Showing posts with label Release 8. Show all posts
Showing posts with label Release 8. Show all posts

Sunday 8 June 2008

3GPP Selects Femtocell Architecture

Picked this up from Dean Bubley's post on his blog.
The Third Generation Partnership Project (3GPP) has adopted an official architecture for 3G femtocell home base stations.

The 3GPP wants to have the new standard done by the end of this year, which appears to be an aggressive time schedule given the fact that vendors had various approaches to building a femtocell base station. The agreed upon architecture follows an access network-based approach, leveraging existing standards, called IU-cs and Iu-ps interfaces, into the core service network. The result is a new interface called Iu-h.

The architecture defines two new network elements, the femtocell and the femtocell gateway. Between these elements is the new Iu-h interface. This solution was backed by Alcatel-Lucent, Kineto Wireless, Motorola and NEC.

All of the femtocell vendors must go back and change their access point and network gateway equipment to comply with the new standard interface.

All femtocell vendors will have to make changes to their access points. Alcatel-Lucent, Motorola, NEC, and those that already use Kineto's GAN approach, such as Ubiquisys, will have the least work to do.
Kineto Wireless, Inc., announced its full support for the 3GPP agreement reached last week on the Home NodeB (HNB) architecture for femtocell-to-core network connectivity. Recognizing that a standard is needed for the mass-market success of femtocells, Kineto took a lead role in developing consensus among the contributing companies. Having an agreed architecture marks a major milestone towards the completion of a global 3G femtocell standard.
The agreed 3GPP HNB architecture follows an access network-based approach, leveraging the existing Iu-cs and Iu-ps interfaces into the core service network. The architecture defines two new network elements, the HNB (a.k.a. Femtocell) and the HNB Gateway (a.k.a. Femto Gateway). Between these elements is the new Iu-h interface.
  • Home NodeB (HNB) – Connected to an existing residential broadband service, an HNB provides radio coverage for standard 3G handsets within a home. HNBs incorporate the capabilities of a standard NodeB as well as the radio resource management functions of a standard Radio Network Controller (RNC).
  • HNB Gateway (HNB-GW): Installed within an operator’s network, the HNB Gateway aggregates traffic from a large number of HNBs back into an existing core service network through the standard Iu-cs and Iu-ps interfaces.
  • Iu-h Interface: Residing between an HNB and an HNB-GW, the Iu-h interface includes a new HNB application protocol (HNBAP) for enabling highly-scalable, ad-hoc HNB deployment. The interface also introduces an efficient, scalable method for transporting Iu control signaling over the Internet.

With an agreement on an underlying femtocell architecture, 3GPP has now transitioned to the phase of developing detailed specifications. This work is targeted for completion by the end of 2008.

More Info:

Wednesday 28 May 2008

E-MBMS out of Rel-8, CBS in


E-MBMS is out of Release 8 and CBS (Cell Broadcast Service) is back in LTE. CBS as far as I am aware is not used much anywhere except Japan. CBS has been added specifically as now there is requirement for EWTS (Earthquake and Tsunami Warning System) .

Tuesday 29 April 2008

HSPA+ in Release-7 and Release-8

Thought of adding this while I am in mode of making lists. So whats in HSPA evolution in Rel-7 and Rel-8. Lot of people are unaware that HSPA+ was big enough to finish off in Rel-7 and was definite to spill over in Rel-8

HSPA+ Features in Release 7

  • Higher Order Modulation Schemes

    • Advantages and weaknesses of higher order modulation
      - Interference Sensitivity
      - QPSK
      - 16-QAM, 64-QAM)
      - Consequences
      - Behavior in Time Variant Mobile Radio Channels
      - Behavior of a time variant mobile radio channel
      - Effect of amplitude variations
      - Effect of phase variations

    • 16-QAM for the S-CCPCH (DL)
      - MBSFN only
      - Interleaving
      - Modulation
      - Scaling factors

    • 64-QAM for the HS-PDSCH (DL)
      - Interleaving
      - Constellation Rearrangement
      - Modulation
      - Related UE Categories

