecture. Show all posts

Monday 29 December 2008

Simplifying LTE/SAE Interfaces

Here is simplified diagram of LTE Interfaces from my upcoming training on LTE/SAE. Hope you find it useful.

Wednesday 24 December 2008

India gets ready for 3G

So here comes 3G in India. It’s been long coming as the data needs were increasing rapidly in almost all the Indian states. With the existing cellular infrastructure not capable of holding huge traffic particular for data, arrival of 3G was imminent.

The Indian Department of Telecoms (DoT) has published its official timetable for the award of its 3G licences across the country as well as a breakdown of how the relevant spectrum will be allocated across the telecoms circles.

As expected, the state-owned operators BSNL and MTNL each have been reserved one block of 2x5MHz in each circle, with the exception of Rajasthan (State in North West India) which will have no 3G spectrum at all. The number of blocks of spectrum in the private auction differs depending on the circle (see the spectrum table, below).

The auction for the 15-year licences is planned for Jan. 15, 2009. In the majority of 3G service areas there is 25 MHz of paired frequency bandwidth available which relates to four blocks of 2x5 MHz spectrum available for auction in addition to the block reserved for the state-owned operators, Bharat Sanchar Nigam (BSNL) and Mahanagar Telephone Nigam (MTNL). Spectrum is rather limited in many other areas, including the major metro circle of Delhi where only two 2x5MHz blocks will be available to private operators.

All of the 3G spectrum will be in the 2.1 GHz band and in the 2.3 GHz and 2.5 GHz frequency bands, a separate auction for Broadband Wireless Access (WiMAX). In both these auctions, which will take place two days after the 3G auction, bidders are restricted to just one block of spectrum per service area.

The table below shows the proposed spectrum layout.


Service Area (Indian Cities or States)

Paired frequency bandwidth to be allotted

Paired frequency bandwidth to be allotted

Delhi

160

15

Mumbai

160

25

Kolkata

80

25

Maharashtra

160

25

Gujrat

160

15

Andhra Pradesh

160

25

Karnataka

160

25

Tamil Nadu

80

25

Kerela

80

25

Punjab

80

25

Haryana

80

25

Uttar Pradesh(e)

80

25

Uttar Pradesh (w)

80

10

Rajasthan

0

20

Madhya Pradesh

80

25

Bengal

80

25

Himachal Prades

30

25

Bihar

30

25

Orrisa

30

25

Assam

30

25

North East

30

5

Jammu And Kashmir

30

25

Friday 25 January 2008

LTE Architecture: Flat or Not so Flat?

'Migrating to Flatter, All-IP Wireless Networks' claims this article in converge digest. People have been talking about this Flat architectures for some time now and I decided that it was time i clear my understanding on this.

While searching my library of infinite resources i finally hit the jackpot. Qualcomm presentation from LTE 2007 has an answer.


The flatness of an access network can be measured by the depth of its link layer-specific network element hierarchy.

Going back to the article mentioned earlier:

Despite the growth of carrier networks and the evolution of standards, voice and data communications have not evolved in synch. Carriers have historically added data communications as an afterthought to voice network architectures originally conceived in the circuit-switched era, resulting in complex hierarchical networks that support both voice and data.

This type of architecture is expensive, leading to high operating and capital expenditures for service providers and significantly lowering margins in a highly competitive industry. In addition, networks employing cobbled-together voice and data communications systems simply do not have the capacity to provide the rich multimedia services and omnipresent Internet access that today’s wireless customers demand.

To address these limitations, service providers are moving toward emerging all-IP wireless technologies that promise to reduce complexity, simplify the wireless core, and decrease service providers’ operational and capital expenses.


Currently there are several initiatives that operators are considering for building wireless IP networks:

· WiMAX End-to-End Network Systems Architecture: Defined by the WiMAX Forum Network Working Group (NWG) and leveraging the IEEE 802.16e WiMAX interface.

· Long Term Evolution (LTE): Being defined by the Third Generation Partnership Project (3GPP) and targeted as a successor to GSM-based technologies.
· Ultra Mobile Broadband (UMB): Being defined by the Third Generation Partnership Project 2 (3GPP2) and targeted as a successor to CDMA-based technologies.


All three of these architectures are similar in that they leverage a flat, user-plane, all-IP network architecture with fewer nodes that enables mobile operators to integrate the core with the access network, providing real-time multimedia and broadband IP services from the core to the mobile station. This flatter architecture results in reduced latencies and thus optimizes performance for real-time services such as voice and video.


So going back to the Qualcomm presentation and checking if the LTE part is as flat as claimed.


We can see that the LTE Network Architecture is Lumpy rather than flat. Even though it is an improvement from the Release 99 (or rather Release 6) its not as flat as claimed.
Sure this would be something to consider in case of 4G (IMT-Advanced).