Showing posts with label Release 8. Show all posts
Showing posts with label Release 8. Show all posts

Tuesday, 8 February 2011

VoLTE: Semi-Persistent Scheduling (SPS) and TTI Bundling

The following is from the recently released 4G Americas paper '4G Mobile Broadband Evolution: 3GPP Release-10 and beyond:

With the support of emergency and location services in Rel-9, interest in Voice over LTE (VoLTE) has increased. This is because the Rel-9 enhancements to support e911 were the last step to enable VoLTE (at least in countries that mandate e911) since the Rel-8 specifications already included the key LTE features required to support good coverage, high capacity/quality VoLTE. There are two main features in Rel-8 that focus on the coverage, capacity and quality of VoLTE: Semi-Persistent Scheduling (SPS) and TTI Bundling.

SPS is a feature that significantly reduces control channel overhead for applications that require persistent radio resource allocations such as VoIP. In LTE, both the DL and UL are fully scheduled since the DL and UL traffic channels are dynamically shared channels. This means that the physical DL control channel (PDCCH) must provide access grant information to indicate which users should decode the physical DL shared channel (PDSCH) in each subframe and which users are allowed to transmit on the physical UL shared channel (PUSCH) in each subframe. Without SPS, every DL or UL physical resource block (PRB) allocation must be granted via an access grant message on the PDCCH. This is sufficient for most bursty best effort types of applications which generally have large packet sizes and thus typically only a few users must be scheduled each subframe. However, for applications that require persistent allocations of small packets (i.e. VoIP), the access grant control channel overhead can be greatly reduced with SPS.

SPS therefore introduces a persistent PRB allocation that a user should expect on the DL or can transmit on the UL. There are many different ways in which SPS can setup persistent allocations, and Figure below shows one way appropriate for VoLTE. Note that speech codecs typically generate a speech packet every 20 ms. In LTE, the HARQ interlace time is 8 ms which means retransmissions of PRBs that have failed to be decoded can occur every 8 ms. Figure below shows an example where a maximum of five total transmissions (initial transmission plus four retransmissions) is assumed for each 20 ms speech packet with two parallel HARQ processes. This figure clearly shows that every 20 ms a new “first transmission” of a new speech packet is sent. This example does require an additional 20 ms of buffering in the receiver to allow for four retransmissions, but this is generally viewed as a good tradeoff to maximize capacity/coverage (compared to only sending a maximum of two retransmissions).

The example in Figure above can be applied to both the DL and UL and note that as long as there are speech packets arriving (i.e. a talk spurt) at the transmitter, the SPS PRBs would be dedicated to the user. Once speech packets stop arriving (i.e. silence period), these PRB resources can be re-assigned to other users. When the user begins talking again, a new SPS set of PRBs would be assigned for the duration of the new talkspurt. Note that dynamic scheduling of best effort data can occur on top of SPS, but the SPS allocations would take precedent over any scheduling conflicts.


TTI bundling is another feature in Rel-8 that optimizes the UL coverage for VoLTE. LTE defined 1 ms subframes as the Transmission Time Interval (TTI) which means scheduling occurs every 1 ms. Small TTIs are good for reducing round trip latency, but do introduce challenges for UL VoIP coverage. This is because on the UL, the maximum coverage is realized when a user sends a single PRB spanning 180 kHz of tones. By using a single 180 kHz wide PRB on the UL, the user transmit power/Hz is maximized. This is critical on the UL since the user transmit power is limited, so maximizing the power/Hz improves coverage. The issue is that since the HARQ interlace time is 8 ms, the subframe utilization is very low (1/8). In other words, 7/8 of the time the user is not transmitting. Therefore, users in poor coverage areas could be transmitting more power when a concept termed TTI bundling (explained in the next paragraph) is deployed.

While it’s true that one fix to the problem is to just initiate several parallel HARQ processes to fill in more of the 7/8 idle time, this approach adds significant IP overhead since each HARQ process requires its own IP header. Therefore, TTI bundling was introduced in Rel-8 which combined four subframes spanning 4 ms. This allowed for a single IP header over a bundled 4 ms TTI that greatly improved the subframe utilization (from 1/8 to 1/2) and thus the coverage (by more than 3 dB).

Martin Sauter puts it in a simpler way in his blog as follows: The purpose of TTI Bundling is to improve cell edge coverage and in-house reception for voice. When the base station detects that the mobile can't increase it's transmission power and reception is getting worse it can instruct the device to activate TTI bundling and send the same packet but with different error detection and correction bits in 2, 3 or even 4 consecutive transmit time intervals. The advantage over sending the packet in a single TTI and then detecting that it wasn't received correctly which in turn would lead to one or more retransmissions is that it saves a lot of signaling overhead. Latency is also reduced as no waiting time is required between the retransmissions. In case the bundle is not received correctly, it is repeated in the same way as an ordinary transmission of a packet. Holma and Toskala anticipate a 4dB cell edge gain for VoIP with this feature which is quite a lot. For details how the feature is implemented have a look at 3GPP TS 36.321.

A whitepaper explaining the concepts of TTI Bundling is available on Slideshare here.

Monday, 17 January 2011

Heterogeneous LTE Networks and Inter-Cell Interference Coordination

An interesting paper that is more of a background to my earlier post here is available from Nomor Research and is embedded below.
This paper is available to download from here.

Wednesday, 5 January 2011

eICIC: Enhanced inter-cell interference coordination in 3GPP Release-10

Inter-cell interference coordination (ICIC) was introduced in Release-8/9 of the 3GPP LTE standards. The basic idea of ICIC is keeping the inter-cell interferences under control by radio resource management (RRM) methods. ICIC is inherently a multi-cell RRM function that needs to take into account information (e.g. the resource usage status and traffic load situation) from multiple cells.

Broadly speaking, the main target of any ICIC strategy is to determine the resources (bandwidth and power) available at each cell at any time. Then (and typically), an autonomous scheduler assigns those resources to users. Thus, from the Radio Resource Control perspective, there are two kind of decisions: (a) which resources will be allocated to each cell? and, (b) which resources will be allocated to each user?. Clearly, the temporality of such decisions is quite different. Whereas resources to users allocation is in the order of milliseconds, the allocation of resources to cells take much longer periods of time or can be fixed.

Static ICIC schemes are attractive for operators since the complexity of their deployment is very low and there is not need for new extra signaling out of the standard. Static ICIC mostly relies on the fractional reuse concept. This means that users are categorized according to their Signal-to-Noise-plus-Interference Ratio (SINR), that means basically according to their inter-cell interference, and different reuse factors are applied to them, being higher at regions with more interference, mostly outer regions of the cells. The total system bandwidth is divided into sub-bands which are used by the scheduler accordingly.