    • 16-QAM for UL (4-PAM for the E-DPDCH)
      - HARQ Rate Matching Stage
      - Interleaver
      - Modulator
      - UE category

    • Overview Advantages and Disadvantages
      - Higher peak data rate
      - Better resource utilization
      - Blind choice of modulation scheme
      - High SNIR requirement
      - More TX power requirement
      - Low range
      - Small cell environment
      - Restrictions of use for high UE moving speeds

    • Channel Estimation Algorithms
      - Normal Algorithm
      - Gathering pilot information
      - Channel estimation
      - Data detection
      - Advantage
      - Disadvantage
      - Advanced Algorithms
      - Shorter channel estimation window
      - Moving channel estimation window
      - Adaptive detection
      - Turbo detection
      - Advantages
      - Disadvantages

    • Performance16-QAM in the UL
      - Performance on Link Level 16-QAM in the UL
      - Performance of BPSK compared to 4-PAM
      - Influence of non-linearity of the power amplifier
      - Performance on System Level
      - Behavior with increasing load
      - Maximum versus average throughput

    • Higher Order Modulation Testing
      - Test Setup for 16-QAM in the UL
      - RF components
      - Discussion of the setup
      - Selected Performance Requirements for 16-QAM in the UL
      - BPSK vs. 4-PAM
      - Effect of RX diversity
      - Effect of high degree of multipath
      - Effect of high UE moving speed

  • MIMO

    • Introduction to MIMO Technology
      - The Basics: Signal Fading Physics between TX and RX
      - Scattering
      - Refraction
      - Reflection
      - Diffraction
      - Multiplexing Dimensions
      - The Multipath Dimension
      - MIMO General Operation

    • MIMO Feedback Procedure (PCI)
      - Motivation of Spatial Precoding
      - Plain MIMO
      - Multiple rank beamforming
      - Spatial Precoding
      - Codebook, PCI and CQI Loop
      - Codebook
      - PCI and CQI loop

    • MIMO Algorithms
      - Linear MIMO Algorithms (Preparation work, Equalizer at the end of the processing chain,
      - Equalizer at the beginning of the processing chain), Non-Linear MIMO Algorithms

    • MIMO Performance
      - MIMO Performance on Link Level (SISO vs. SIMO, SIMO vs. MIMO, 2x2 MIMO vs. 4x2
      - MIMO, 16-QAM vs. 64-QAM), Performance on System Level (MIMO vs. SIMO, 50% vs.
      - 75% power allocation, 0% vs. 4% feedback errors)

    • MIMO Tests
      - Official Test Setups (Test NodeB, Fading simulator, Noise generator, UE under test, Single stream test setup, Double stream test setup), Quick and Easy Test Setups (The
      easiest test setup, A more reliable test setup: The MIMO circle), Selected Performance
      - Requirement Figures (Conditions, 64-QAM performance, Dual stream MIMO
      performance, Single stream MIMO performance)

  • Continuous Packet Connectivity (CPC)

    • Basic features
      - Uplink Discontinuous Transmission (DTX), Downlink Discontinuous Reception (DRX)

    • RRC message ID’s
      - DTX and DRX Information

    • CPC Timing
      - Uplink CQI transmission

    • Example for Uplink DPCCH Burst Pattern for 10 ms E-DCH TTI
      - Uplink DRX, Downlink DRX

    • Uplink DPCCH preamble and postamble
      - Uplink DPCCH preamble and postamble for the DPCCH only transmission, Uplink DPCCH preamble and postamble for the E-DCH transmission, Uplink DPCCH preamble and postamble for the HS-DPCCH transmission

    • Example of simultaneous Uplink DTX and Downlink DRX

    • CPC and Enhanced F-DPCH
      - Timing Implications for CPC + Enhanced F-DPCCH

  • Upgraded L1 Signaling

    • HS-SCCH Review of Rel. 5 and 6
      - HS-SCCH Frame Structure, HS-SCCH Part 1 and 2 Forward Error Coding Chain, UE
      specific masking of Part 1 and Part 2, HS-PDSCH Code Allocation through Part1 of HSSCCH,
      - Transport Block Size Determination – TFRI Mapping

