Tuesday, 31 July 2007

2G is Dead, Long live 3G



Two bands of spectrum — at 900MHz and 1800MHz respectively — were set aside in the 1980s for use by the emerging 2G/GSM mobile-phone market. However, since 3G/UMTS became a reality earlier this decade, many users have switched over to the new standard, which operates at the higher-frequency 2100MHz.
This development has reduced the demand for the lower frequencies, and some mobile operators have been arguing for some time that those spectrums should "refarmed" for 3G services. Those operators have pointed out that lower frequencies allow the signal to be transmitted over greater distances and have suggested that, because 3G infrastructure has been deployed mainly in urban areas where the maximum return on investment can be made, refarming would allow greater use of 3G "mobile internet" services in rural areas.
However, one issue remains unresolved in the refarming debate. O2 and Vodafone use 900MHz for their GSM services, while T-Mobile and Orange use 1800MHz. The smallest UK operator, 3, has no GSM spectrum at all. Because lower frequencies transmit further, the EC's proposals have the potential to give O2 and Vodafone the chance to have greater 3G coverage, at a lower cost, than their rivals. 3 stands to be the most disadvantaged network as it has no GSM spectrum to refarm.

Neither Orange, T-Mobile nor 3 had responded to a request for comment on the EC's proposals at the time of writing.
Even more space could become available for 3G services next year when Ofcom auctions off 192MHz of spectrum around the 2.6GHz frequency. However, that spectrum could also be used for alternative mobile broadband services, like mobile WiMax. Pending a formal green light from the European Commission, Reding's proposals on refarming should be in place by the end of this year.

BT Movio ... going ... going ... gone


UK national telecommunication company British Telecom (BT) has closed its mobile broadcast branch BT Movio. The delivery platform developed by BT Movio supports the only mobile broadcast TV service in the UK. The service is retailed by UK largest mobile virtual network operator (MVNO) Virgin Mobile. The operator declared that the service will carry on until the beginning of next year. BT has cancelled its contract with GCap Media which provided access to the Digital Audio Broadcast (DAB) spectrum. GCap mentioned that the cancellation will take effect on 9 June 2008. GCap subsidiary Digital One which is in charge of the spectrum is currently seeking other partners to replace BT Movio.
Virgin had released only one handset — the HTC-manufactured "Lobster phone" — which supported the technology, and sales of that device were poor. The Lobster phone was seen by critics as an unattractive handset and, being based on Windows Mobile, it was not ideally suited to the consumer sector.
However, the final straw for BT was the recent backing given by the European Commission to the mobile broadcast technology Digital Video Broadcasting — Handheld (DVB-H). BT Movio was based on the rival Digital Audio Broadcasting — IP (DAB-IP) standard, which reused digital radio spectrum to deliver a handful of TV channels and a range of digital radio stations. DVB-H promises more channels, but spectrum availability for that technology had looked uncertain until it became apparent last week that the European Commission would force member states to adopt the standard.
According to screendigest:
Unicast mobile TV (i.e. distributed through 3G networks) has been relatively successful in the UK with three major operators launching services with more than 25 TV channels on average. According to Screen Digest, they were almost 450,000 mobile TV subscribers at the end of 2006. While unicast mobile TV can offer a wide range of TV content, the infrastructure can only sustain a limited number of users. In order to support mass market adoption mobile broadcast TV networks must be deployed. BT Movio launched the broadcast mobile TV service with Virgin Mobile in September 2006. The service showed poor uptake during the first 3 months with less than 10,000 subscribers. Factors blamed for the poor uptake include a lack of content and poor handset availability. The upcoming UK auction for L-Band spectrum could have given BT Movio the opportunity to increase the capacity of the current platform and improve the channel line-up. However, the BT Movio platform requires IP compatibility from the broadcast network technology. DVB-H, DAB and MBMS support IP encapsulation. T-DMB, the preferred technology for the L-Band spectrum auction, does not support IP. Therefore, BT Movio was stuck with a platform which cannot draw enough attention from mobile operators, handset manufacturers and inevitably mobile subscribers.
The UK operator '3' is keen to big up its own mobile TV and video services in the wake of BT's announcement. 3 UK says its customers have:
  • Downloaded more than a million reality TV clips in the last year.
  • Downloaded over a million SeeMeTV clips every month, with £100,000 being made by budding directors in the process.
  • Last summer watched World Cup TV on their mobiles nearly 4 million times.
Among the live streamed channels 3 offers are BBC1, BBC3 and ITV1, with access starting at 49p a day. Its also allows customers to access TV from their set-top's with a Slingbox app.