A simple way to explain ICIC is based on picture above. The users are divided into two categories, one is Cell Center User (CCU), and the other one is Cell Edge User (CEU). CCUs are the users distributed in the gray region of above figure, and CEUs are the users distributed in the above red, green and blue areas. CCU can use all the frequencypoints to communicate with the base station, while CEU must use corresponding specified frequency points to ensure orthogonality between different cells.
CEUs can be assigned a higher transmissionpower for the frequency reuse factor is greater than 1. The frequency points are not overlapped at the edges so the adjacent cell interference is small. CCU’s frequency reuse factor is 1; for the path loss is small and transmission power is low. Therefore the interference to the adjacent cells is not high either.

Dominant interference condition has been shown when Non-CSG/CSG users are in close proximity of Femto, in this case, Rel8/9 ICIC techniques are not fully effective in mitigating control channel interference, and hence, Enhanced interference management is needed At least the following issues should be addressed by any proposed solutions:
o Radio link monitoring (RLM)
o Radio Resource Management (including detection of PSS/SSS and PBCH)
o Interference from CRS
oo To PCFICH/PHICH/PDCCH
oo To PDSCH
o CSI measurement
o Interference from PDCCH masked with P-RNTI and SI-RNTI (for SIB-1 only) and associated PCFICH

As a result, from Release-10 onwards eICIC work was started. In Rel-10, two eICIC or Enhanced inter-cell interference coordination (also incorrectly referred to as Enhanced Inter-Cell Interference Cancellation) were being actively discussed. They are Time domain eICIC and autonomous HeNB power setting. More advanced ideas are being thought of beyong Rel-10 including Interference management techniques on carrier resolution ( optimally exploiting available Networks frequency assets (carriers in same or different bands) , combination with Carrier Aggregation; interference management schemes proposed both during LTE-Advanced Study Item phase, and during Rel-10 HetNet eICIC work.

From an earlier presentation in SON Conference:

eICIC:
- Effectively extends ICIC to DL control - time domain
- Requires synchronization at least between macro eNB and low power eNBs in its footprint
- No negative impact on legacy Rel 8 Use

Range Extension(RE)
- Refers to UE ability to connect and stay connected to a cell with low SINR
- Achieved with advanced UE receivers - DL interference cancellation (IC)

RE + eICIC technique:
– Eliminates coverage holes created by closed HeNBs
– Improves load balancing potential for macro network with low power eNBs and leads to significant network throughput increase
–Enables more UEs can be served by low power eNBs, which can lead to substantially higher network throughput

More details on eICIC is available in 3GPP CR's and TR's listed below:
  • R1-105081: Summary of the description of candidate eICIC solutions, 3GPP TSG-WG1 #62, Madrid, Spain, August 23rd – 27th, 2010.
  • R1-104942: Views on eICIC Schemes for Rel-10, 3GPP TSG RAN WG1 Meeting #62, Madrid, Spain, 23-27 August, 2010.
  • R1-104238: eICIC Chairman’s note, 3GPP TSG RAN WG1 Meeting #61bis, Dresden, Germany, 28th June – 2nd July 2010.
  • R1-103822: Enhanced ICIC considerations for HetNet scenarios, 3GPP TSG RAN WG1 #61bis Meeting, Dresden, Germany, June 28 – July 2, 2010.
You can also check out NTT Docomo's presentation on LTE Enhancements and Future Radio Access here.

Wednesday, 8 December 2010

SON for reducing Opex in Legacy Networks

Presented by Stéphane Téral, Principal Analyst, Mobile and FMC Infrastructure, Infonetics Research in the 1st Self-Organizing Networks Conference, 30th Nov and 1st Dec. 2010 at the Waldorf Hilton.

Tuesday, 7 December 2010

SON framework in 3GPP

From a Presentation by Cinzia Sartori from Nokia Siemens Networks (NSN) in the Self-Organising Networks Conference in London, Nov. 2010

Release 8 functionality
• Self-configuration procedures

Release 9 enhancements
• Self-optimization procedures
• Energy Saving Intra-RAT

Release 10 objectives
• Extend Self-optimization procedures , including inter-RAT
• Minimization of Drive Test (MDT)
• Energy Saving extension, including Multi-RAT (Study Item)
• 3G-ANR
• SON Conflict Resolution

SON features for R11 (Probably - Under Discussion)
• Minimization of Drive Tests (MDT) enhancements
• Mobility Robustness Optimization for MultiRAT
• SON for LTE-A features defined in Rel.10
•• Hetrogeneous Networks aka. HetNet?
•• SON for Relays
•• SON for Carrier Aggregation

Thursday, 2 December 2010

The 3GPP release 8 IMS Implementation, Deployment & Testing workshop

The 3GPP release 8 IMS Implementation, Deployment & Testing workshop took place in Sophia Antipolis on 24-25 November 2010.

The event was attended by 70 delegates actively participating to the discussions.
Presenting companies included: Tel : A1 Telekom Austria, Alcatel Lucent, Codenomicon, Conformiq, Eircom, Elvior, ETSI, France Telecom, GSMA, Huawei, Huawei, Mobitel, NTT DoCoMo, SFR, Telecom Italia, TestingTech, TU Berlin, Wind, Wipro, ZTE.

Here are the highlights from the ETSI document:

Goals and Outcome for this workshop

Share exprience from IMS implementation
Highlight areas for further specifications, for
Standards and Testing
Learn of issues and possible resolutions

Comments from The IMS Network Testing Group

Develop IMS core network test specifications based upon 3GPP, for:
• Interoperability
• conformance
• network integration
Hold interoperability events (IMS Plugtests)
Coordinate with other organisations such as OMA, MSF, GSMA

Implementations

• Beyond small islands, second wave to replace unscalable, unmaintenable early VoIP systems
• Implementation options - Hybrid CS-GW for transition from CS to LTE, which already has 2 million subscribers on IMS/CS-GW/RNC
• Auto provisioning - to simplify complexity
• IMS functions must be implemented in the core – not in any access network, such as LTE, and can be used for non-Voice as well


Implementing RCS (Rich Communication Suite)

• RCS trial feedback - Good feedback from 400 trial users on RCS but difficult to configure SBC
• RCS implementations should include aggregation with SNS (Social Network Services)– eg contact list from Facebook
• Most appreciated feature of RCS is: - cross-operator interworking and compatibility with ordinary phones, not just smartphones


Specific Issues and Resolutions

• FAX – Delay and Jitter issues - FTTH will solve long delays etc
• Emergency and Lawful Intercept with IMS -There are standards and developed solutions available but Currently still falls back to CS /TDM
• Data Provisioning speed is important, to achieve no service interruption.
• 3GPP II-NNI: Inter-IMS Network to Network Interface - Two levels: Solx (service with control function) and Coix (connection – a pipe for media).
• “PathFinder” Global ENUM – like DNS for phone number; It is a solution to number portability and can optimise routing