    • HS-SCCH of Rel. 7
      - HS-SCCH Overview of Rel. 7 (HS-SCCH type 1, No HS-SCCH, HS-SCCH type 2, HSSCCH
      type 3), HS-SCCH Type 1 (HS-SCCH Type 1, HS-SCCH Type 1 for Configured 64-QAM Operation, HS-SCCH Orders, 64-QAM Constellation Versions), HS-SCCH Type 2 (for HS-SCCH less operation) (Use of the HS-SCCH-less operation, Procedure HSSCCH-less operation), HS-SCCH Type 3 (HS-SCCH Type 3 Overview, Modulation and
      Transport Block Number , HARQ Process Number, Redundancy Version and
      Constellation Version)

    • HS-DPCCH of Rel. 7
      - HS-DPCCH ACK/NACK (ACK-NACK of primary TB in R5, Preamble and postamble in
      R6, ACK-NACK of 2 TB’s in R7), HS-DPCCH PCI and CQI type A and B (CQI in case of
      no MIMO operation, PCI and CQI in case of MIMO with 1 TB (CQI type A), PCI and CQI
      in case of MIMO with 2 TB’s (CQI type B))

    • E-AGCH and E-DPCCH
      - Changes in the E-TFCI tables, Changes in the AG tables, Changes in the SG tables

  • MAC-ehs Entity versus MAC-hs

    • UTRAN side MAC-hs Details – CELL_DCH only
      - Flow Control, Scheduling/Priority Handling, HARQ, TFRC selection

    • UE side MAC-hs Details – CELL_DCH only
      - HARQ, Reordering Queue distribution, Reordering, Disassembly

    • UTRAN side MAC-ehs Details
      - Some advantages of MAC-ehs compared to MAC-hs , Flow Control, HARQ, TFRC
      selection (~ TFRI), LCH-ID mux, Segmentation

    • UE side MAC-ehs Details
      - HARQ , Disassembly, Reordering queue distribution, Reordering, Reassembly, LCH-ID demultiplexing

    • Differences in the MAC-ehs and MAC-hs Header
      - MAC-hs Header Parameter Description
      - MAC-hs SDU , , MAC-hs Header of MAC-hs PDU), MAC-ehs Header Parameter Description
      - MAC-ehs Header Parameter Details
      - HARQ Process Work Flow in UE – MAC-hs / MAC-ehs
      - Split HS-DSCH Block Functionality
      - Practical Exercise: MAC-hs contra MAC-ehs
      - MAC-hs / MAC-ehs Stall Avoidance
      - Timer-Based Scheme
      - Window Bases Scheme
      - MAC-(e)hs Reordering Functionality – Timer / Window based

  • Flexible RLC PDU Sizes

    • The RLC AMD PDU – Rel. 7 Enhancements
      - The Poll (POLL) super-field
      - RLC AMD Header Fields
      - Release 7 Enhancement of the HE-Field and LI

    • Comparison of RLC-AM between Rel. 6 and Rel. 7
      - RLC-AM Overhead using fixed or flexible PDU size
      · RRC State Operation Enhancements

    • Transport Channel Type Switching with HSPA in R6
      - Transport Channel Combinations between UL and DL, Radio Bearer Multiplexing Options in Rel. 6

    • Operation of UTRA RRC States in Release 7
      - UE Idle mode, CELL_DCH state

    • HS-DSCH Reception in CELL_FACH and XXX_PCH
      - Overview (UE dedicated paging in CELL_DCH, CELL_FACH and CELL_PCH, BCCH
      reception in CELL_FACH, FACH measurement occasion calculation, Measurement
      reporting procedure), (1) Operation in the CELL_FACH state (DCCH / DTCH reception in
      CELL_FACH state , User data on HS-DSCH in Enhanced CELL_FACH state), (2) Operation in the CELL_FACH state – Cell Update, (3) RRC Idle to transient CELL_FACH
      (Common H-RNTI selection in CELL_FACH (FDD only), H-RNTI selection when entering
      Connected mode (FDD only) ), Operation in the URA_PCH or CELL_PCH state (Data
      Transfer in CELL_PCH with dH-RNTI, State Transision from CELL_PCH to CELL_FACH
      to CELL_DCH, CELL_PCH and URA_PCH enhanced Paging Procedure)