About Services

• Most issues are Beyond IMS - integrating OSS/BSS, existing systems, inter-vendors interfaces
• IMS and IN - Pity the Standards did not bring IN and IMS close together; Need iFC enhancements, like in IN; Need to support combining services
• OTT and SNS dominate growth - occupies the minds of commercial people, GSMA-like services have slowed down
• Service layer (Wipro) – Telcos want one SDP to serve all - include IMS and non-IMS services, human and non-humans on NAB, context based, and charge only what is ‘consumed’


Testing Methods, Tools and Test Beds

• Integrate Conformance checking with interoperability testing
• Automation of interoperability trace checking – it can reduce costs by more than 50 % compared to manual validation
• Independent Test Bed- available EPC playground for prototyping applications
• Protocol message customisation tool - allows changing the message and customise the flow
• Security testing tool - testing by ‘fuzzing’, 100% TTCN free – everything is already build in
• IMS is a multi vendor environment - Testing and validation must be an integral part of the deployment process


Memorable Quotes

“IMS is a Journey, not a destination” (ALU)
“SDP is almost anything” (Matjas Bericic, Mobitel)
“Voice as an app versus Voice as a Service” is a challenge (Manuel Vexler, Huawei)
“IMS is not a box, it is a network” (Matjas Bericic, Mobitel)
“global ENUM is DNS for phone numbers” (Adrian Dodd, GSMA)
“Kill with one SIP” (Ari Takanen, Codenomicon)
“ IOP is the red thread running through the entire ETSI standards development process “ (Milan Zoric, ETSI)

All documents from this workshop is available at: http://docbox.etsi.org/Workshop/2010/201011_IMSWORKSHOP/

Wednesday, 10 November 2010

Proximity Indication - New RRC Uplink Message in Rel-9

The inbound handover from a Macro eNB to an HeNB (a.k.a. Femtocell) is not supported in Release 8. Before making a handover decision to a HeNB, the Macro eNB needs to acquire UE measurement information related to the so-called target CSG cell. Nevertheless, UEs cannot continuously make measurements and read the system information of lots of CSG cells in cases of large scale HeNB deployments.

In order to allow the UE to make those measurements efficiently, a newly defined proximity report can be configured within the RRC Reconfiguration message. This proximity report will allow the UE to send a so-called “proximity indication” to the source eNB in the uplink whenever it is entering or leaving the proximity of one or more cells with CSG IDs that the UEs has in its CSG Whitelist.

A UE that is able to determine that it is near its CSG cell can thus inform the network to take the necessary actions for handover preparation. The detection of proximity is based on an autonomous search function.

The source eNB, upon receiving the proximity indication, might ask the UE to perform measurements of the CSG cell, to read the System Information (SI) or, in case it already has all required information, it might already start the handover procedure. PCI (Physical Cell Identification) confusion is resolved in Release 9. The eNB will ask the UE to report the global cell identity. As usual the UE reporting is using the RRC measurement procedures. The ovell procedure is illustrated in Figure below.

In summary five basic steps can be identified:
1. Proximity configuration/reporting
2. HO measurement configuration/reporting
3. Resolution of PCI confusion by requesting and reporting System Information
4. Access Control in the network
5. HO execution

Since the CSG search can be very slow there are no strict requirements on the inbound handover performance, which can range from one to several 10’s of seconds.

Since the proximity information is based on UE signaling, the network might be receiving a lot of proximity indications, increasing the network load. Therefore, it was agreed to limit proximity indications a UE can send within a certain time frame. A timer, called the prohibit proximity timer, was introduced.

Source:

Friday, 22 October 2010

IMB and TDtv (and DVB-H)

Its long time since I blogged about TDtv. Its been quite a while since I heard about TDtv. Apparently its been superseded by IMB, aka. Integrated Mobile Broadcast.



IMB is used to stream live video and store popular content on the device for later consumption. This results in a significant offloading of data intensive traffic from existing 3G unicast networks and an improved customer experience. The multimedia client features an intuitive electronic program guide, channel grid and embedded video player for live TV viewing and video recording. All IMB applications can be quickly and cost-effectively adapted to support all major mobile operating systems and different mobile device types, including smartphones, tablets and e-readers.

IMB was defined in the 3GPP release 8 standards, and was recently endorsed by the GSMA as their preferred method for the efficient delivery of broadcast services. In June 2010, O2, Orange and Vodafone – three of the five major UK mobile operators – announced that they have teamed up for a three-month trial that will explore IMB wireless technology within a tranche of 3G TDD spectrum.

This spectrum already forms part of the 3G licenses held by many European mobile operators, but has remained largely unused because of a lack of appropriate technology. Currently, 3G TDD spectrum is available to over 150 operators across 60 countries, covering more than half a billion subscribers. IMB enables spectrally efficient delivery of broadcast services in the TDD spectrum based on techniques that are aligned with existing FDD WCDMA standards. This enables a smooth handover between IMB and existing 3G networks.

Issues that previously limited uptake of IMB, or IPWireless' tdTV system, have now all been addressed. Namely, the standard now allows for smooth handover between IMB and unicast delivery; has the potential to be integrated onto a single W-CDMA chip rather than requiring a separate chip; and has resolved interference issues with FDD W-CDMA, at least for spectrum in the 1900MHz to 1910MHz range.

IP Wireless already had a trial at Orange and T-Mobile in the UK (which have just agreed to merge), but in that pilot each 5MHz segment only gave rise to 14 TV channels per operator. The new standard could support 40 separate TV channels if two operators shared their TDD spectrum.

The GSMA announced its support and is backed up with additional support from both IPWireless and Ericsson as well as operators Orange, Softbank and Telstra.

There have been recently quite a few bad news for DVB-H and on top of that IP Wireless has announced that Samsung is going to be releasing phones with IMB support so it may be that we will see IMB sometime next year.

The GSMA paper that details IMB service scenarios and System requirements is embedded below:

Wednesday, 20 October 2010

Fast Dormancy in Release-8

Nokia Siemens Networks has collaborated with Qualcomm to carry out the industry’s first successful interoperability test of the new 3GPP standardized Release 8 Fast Dormancy feature. Unlike proprietary approaches to fast dormancy, the new standard allows operators to take full advantage of smart network features such as Cell_PCH without worrying that individual handset settings will ignore network controls.

The test was conducted at Nokia Siemens Networks’ Smart Lab in Dallas using Nokia Siemens Networks’ Flexi Multiradio Base Station and Radio Network Controller and Qualcomm’s QSC7230TM smartphone optimized chipset. The test showed how smartphones can act dynamically, exploiting Cell_PCH on Nokia Siemens Networks’ smart networks or adjusting to Fast Dormancy on other vendors’ traditional networks.