HSPA+ Features in Release 8

  • Overview of HSPA+ Related Work Items in R8

    • Requirements for two branch IC

    • CS voice over HSPA

    • Performance req. for 15 HSDPA codes

    • MIMO + 64-QAM

    • Enhanced DRX

    • Improved L2 for UL

    • Enhanced UL for CELL_FACH

    • R3 Enhancements for HSPA

    • Enhanced SRNS relocation

  • MIMO combined with 64-QAM

    • New UE Categories
      - Data Rate, Soft IR memory

    • L1 Signaling of MIMO and 64-QAM
      - Modulation Schemes and TB Sizes (Signaling on the HS-SCCH type 3, Dilemma to signal
      on the modulation schema and TB number field, Solution), CQI Signaling, CQI Tables
      used


Interested readers can refer to Alcatel-Lucent presentation in HSPA+ Summit here.

There is also an interesting Qualcomm paper titled, "Release 7 HSPA+ For Mobile Broadband Evolution" available here.

3GPP Release 8 Features

Many people are surprised to hear that the Rel-8 of 3GPP is much more than just LTE/SAE. Here is a list of features:


  1. Maintenance of TISPAN documentation
  2. FS on 3G Home NodeB
  3. FS on Multimedia Session Continuity
  4. FS on CS Domain Services over evolved PS access
  5. FS on Transferring of emergency call data – in-band modem solution
  6. FS on Improved network controlled mobility between LTE and 3GPP2/mobile WiMAX radio technologies
  7. FS on IMS Application Server Service Data Descriptions for AS interoperability
  8. FS Restoration Procedures
  9. Registration in Densely-populated area
  10. Lawful Interception in the 3GPP Rel-8
  11. IMS Enhancements for support of Packet Cable access
  12. Study on Non 3GPP access NSP
  13. Support of Service-Level Interworking for Messaging Services
  14. Feasibility Study of Mobility between 3GPP-WLAN Interworking and 3GPP Systems
  15. Study on Requirements for seamless roaming and service continuity between mobile and WLAN networks
  16. Study on Stage 2 aspects of IMS Service Brokering
  17. Study of Requirements of IP-Multimedia Subsystem (IMS) Convergent Multimedia Conferencing
  18. Study on support of a Public Warning System (PWS)
  19. Study of VCC support for Emergency Calls
  20. Study on centralized IMS services
  21. Study on centralised IMS service control
  22. Consumer protection against spam and malware
  23. 3G Long Term Evolution
  24. GERAN support for GERAN - 3G Long Term Evolution interworking
  25. Local Charging Zone Requirements
  26. Enhancements to BS30 Bearer service for Videotelephony
  27. IMS Enhancements Rel-8
  28. NDS Authentication Framework Extension for TLS
  29. Study on Value Added Services for Short Message Service
  30. Value Added Services for Short Message Service
  31. Study on Paging Permission with Access Control (PPAC)
  32. Paging Permission with Access Control
  33. GAN Enhancements
  34. Earthquake and Tsunami Warning System
  35. FS on Extended Support of IMS Emergency Calls
  36. Study on System enhancements for the use of IMS services in local breakout
  37. Study on Services Alignment and Migration
  38. Study on A-interface over IP
  39. Study on Multi-User Reusing-One-Slot
  40. Study on Optimized Transmit Pulse Shape for Downlink EGPRS2-B
  41. Study on InterWorking Function between MAP based and Diameter based interfaces