In fact the operators have been getting upset quite for some time because of smartphone hacks that save the UE battery life but cause network signalling congestion. See here.

To explain the problem, lets look at the actual signalling that occurs when the UE is not transmitting anything. Most probably it gets put into CELL_PCH or URA_PCH state. Then when keep alive messages need to be sent then the state is transitioned to CELL_FACH and once done its sent back to CELL_PCH. Now the transitioning back from CELL_FACH (or CELL_DCH) to CELL_PCH can take quite some time, depending on the operator parameters and this wastes the UE battery life.

To get round this problem, the UE manufacturers put a hack in the phone and what they do is that if there no data to transmit for a small amount of time, the UE sends RRC Signalling Connection Release Indication (SCRI) message. This message is supposed to be used in case when something is gone wrong in the UE and the UE wants the network to tear the connection down by sending RRC Connection Release message. Anyway, the network is forced to Release the connection.

If there is another requirement to send another keep alive message (they are needed for lots of apps like Skype, IM's, etc.) the RRC connection would have to be established all over again and this can cause lots of unnecessary signalling for the network causing congestion at peak times.

To speed up the transitioning to CELL_PCH state in Release-8 when the UE sends SCRI message, its supposed to include the cause value as "UE Requested PS Data session end". Once the network receives this cause it should immediately move the UE to CELL_PCH state.

This is a win win situation for both the network and the UE vendors as long as a lot of UE's implement this. The good thing is that even a pre-Rel8 UE can implement this and if the network supports this feature it would work.

GSMA has created a best practices document for this feature which is embedded below.



Further Reading:

Wednesday, 6 October 2010

Recap of LTE E-UTRAN and Air Interface Protocols



You can also check out the IEEE Comsoc Video tutorial "LTE Radio Access – Physical Layer", delivered by none other than Stefan Parkvall of Ericsson. The tutorial is available at: http://host.comsoc.org/freetutorial/anritsu3/anritsu3.html

Thursday, 5 August 2010

Coordinated Multi-Point (CoMP): Unresolved problems

I have blogged about CoMP in quite some detail in the past. Someone recently pointed out an interesting video from Fraunhofer Heinrich Hertz Institut which is embedded below:



CoMP may be not as practical as we may think. One of the things pointed out by Dr. Ariela Zeira, InterDigital's Vice-President of Advanced Air Interfaces in the LTE World Summit was that there exists a gap between the theoretical and the practical gains of CoMP.

She went on to suggest the following as way forward for the Coordinated Multipoint acceptance in future:
  • Address root causes of gaps between academia and current feedback schemes
    • Need for improved Channel State Information (CSI) feedback resolution
    • Need for improved frequency domain precoding granularity
  • Apply CoMP where most needed and/or theoretical gains can be approached
    • Heterogeneous networks
      • Interference problem is more severe than in macro-only deployment
        • Especially for Femto Closed Subscriber Group and Pico Cells employing large cell extension
      • Lower delay spread and low mobility can be expected in Femto and Pico cells and reduce performance loss from feedback impairments
    • Relay Backhaul Channel (RBC)
      • More accurate CSI feedback from stationary relay station is possible enabling advanced non-linear precoding schemes.
      • High rank MIMO transmission will not be effective due to higher probability of Line of Sight (LOS) channel from Macro to Relay
CoMP is still probably the most promising spectral efficiency solution but need to focus on closing the gap between gains predicted by theory and those achievable with current LTE Release 8 Feedback Schemes

Thursday, 11 March 2010

HSPA+ to reach 168Mbps in Release-10


Just when we thought that we have squeezed every bit out of HSPA, a surprise waiting is the speeds of upto 168Mbps in the downlink. Going back to the 3G Americas report, there is a section in the end that details HSPA+ enhancements for Rel-10:

Rel-8 introduced dual-carrier HSDPA operation in the downlink while Rel-9 similarly introduced dual-carrier HSUPA operation in the uplink and also enhanced the dual-carrier HSDPA operation by combining it with MIMO.

Further enhanced multi-carrier HSDPA operation is being specified for Rel-10, where the base station will be able to schedule HSDPA transmissions over three or four carriers simultaneously to a single user with the carriers are spread over one or two frequency bands. Solutions specified in earlier releases can be reused to a large extent. The difference is that now it is possible to configure a UE with one primary serving cell and up to three secondary serving cells. As in earlier releases, the secondary serving cells can be activated and deactivated dynamically by the base station using so-called “HS-SCCH orders.” With MIMO transmission on all four carriers, the peak rate would be doubled to 168 Mbps compared to Rel-9 and for typical bursty traffic the average user throughput would also experience a substantial increase.

Remember, I posted a blog on data rates calculation? The maximum data rate in Release-8 HSDPA is 42Mbps. With Dual-carrier operation, this could be doubled to 84Mbps. As you can probably guess, with 4 carriers, this will become 168Mbps ;)

For people who are less technically inclined, can check this Ericsson presentation on HSPA+ data rates. For people who may become sleepless without some technical references can check this report from RAN WG#1 meeting#59. If you are not sure what RAN WG#1 is, check quick tutorial on 3GPP here.

Going back to the 3GPP report, section 5.4 lists the details of 4 carriers HSDPA. It would be interesting to see what happens in cases where initially there were 4 carriers but then in a particular spot it changed to 2 carriers, and vice-versa. People who have yet to work on LTE may not have to worry too much as HSPA is being future proofed against the threats of LTE and WiMAX.

Interestingly enough, HSPA+ offers a better and cleaner solution at the moment especially with regards to voice calls and handing over to GSM then LTE or WiMAX.

It wont come as a surprise if the HSPA+ camp are able to pull out some new tricks from their bag just in time for Release-11.

Tuesday, 16 February 2010

Self Organizing Networks and Enhancements

I have blogged about SON earlier here and here. The following is an update from the 3G Americas Whitepaper on Mobile Broadband:

SON concepts are included in the LTE (E-UTRAN) standards starting from the first release of the technology (Rel-8) and expand in scope with subsequent releases. A key goal of 3GPP standardization is the support of SON features in multi-vendor network environments. 3GPP has defined a set of LTE SON use cases and associated SON functions. The standardized SON features effectively track the expected LTE network evolution stages as a function of time. With the first commercial networks expected to launch in 2010, the initial focus of Rel-8 has been functionality associated with initial equipment installation and integration.