  42. Study on Evaluation of the inclusion of Path Loss Based Technology in the UTRAN
  43. LCS for 3GPP Interworking WLAN
  44. All-IP Network (AIPN)
  45. 3GPP System Architecture Evolution Specification
  46. CT aspects of System Architecture Evolution
  47. FBI Phase 2
  48. Rel-8 Feasibility Studies
  49. IMS Centralised Service Control
  50. IMS Multimedia Telephony and Supplementary Services
  51. MTSI Video - Dynamic Rate Adaptation/Signalling of Image Size
  52. eCall data transfer Phase 2: Comparison of alternative in-band modem solutions and standardization of one in-band modem solution
  53. Requirements and Test methods for Wideband Terminals
  54. Extending PSS and MBMS User Services for optimized Mobile TV
  55. IMS initiated and controlled PSS and MBMS User Service
  56. Storage and easy access of ICE numbers on USIM
  57. IP Interconnection of Services
  58. Network Selection for non-3GPP Access
  59. Charging for multi-phases services
  60. Home NodeB / eNodeB
  61. 3GPP2 Input to Common IMS
  62. Rel-8 Improvements of the Radio Interface
  63. OAM&P 8
  64. OAM&P Rel-8 Studies
  65. Study of Element Operations Systems Function (EOSF) definition
  66. Study on SA5 MTOSI XML Harmonization
  67. Study of Common Profile Storage (CPS) Framework of User Data for network services and management
  68. Study of Management for LTE and SAE
  69. Study on Charging Aspects of 3GPP System Evolution
  70. Study of System Maintenance by Itf-N
  71. Study of Self-Organizing Networks (SON) related OAM interfaces for Home NodeB
  72. Study on Self-healing of Self-Organizing Networks (SON)
  73. Personal Network Management (PNM)
  74. eCall Data Transfer – Requirements
  75. IMS System enhancements for corporate network access
  76. IMS Service Brokering enhancements
  77. Network Composition
  78. FS on Scope of future HSPA Evolution for 1.28Mcps TDD
  79. FS on Synchronised E-DCH for UTRA FDD
  80. Study on Dual-Cell HSDPA operation
  81. (FS on) Service continuity between mobile and WLAN networks
  82. I-WLAN NSP
  83. Interworking Wireless LAN Mobility
  84. Multimedia Priority Service
  85. Multimedia interworking between IMS and CS networks
  86. Conferencing enhancements for Mp interface
  87. Enhancements for VGCS Applications
  88. Contact Manager for 3GPP UICC applications (formerly ""Enhanced USIM Phonebook"")
  89. Charging Management small Enhancements
  90. Harmonization of Gq'/Rx for Common IMS
  91. IMS Service Continuity
  92. Interworking between User-to-User Signaling (UUS) and SIP
  93. Support of Overlap signalling
  94. OSA Rel-8
  95. Rel-8 RAN improvements
  96. Combination of 64QAM and MIMO for HSDPA (FDD)
  97. Security Enhancements for IMS
  98. Generic Bootstrapping Architecture Push Function
  99. Support of (G)MSC-S – (G)MSC-S Nc Interface based on the SIP-I protocol
  100. IMS Stage-3 IETF Protocol Alignment
  101. New multicarrier BTS class
  102. Support of Customised Alerting Tone Service
  103. Facilitating Machine to Machine Communication in GSM and UMTS (M2M)
  104. SI on AS-MRFC media server control protocol
  105. AS/MRFC stage 2 and 3 work
  106. (Small) Technical Enhancements and Improvements for Rel-8