The scope of the first release of SON (Rel-8) includes the following 3GPP functions, covering different aspects of the eNodeB self-configuration use case:
• Automatic Inventory
• Automatic Software Download
• Automatic Neighbor Relations
• Automatic PCI Assignment

The next release of SON, as standardized in Rel-9, will provide SON functionality addressing more maturing networks. It includes the following additional use cases:
• Coverage & Capacity Optimization
• Mobility optimization
• RACH optimization
• Load balancing optimization

Other SON-related aspects that are being discussed in the framework of Rel-9 include improvement on the telecom management system to increase energy savings, a new OAM interface to control home eNodeBs, UE reporting functionality to minimize the amount of drive tests, studies on self testing and self-healing functions and minimization of drive testing. It should be clarified that SON-related functionality will continue to expand through the subsequent releases of the LTE standard.

The SON specifications have been built over the existing 3GPP network management architecture, reusing much functionality that existed prior to Rel-8. These management interfaces are being defined in a generic manner to leave room for innovation on different vendor implementations. More information on the SON capabilities in 3GPP can be found in 3G Americas’ December 2009 white paper, The Benefits of SON in LTE.

SON technologies have been introduced in Rel-8/Rel-9 to help decrease the CAPEX and OPEX of the system. LTE-Advanced further enhances the SON with the following features:
  • Coverage and Capacity Optimization. Coverage and Capacity Optimization techniques are currently under study in 3GPP and will provide continuous coverage and optimal capacity of the network. The performance of the network can be obtained via key measurement data and adjustments can then be made to improve the network performance. For instance, call drop rates will give an initial indication of the areas within the network that have insufficient coverage and traffic counters can be used to identify capacity problems. Based on these measurements, the network can optimize the performance by trading off capacity and coverage.
  • Mobility Robustness Optimization. Mobility Robustness Optimization aims at reducing the number of hand over related radio link failures by optimally setting the hand over parameters. A secondary objective is to avoid the ping-pong effect or prolonged connection to a non-optimal cell.
  • Mobility Load Balancing. Related to Mobility Robustness is Mobility Load Balancing, which aims to optimize the cell reselection and handover parameters to deal with unequal traffic loads. The goal of the study is to achieve this while minimizing the number of handovers and redirections needed to achieve the load balancing.
  • RACH Optimization. To improve the access to the system, RACH Optimization has been proposed to optimize the system parameters based upon monitoring the network conditions, such as RACH load and the uplink interference. The goal is to minimize the access delays for all the UEs in the system and the RACH load.

In addition to the enhanced SON technologies described above, minimization of manual drive testing functionality is also currently under examination in 3GPP to enhance and minimize the effort for optimization of the LTE-Advance network. The main goal is to automate the collection of UE measurement data. In so doing, it will minimize the need for operators to rely on manual drive tests to optimize the network. In general, a UE that is experiencing issues, such as lack of coverage, traffic that is unevenly distributed or low user throughput, will automatically feed back measurement data to the network which may be used by the network as a foundation for network optimization.

SON related 3GPP references can be found on Martin Sauter's blog here.

Thursday, 11 February 2010

UICC and USIM in 3GPP Release 8 and Release 9


In good old days of GSM, SIM was physical card with GSM "application" (GSM 11.11)

In the brave new world of 3G+, UICC is the physical card with basic logical functionality (based on 3GPP TS 31.101) and USIM is 3G application on a UICC (3GPP TS 31.102). The UICC can contain multiple applications like the SIM (for GSM), USIM and ISIM (for IMS). There is an interesting Telenor presentation on current and future of UICC which may be worth the read. See references below.

UICC was originally known as "UMTS IC card". The incorporation of the ETSI UMTS activities into the more global perspective of 3GPP required a change of this name. As a result this was changed to "Universal Integrated Circuit Card". Similarly USIM (UMTS Subscriber Identity Module) changed to Universal Subscriber Identity Module.

The following is from the 3G Americas Whitepaper on Mobile Broadband:

UICC (3GPP TS 31.101) remains the trusted operator anchor in the user domain for LTE/SAE, leading to evolved applications and security on the UICC. With the completion of Rel-8 features, the UICC now plays significant roles within the network.

Some of the Rel-8 achievements from standards (ETSI, 3GPP) are in the following areas:

USIM (TS 31.102)
With Rel-8, all USIM features have been updated to support LTE and new features to better support non-3GPP access systems, mobility management, and emergency situations have been adopted.

The USIM is mandatory for the authentication and secure access to EPC even for non-3GPP access systems. 3GPP has approved some important features in the USIM to enable efficient network selection mechanisms. With the addition of CDMA2000 and HRPD access technologies into the PLMN, the USIM PLMN lists now enable roaming selection among CDMA, UMTS, and LTE access systems.

Taking advantage of its high security, USIM now stores mobility management parameters for SAE/LTE. Critical information like location information or EPS security context is to be stored in USIM rather than the device.

USIM in LTE networks is not just a matter of digital security but also physical safety. The USIM now stores the ICE (In Case of Emergency) user information, which is now standardized. This feature allows first responders (police, firefighters, and emergency medical staff) to retrieve medical information such as blood type, allergies, and emergency contacts, even if the subscriber lies unconscious.

3GPP has also approved the storage of the eCall parameters in USIM. When activated, the eCall system establishes a voice connection with the emergency services and sends critical data including time, location, and vehicle identification, to speed up response times by emergency services. ECalls can be generated manually by vehicle occupants or automatically by in-vehicle sensors.

TOOLKIT FEATURES IMPROVEMENT (TS 31.111)
New toolkit features have been added in Rel-8 for the support of NFC, M2M, OMA-DS, DM and to enhance coverage information.

The contactless interface has now been completely integrated with the UICC to enable NFC use cases where UICC applications proactively trigger contactless interfaces.

Toolkit features have been updated for terminals with limited capabilities (e.g. datacard or M2M wireless modules). These features will be notably beneficial in the M2M market where terminals often lack a screen or a keyboard.

UICC applications will now be able to trigger OMA-DM and DS sessions to enable easier device support and data synchronization operations, as well as interact in DVB networks.

Toolkit features have been enriched to help operators in their network deployments, particularly with LTE. A toolkit event has been added to inform a UICC application of a network rejection, such as a registration attempt failure. This feature will provide important information to operators about network coverage. Additionally, a UICC proactive command now allows the reporting of the signal strength measurement from an LTE base station.

CONTACT MANAGER
Rel-8 defined a multimedia phone book (3GPP TS 31.220) for the USIM based on OMA-DS and its corresponding JavaCard API (3GPP TS 31.221).

REMOTE MANAGEMENT EVOLUTION (TS 31.115 AND TS 31.116)
With IP sessions becoming prominent, an additional capability to multiplex the remote application and file management over a single CAT_TP link in a BIP session has been completed. Remote sessions to update the UICC now benefit from additional flexibility and security with the latest addition of the AES algorithm rather than a simple DES algorithm.

CONFIDENTIAL APPLICATION MANAGEMENT IN UICC FOR THIRD PARTIES
The security model in the UICC has been improved to allow the hosting of confidential (e.g. third party) applications. This enhancement was necessary to support new business models arising in the marketplace, with third party MVNOs, M-Payment and Mobile TV applications. These new features notably enable UICC memory rental, remote secure management of this memory and its content by the third party vendor, and support new business models supported by the Trusted Service Manager concept.

SECURE CHANNEL BETWEEN THE UICC AND TERMINAL
A secure channel solution has been specified that enables a trusted and secure communication between the UICC and the terminal. The secure channel is also available between two applications residing respectively on the UICC and on the terminal. The secure channel is applicable to both ISO and USB interfaces.

RELEASE 9 ENHANCEMENTS: UICC: ENABLING M2M AND FEMTOCELLS
The role of femtocell USIM is increasing in provisioning information for Home eNodeB, the 3GPP name for femtocell. USIMs inside handsets provide a simple and automatic access to femtocells based on operator and user-controlled Closed Subscriber Group list.

Work is ongoing in 3GPP for the discovery of surrounding femtocells using toolkit commands. Contrarily to macro base stations deployed by network operators, a femtocell location is out of the control of the operator since a subscriber can purchase a Home eNodeB and plug it anywhere at any time. A solution based on USIM toolkit feature will allow the operator to identify the femtocells serving a given subscriber. Operators will be able to adapt their services based on the femtocells available.

The upcoming releases will develop and capitalize on the IP layer for UICC remote application management (RAM) over HTTP or HTTPS. The network can also send a push message to UICC to initiate a communication using TCP protocol.

Additional guidance is also expected from the future releases with regards to the M2M dedicated form factor for the UICC that is currently under discussion to accommodate environments with temperature or mechanical constraints surpassing those currently specified by the 3GPP standard.

Some work is also expected to complete the picture of a full IP UICC integrated in IP-enabled terminal with the migration of services over EEM/USB and the capability for the UICC to register on multicast based services (such as mobile TV).

Further Reading:

Friday, 29 January 2010

HSPA+ rollout updates, Jan 2010

It has been predicted that the growth of HSPA+ broadband across Europe is set to soar with the total number of subscribers set to nearly double across Europe in 2011.

A new report has predicted that by 2011 the growth of HSPA+ broadband across key European markets will soar, and could almost double compared to 2009. The number of subscribers is set to soar from twenty two million in 2009 to around forty three million in 2011. The report was released by CCS Insight.

According to the report HSPA+ broadband will be a major factor in seeing growth of one hundred percent in the to five major European markets. The report goes on to state that the European mobile broadband market will enjoy seeing both subscriber and revenue numbers double by 2011. Revenues are set to increase from around six billion Euros in 2009 to around eleven billion Euros in 2011.

Michael O’Hara, chief marketing officer at the GSMA, said: “It is clear from this report that with the right network investment, European mobile network operators will see significant growth in mobile broadband adoption in the next two years. HSPA technology will drive this rapid uptake across Europe as mobile operators and their customers continue to benefit from its expanding, vibrant and competitive ecosystem.”


HSPA+ was generally the most efficient way of upgrading use of bandwidth already in use and was likely to dominate in the short term at least, with an estimated 1.4 billion subscribers worldwide by 2013, around ten times the estimated take-up of LTE.

HSPA+ release 7, which became available last year, uses MIMO technology like that in 11n Wifi to help take the peak downlink throughput to 28Mbps, with 11Mbps on the uplink. Release 8, for which chipsets will become available this year, aggregates two carrier signals to bring peak data rates to 42Mbps on the downlink.

Release 9 will put two MIMO streams on each of two 5MHz carriers, aggregated to produce a 10MHz data pipe delivering 84Mbps on the downlink; the uplink uses simple aggregation to 23Mbps. A projected Release 10 would bring the peak downlink speed to 168Mbps, though this would require 20MHz carriers only available in the 2.5GHz and 2.6GHz bands.

Novatel Wireless, a developer of wireless data cards and other devices, said that it has added support for dual-carrier HSPA+ networks. The firm said it is using Qualcomm's MDM8220 chipset for the support, and will launch commercial devices in the second half of 2010 based on the chipset. Novatel said the new support will add more advanced data capability and other features to its offerings. Dual Carrier HSPA+ networks are expected to provide higher throughput to wireless data devices, and also helps address better service for cell phone users.

The new modem can receive data at up to 42M bps (bits per second) in compatible 3G networks. To increase the theoretical maximum download speed of the modem from 21M bps to 42M bps, Novatel uses two carrier frequencies instead of the usual one, a technique called dual-carrier. But it will only deliver the higher speed on networks that also support the technique.

Users can expect peak speeds at up to 30M bps, according to Hans Beijner, marketing manager for radio products at Ericsson.Leif-Olof Wallin, research vice president at Gartner, is a more pessimistic, saying increased traffic on the networks could negatively impact speeds. "I think it will be difficult to get above 20M bps," he said.

Sixty-six operators have said they plan to use HSPA Evolution, and so far 37 networks have been commercially launched, according to statistics from the Global Mobile Suppliers Association (GSA).

However, the version of HSPA Evolution that supports 42M bps is still very much in its infancy. Last week, mobile operator 3 Scandinavia announced plans to launch services when modems become available. In December, representatives from Vodafone and the Australian operator Telstra visited Ericsson to Stockholm to view a demonstration, but neither operator has so far announced plans to launch commercial services.

Ericsson and 3 Scandinavia have unveiled plans to roll-out a worlds-first 84Mbps HSPA+ wireless network. The initial rollout will cover Denmark and four Swedish cities. HSPA+ networks that currently operate in Canada, for example, offer speeds of up to 21Mbps depending on conditions. In the United States, T-Mobile recently announced a similar planned network.

Real-world tests of the 21Mbps networks show the services achieving around 7Mbps speed. If a similar performance could be applied to the new Ericsson/3 network, it could result in speeds of roughly 28Mbps at realistic distances and network load.

and 3 will also deploy 900MHz 3G networks in Sweden in a bid to boost coverage in remote areas, as existing higher frequency networks have left some users with poor performance.
The high-speed services will hit Denmark and areas of Sweden this winter if all goes to plan.

China Unicom is putting the finishing touch on the tests on its HSPA+ networks in Guangzhou, Shenzhen, and Zhuhai, which were kicked off in October 2009 by partnering with its three major suppliers Huawei Technologies, ZTE, and Ericsson.

HSPA+ is the next generation technology for China Unicom's WCDMA 3G service. HSPA+, also known as Evolved High-Speed Packet Access, is a wireless broadband standard defined in 3GPP release 7. The HSPA+ network claims with a transmission speed of 21Mbps, 1.5 times faster than its current 3G network.