Monday 16 July 2007

300 Mbps with 'Super-FOMA'


NTT DoCoMo, Inc. announced that this month it began testing an experimental Super 3G system for mobile communications. With this experiment, DoCoMo will seek to achieve a downlink transmission rate of 300Mbps over a high-speed wireless network.
For people who are unaware, LTE is being branded as Super-3G as this term is more appealing as compared to LTE which would mean nothing to ordinary people.
DoCoMo will begin with an indoor experiment to test transmission speed using one transmitting and one receiving antenna. The company will then expand the experiment to examine downlink transmission by employing up to four Multiple-Input Multiple-Output (MIMO) antennas for both the base station (transmission side) and mobile station (receiving side); the goal is to achieve a downlink transmission speed of 300Mbps. MIMO is an antenna technology for wireless communications in which different data streams are spatially multiplexed using multiple antennas for both transmission and reception on the same frequency. Also to be examined is the "handover function" — switching of the connection between two base stations.
NTT DoCoMo's Super-3G timetable is available here
The reason i am calling this setup as Super-FOMA is because going back to when 3G was being introduced, DoCoMo wanted to be the first with 3G. As a result, they adopted a 3GPP Release version that wasnt stable and released it as FOMA. Now they are doing the same with LTE. LTE wont be stable in that timeframe so they might end up with Super-FOMA instead of Super-3G.
The company has also been aggressively pursuing 4G system development. In late December, the carrier came close to hitting a 5Gbit/sec. data transmission speed from an experimental 4G system to a receiver moving at 10 kilometers per hour.
Possibly it may be the first one with a 4G system and it might end up as Hyper-FOMA :)

Friday 6 July 2007

3GPP Release 8 = 3GPP IMS + ETSI TISPAN



Interesting development that happened last month at the 3GPP plenary meeting in Busan, Korea earlier this month, an agreement was reached on how to proceed with Common IMS to meet the needs of fixed, mobile, broadband and wireless users.

In cooperation with the European Telecommunications Standards Institute, the 3rd Generation Partnership Project (3GPP) has re-chartered a services group tasked with common ETSI-3GPP development of IP Multimedia Subsystem (IMS) Version 8.

Both standards bodies hailed the early June agreement, reached during a meeting in Busan, Korea, as an effective way to keep 3GPP IMS and ETSI Telecoms & Internet converged Services & Protocols for Advanced Networks (TISPAN) work.

Both IMS and TISPAN comprise next-generation network standards efforts designed to forge a higher signaling and control plane infrastructure layer to support delivery of content and applications to subscribers across any fixed or mobile network or device.
“ETSI TISPAN has taken the first steps in migrating fixed IMS requirements to 3GPP in a co-operation that will prevent fragmentation of IMS standards,” Dr. Walter Weigel, ETSI Director-General, said. “A Common IMS, developed in one place, is a big step forward and will bring enormous economies of scale and reductions in capital and operational costs.”

Common IMS developments will form part of 3GPP Release 8, which is expected to be functionally frozen by end 2007.

Over the next few months we must stabilize the Release 8 requirements and absorb the incoming Common IMS work,” Stephen Hayes, Ericsson Inc., 3GPP TSG-SA Chair Stephen Hayes of Ericsson Inc., said. “3GPP has a history of successfully meeting challenges and I have no doubt we will meet these challenges as well.”

Thursday 24 May 2007

Almost 300,000 LTE Base Transceiver Stations by 2014

Nearly 300,000 LTE Base Transceiver Stations will be installed by 2014, according to a new study from ABI Research. While LTE will encounter competition from other mobile broadband technologies, its supporters extol its potential to unify the mobile infrastructure market.

LTE brings to the market 25 years of operating experience using TDM and CDMA technology. It aims to use that, combined with OFDM, and other techniques, to provide the best of both worlds, perhaps stealing WiMAX’s thunder. This also takes the industry from the current two-network approach of circuit switching for voice, and packet switching for data to a single IP network for both services.





“LTE faces competition from other broadband wireless technologies and it will need to demonstrate clear technical and economic advantages to convince network operators,” says ABI Research analyst Ian Cox. “The mobile variant of WiMAX will start to appear in 2007 as the WiMAX Forum Certification program ramps up. The industry is also working on HSPA+, which could offer the same performance in a 5 MHz bandwidth. Without additional spectrum, operators could face a difficult choice.”
Cox further comments that, “LTE is the NGN for the mobile industry and is being standardized by 3GPP with the full support of operators via the NGMN Group.”

Long Term Evolution (LTE) of 3G technologies is about to benefit from Release-8 of the 3GPP standard, planned for the third quarter of 2007. The potential rewards of LTE are simplicity of operation, a “flat” architecture offering low latency, and spectrum flexibility. Backwards compatibility and roaming with 2G and 3G networks are added bonuses, along with lower power consumption and improved performance, . LTE could also unite the W-CDMA and CDMA communities because of its spectral flexibility.

For vendors, LTE will allow development of a new market to replace declining 3G revenues.

For users, says Cox, LTE will enable broadband services, including VoIP, to be offered over SIP-enabled networks. Each service will be IP-based, offering high data rates and low latency, with on-line gaming becoming a reality along with mobile network data speeds comparable to those of fixed networks.

“UMTS Long Term Evolution”
(http://www.abiresearch.com/products/market_research/UMTS_Long_Term_Evolution) reviews the world market for LTE.

Tuesday 22 May 2007

LTE in few words

Before it gets out from my mind. People keep on asking what LTE is without going in the details. So here it is:

3G LTE, as proposed in 3GPP Release 8, aims to increase cell data capacity by at least five times over the current implementations of HSPA. It will support more users per cell, as well as higher speeds to individual users, and is intended to match DSL speeds currently available to the home. A simplified protocol structure and re-definition of the functional split between network elements and basestations is intended to raise efficiency while making all VoIP networks possible.

Some of the highlights of LTE are:
  • OFDM-based air interface (Orthogonal Frequency Division Multiplexing) ... WCDMA is out.
  • Channel bandwidths from 1.25 to 20MHz are supported
  • Increased spectrum efficiency and peak data rates at cell edge.
  • Target peak rates of 100 Mbps/DL and 50 Mbps/UL. (Nokia-Siemens have already achieved 108Mbps though)
  • Increased spectrum efficiency and peak data rates at cell edge.
  • Reduced latency for both user and control plane: less than 10ms round trip delay for user plane between UE and the serving RAN node, less than 100ms transition time for control plane between inactive state and active state.
  • Support for diversity and MIMO

The first LTE-based networks are expected to roll out in 2009/2010. In contrast to other cellular technologies, conformance tests for LTE are expected to be available more than two years ahead of any service introduction according to Agilent. This will ensure user devices are available in volume when the network services are finally launched.

Long Term Evolution gaining momentum


There is lot of activity going on regarding the 3GPP Long Term Evolution popularly known as LTE (and i also refer to this term as Long Term Employment).
There have already been couple of high profile announcements this month on LTE. A press release from Nokia announced, "A group of world leading telecom technology manufacturers and network operators comprised of Alcatel-Lucent, Ericsson, France Telecom/Orange, Nokia, Nokia Siemens Networks, Nortel, T-Mobile, and Vodafone have announced a joint initiative aimed at driving forward the realisation of the next-generation of high performance mobile broadband networks based on 3GPP Release 8 "Long Term Evolution / System Architecture Evolution" (LTE/SAE) specifications."
I suppose this initiative is more of a reaction to the advancement of WiMax. There have been some high profile announcements about operators adopting WiMax as the technology of their choice rather than 3G and its evolution. The press release also said: "The companies participating in this initiative will collaborate on demonstrating the potential of 3GPP LTE/SAE mobile broadband technologies through a series of joint tests including radio transmission performance tests, early interoperability tests, field tests and full customer trials. Joint activities will commence in May 2007, and are expected to run for a period of 18-24 months."
Another press release, from Nokia-Siemens networks told us that using virtual MIMO the UL data rate has been increased in LTE from 54Mbps to 108Mbps. At present i cannot think of why we would need these high speeds but i am sure its always good to have the facility.
An Interview in a Indian newspaper with Nokia-Siemens networks head for the region gives an indication that Nokia is trying to play down WiMax card and promote LTE (which i think is sensible anyway).
At present it looks like only Nokia but i am sure other major players like Nortel, Ericsson and Qualcomm are not far behind.