The outdoor average speed of the networks built up by Ericsson and Huawei reach up to 16.5Mbps and 18.5Mbps on the downlink, 50% higher than that of the existing HSPA network. That means you can download a song within two or three seconds.

Cell C, South Africa, has signed a US$378m deal with the Chinese telecom equipment provider ZTE Corporation. Cell C would ever lead the industry as far as network infrastructure is concerned but it is a fact that Cell C will be the first South African operator to roll out HSPA+ technologies incorporating download speeds of up to 21Mbit/s – three times faster than anything currently available.

According to Cell C an important factor in the decision to appoint ZTE is its ability to offer 4G services using Cell C’s 900MHz frequency band which offers wider and deeper coverage than existing 2100 MHz networks, enabling cost effective deployment to rural as well as metropolitan areas.

Thursday, 14 January 2010

Temporary Identities in LTE/SAE - 2: RNTI's

Last year I covered some information on temporary identities but never got a chance to continue on it. Here is one on RNTI's

RNTI or Radio Network Temporary Identifier(s) are used primarily by eNB Physical Layer for scrambling the coded bits in each of the code words to be transmitted on the physical channel. This scrambling process in PHY happens before modulation. There is a sequence followed for scrambling, calculation of which depends on the RNTI(UE specific for channels like PDSCH,PUSCH) and cell specific (for broadcast channels like PBCH). Details could be found in [2].

The following table lists different kinds of RNTI's:

Lets look at some of these in slightly more detail:

P-RNTI (Paging RNTI): To receive paging messages from E-UTRAN, UEs in idle mode monitor the PDCCH channel for P-RNTI value used to indicate paging. If the terminal detects a group identity used for paging (the P-RNTI) when it wakes up, it will process the corresponding downlink paging message transmitted on the PCH.

SI-RNTI (System Information RNTI): The presence of system information on DL-SCH in a subframe is indicated by the transmission of a corresponding PDCCH marked with a special System Information RNTI (SI-RNTI). Similar to the PDCCH providing the scheduling assignment for ‘ normal ’ DL-SCH transmission, this PDCCH also indicates the transport format and physical resource (set of resource blocks) used for the system-information transmission.

M-RNTI (MBMS RNTI): Used in Rel-9 for MCCH Information change notification.

RA-RNTI (Random Access RNTI): The RA-RNTI is used on the PDCCH when Random Access Response (RAR) messages are transmitted. It unambiguously identifies which time-frequency resource was utilized by the UE to transmit the Random Access preamble. If multiple UEs had collided by selecting the same signature in the same preamble time-frequency resource, they would each receive the RAR.

C-RNTI (Cell RNTI): The C-RNTI to be used by a given UE while it is in a particular cell. C-RNTI allocation and details are too complex to explain in the blog so please refer to Nomor newsletter here.

TC-RNTI: When the UE does not have allocated C-RNTI then Temporaru C-RNTI is used. A temporary identity, the TC-RNTI, used for further communication between the terminal and the network. If the communication is successful then TC-RNTI is promoted eventually to C-RNTI in the case of UE not having a C-RNTI.

SPS-C-RNTI (Semi-Persistent Scheduling C-RNTI): For the configuration or reconfiguration of a persistent schedule, RRC signalling indicates the resource allocation interval at which the radio resources are periodically assigned. Specific transmission resource allocations in the frequency domain, and transmission attributes such as the modulation and coding scheme, are signalled using the PDCCH. The actual transmission timing of the PDCCH messages is used as the reference timing to which the resource allocation interval applies. When the PDCCH is used to configure or reconfigure a persistent schedule, it is necessary to distinguish the scheduling messages which apply to a persistent schedule from those used for dynamic scheduling. For this purpose, a special identity is used, known as the Semi-Persistent Scheduling C-RNTI (SPS-C-RNTI), which for each UE is different from C-RNTI used for dynamic scheduling messages. - Source: LTE, The UMTS Long Term Evolution: From Theory to Practice By Stefania Sesia, Issam Toufik, Matthew Baker

TPC-PUCCH-RNTI (Transmit Power Control-Physical Uplink Control Channel-RNTI) and TPC-PUSCH-RNTI (Transmit Power Control-Physical Uplink Shared Channel-RNTI): The power-control message is directed to a group of terminals using an RNTI specific for that group. Each terminal can be allocated two power-control RNTIs, one for PUCCH power control and the other for PUSCH power control. Although the power control RNTIs are common to a group of terminals, each terminal is informed through RRC signaling which bit(s) in the DCI message it should follow.

The following table lists the values that are assigned to different RNTI's in MAC:



[1] 3GPP TS 36.321 - Evolved Universal Terrestrial Radio Access (E-UTRA) Medium Access Control (MAC) protocol specification
[2] 3GPP TS 36.211 - Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation

Wednesday, 13 January 2010

Takehiro Nakamura on LTE Radio Aspects


In summary:

Release 8 - Minor change requests to it based on March 2009 freeze;
Release 9 - an enhanced version of Release 8 and additional features;
Release 10 (LTE-Advanced) - proposed as an IMT-Advanced and is expected to be approved by December 2010; major differences between LTE and LTE-Advanced


Monday, 11 January 2010

Technologies and Standards for TD-SCDMA Evolutions to IMT-Advanced

Picture Source: http://www.itu.int/dms_pub/itu-t/oth/21/05/T21050000010003PDFE.pdf

This is a summary of a paper from IEEE Communications Magazine, Dec 2009 issue titled "Technologies and Standards for TD-SCDMA Evolutions to IMT-Advanced" by Mugen Peng and Wenbo Wang of Beijing University of Posts and Telecommunications with my own comments and understanding.

As I have blogged about in the past that China Mobile has launched TD-SCDMA network in China and the main focus to to iron out the basic problems before moving onto the evolved TD-SCDMA network. Couple of device manufacturers have already started working on the TD-HSPA devices. Couple of months back, 3G Americas published a whitepaper giving overview and emphasising the advantages of TDD flavour of LTE as compared to FDD. The next milestone is the IMT-Advanced that is under discussion at the moment and China has already proposed TD-LTE-Advanced which would be compatible with the TD-SCDMA technology.

For anyone who does not know the difference between TDD, FDD and TD-SCDMA please see this blog.

The TD-SCDMA technology has been standardised quite a while back but the rollout has been slow. The commercial TD-SCDMA network was rolled out in 2009 and more and more device manufacturers are getting interested in the technology. This could be due to the fact that China Mobile has a customer base of over 500 million subscribers. As of July 2009 over 100 device manufacturers were working on TD-SCDMA technology.

The big problem with TD-SCDMA (as in the case of R99 3G) is that the practical data rate is 350kbps max. This can definitely not provide a broadband experience. To increase the data rates there are two different approaches. First is the Short Term Evolution (STE) and the other is Long Term Evolution (LTE).

The first phase of evolution as can be seen in the picture above is the TD-STE. This consists of single carrier and multi-carrier TD-HSDPA/TD-HSUPA (TD-HSPA), TD-MBMS and TD-HSPA+.

The LTE part is known as TD-LTE. There is a definite evolution path specified from TD-SCDMA to TD-LTE and hence TD-LTE is widely supported by the TD-SCDMA technology device manufacturers and operators. The target of TD-LTE is to enhance the capabilities of coverage, service provision, and mobility support of TD-SCDMA. To save investment and make full use of the network infrastructure available, the design of TD-LTE takes into account the features of TD-SCDMA, and keeps TD-LTE backward compatible with TD-SCDMA and TD-STE systems to ensure smooth migration.

The final phase of evolution is the 4G technology or IMT-Advanced and the TD-SCDMA candidate for TD-LTE+ is TD-LTE-Advanced. Some mature techniques related to the TD-SCDMA characteristics, such as beamforming (BF), dynamic channel allocation, and uplink synchronization, will be creatively incorporated in the TD-LTE+ system.

Some academic proposals were also made like the one available here on the future evolution of TD-SCDMA but they lacked the industry requirements and are just useful for theoretical research.

The standards of TD-SCDMA and its evolution systems are supervised by 3GPP in Europe and by CCSA (Chinese Cellular Standards Association) in China. In March 2001 3GPP fulfilled TD-SCDMA low chip rate (LCR) standardization in Release 4 (R4). The improved R4 and Release 5 (R5) specifications have added some promising functions including HSDPA, synchronization procedures, terminal location (angle of arrival [AOA]-aided location), and so on.

When the industry standardizations supervised by CCSA are focusing on the integration of R4 and R5, the N-frequency TD-SCDMA and the extension of HSDPA from single- to multicarrier are presented. Meanwhile, some networking techniques, such as N-frequency, polarized smart antenna, and a new networking configuration with baseband unit plus remote radio unit (BBU+RRU), are present in the commercial application of TD-SCDMA.

TD-SCDMA STE

For the first evolution phase of TD-SCDMA, three alternative solutions are considered. The first one is compatible with WCDMA STE, which is based on HSDPA/HSUPA technology. The second is to provide MBMS service via the compatible multicast broadcast single-frequency network (MBSFN) technique or the new union time-slot network (UTN) technique. The last is HSPA+ to achieve similar performance as LTE.

On a single carrier, TD-HSDPA can reach a peak rate of 2.8 Mb/s for each carrier when the
ratio of upstream and downstream time slots is 1:5. The theoretical peak transmission rate of a three-carrier HSDPA system with 16-quadrature amplitude modulation (QAM) is up to 8.4 Mb/s.

Single-carrier TD-HSUPA can achieve different throughput rates if the configurations and parameters are varied, including the number of occupied time slots, the modulation, and the transport block size in bytes. Considering the complexity of a terminal with several carriers in TD-HSUPA, multicarrier is configured in the Node B, while only one carrier is employed in the terminal.

In Rel-7 based TD-HSPA+, In order to match the performance of orthogonal frequency-division multiple access (OFDMA)-based TD-LTE systems, some advanced techniques are utilized, such as multiple-input multiple-output (MIMO), polarized BF, higher modulation and coding schemes (64-QAM is available), adaptive fast scheduling, multicarrier techniques, and so on. Theoretically, 64-QAM can improve performance by a factor of 1.5 compared to the current 16-QAM; for single-carrier the peak rate reaches 4.2 Mb/s, and three-carrier up to 12.6 Mb/s.

For the MIMO technique, double transmit antenna array (D-TxAA), based on the pre-coding method at the transmitter, has been employed in frequency-division duplex (FDD)-HSPA+ systems, while selective per antenna rate control (S-PARC), motivated by the Shannon capacity limit for an open loop MIMO link, has been applied in TD-HSPA+ systems.

TD-SCDMA LTE

The TD-SCDMA LTE program was kicked off in November 2004, and the LTE demand report was approved in June 2005. The LTE specified for TD_SCDMA evolution is named TD-LTE.

LTE systems are supposed to work in both FDD and TDD modes. LTE TDD and FDD modes have been greatly harmonized in the sense that both modes share the same underlying framework, including radio access schemes OFDMA in downlink and SC-FDMA in uplink, basic subframe formats, configuration protocols, and so on.

TD-LTE trials have already started last year with some positive results.

TD-SCDMA LTE+

IMT-Advanced can be regarded as a B3G/4G standard, and the current TD-SCDMA standard migrating to IMT-Advanced can be regarded as a thorough revolution. TD-LTE advanced (TD-LTE+) is a good match with the TD-SCDMA revolution to IMT-Advanced.

It is predicted that the future TD-SCDMA revolution technology will support data rates up to approximately 100 Mb/s for high mobility and up to approximately 1 Gb/s for low mobility such as nomadic/local wireless access.

Recently, some advanced techniques have been presented for TD-LTE+ in China, ranging from the system architecture to the radio processing techniques, such as multi-user (MU)-BF, wireless relaying, and carrier aggregation (CA).

For MU-BF see the paper proposed by Huawei, CHina Mobile and CATT here (http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_55b/Docs/R1-090133.zip).

For Wireless Relaying see the ZTE paper here (http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_56b/Docs/R1-091423.zip).

To achieve higher performance and target peak data rates, LTE+ systems should support bandwidth greater than 20 MHz (e.g., up to 100 MHz). Consequently, the requirements for TD-LTE+ include support for larger transmission bandwidths than in TD-LTE. Moreover, there should be backward compatibility so that a TD-LTE user can work in TD-LTE+ networks. CA is a concept that can provide bandwidth scalability while maintaining backward compatibility with TD-LTE through any of the constituent carriers, where multiple component carriers are aggregated to the desired TD-LTE+ system bandwidth. A TD-LTE R8 terminal can receive one of these component carriers, while an TD-LTE+ terminal can simultaneously access multiple component carriers. Compared to other approaches, CA does not require extensive changes to the TD-LTE physical layer structure and simplifies reuse of existing implementations. For more on Carrier Aggregation see CATT, LGE and Motorola paper here (http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_56b/Docs/R1-091655.zip).

Finally, there are some interesting developments happening in the TD-SCDMA market with bigger players getting interested. Once a critical mass is reached in the number of subscribers as well as the manufacturers I wouldnt be surprised if this technology is exported beyond the Chinese borders. With clear and defined evolution path this could be a win-win situation for everyone.