Friday, 27 July 2007

HSPA in Latin America


In the past few weeks, operators Personal and Movistar in Argentina, Movistar in Mexico as well as Movistar and Ancel in Uruguay have all launched UMTS/HSDPA commercial service in their respective markets in Latin America. In addition to the operators listed above, in the past seven months, UMTS/HSDPA has been launched by AT&T in Puerto Rico and Entel PCS in Chile, making a total of seven operators that offer UMTS/HSDPA in Latin America and the Caribbean.
The number of operator deployments of HSDPA has increased by 200% in the last year, from 42 HSDPA networks to 130 commercial HSDPA networks today in 61 countries. Today, there are 177 total deployments of UMTS technology in 74 countries and nearly 300 commercial HSDPA devices available worldwide. Informa Telecoms & Media estimates that there will be 190 million UMTS or HSDPA customers worldwide by the end of 2007.
Latin America has become one of the worlds’ fastest-growing regions for GSM wireless service, as many operators have migrated their networks from other technologies (such as CDMA and TDMA) to the GSM evolution to take advantage of the tremendous scope and scale, as well as technology benefits, offered by EDGE, UMTS and HSDPA. There are an estimated 255 million GSM subscribers in Latin America and the Caribbean as of June 30, 2007, representing a 75% share of market. In addition, many operators in the region have deployed EDGE high speed wireless data services; in fact, there are 38 commercial EDGE networks in 21 countries today.

Erasmo Rojas, Director of Latin America and the Caribbean for 3G Americas commented, “EDGE delivers an excellent customer experience for wireless data, serving as a foundation for customer uptake of wireless data services and increasing revenues for all GSM operators. The next move is to UMTS/HSDPA mobile broadband. We expect many more launches of HSDPA in 2007 and 2008 throughout Latin America and the Caribbean.”

As GSM customers push for speed and applications to satisfy their demands for services such as web browsing, email, mobile payments, interactive gaming and video sharing, UMTS/HSDPA provides the solution with average downlink throughput data rates over 1 Mbps in favorable conditions and latency measuring at 70-100 milliseconds. +

Many more operators throughout Latin America and the Caribbean are planning their move to mobile broadband with HSDPA. Rojas continued, “However, some carriers need additional spectrum allocations before UMTS/HSDPA networks can be launched.”

Tuesday, 24 July 2007

Google jumps on the Femtocells Bandwagon


Ubiquisys recently announced that it has secured funding from Google for its ZoneGate Femtocell. This is an interesting move from the Internet Giant which has also been showing interest in Mobile Phones.

The Inquirer suggests that if Google is showing interest in Femtocells then they have become sexy.
Ubiquisys's Zonegate femtocell plugs into DSL and then provides access to WiFi, Ethernet, ordinary telephones and USB. But the most important thing is that it also acts as a local 3G base station. So Google has something in mind which can be done by providing Broadband in homes.
Dean Bubbly, writing in Seeking Alpha says that he is surprised by Google's move. He writes:
Yes, I know that Google's talking about pitching $4.6B for the US 700MHz spectrum... and yes, I know that there's a 700MHz standard for UMTS going through 3GPP at the moment. But I'd have thought that femtos at that sort of
frequency was fairly pointless, as the big attraction of 700MHz is that it's got great range and goes through walls easily.


The real advantage of 3G femtos, in my view, lies in 2100MHz 3G spectrum (i.e. most of the world today outside the US), and probably in the future in 2600MHz band. It's conceivable that Google might want to start bidding for those chunks of spectrum around the world, but I'm unconvinced that it's
going to follow the classic cellular path (i.e. 3GPP UMTS or LTE) rather than something more Internet-like.


There's an outside possibility that Google might, in fact, want to do something with WiMAX - but at present, Ubiquisys doesn't do WiMAX femtos, although chipset supplier PicoChip is certainly doing suitable silicon. Maybe that's what the investment's for . . .
What no one is talking about is, Is there some way of advertisement using Femtocells? I am sure if Google is going this way then there must be something on advertisement.
We will have to wait and see.

China trying to catch up on 4G


In a move to improve the nation's research and development (R&D) capability, top mobile phone operator China Mobile will promote more self-developed next-generation mobile network technologies that match international standards, an official at its research institute disclosed.

The Research Institute of China Mobile has started several projects for the next generation of mobile network technology.

Wireless internet protocol on internet service environment (WIISE), a technology designed to let mobile networks better manage their bandwidth capacity, is among the institute's key research projects. It is funded by the State.

"We do want to do more on this WIISE technology in the next two years with our proprietary intellectual property rights. We do also want to push this self-developed technology internationally," said Wang Xiaoyun, a deputy manager of the institute yesterday.

Ms Wang explained that the WIISE technology is not designed for present mobile technology but will be applicable to so-called 4G technology or technology even more advanced. "We do want to increase the network management power, which could lead to better use of our network resources," she said.
The Chinese government, in the form of its Ministry of Science and Technology, is also reported to be collaborating with its Swedish counterpart, in the form of the VINNOVA agency for innovation, in a 4G research project initially funded at nearly US$8mn. Public details of that collaboration are minimal (that is, none at this juncture).

China Mobile will host a conference jointly with the government later this year to discuss the issue of advanced technology.

The 4G mobile technology is expected to be in the market by 2010, with Japanese mobile operator NTT DoCoMo having taken the lead in its development. The 4G systems are expected to be able to handle a wide range of data-supported rates of up to about 100 megabits per second for high mobility networks.

China Mobile would like to strengthen its network management system in the next-generation network as demand for bandwidth is increasing.
"The new mobile technology will be more compatible with the use of the internet on the move, whereas the existing 3G technologies still have some weakness with internet applications," Ms Wang said.
Some internet-based applications that occupy a lot of network capacity, such as the peer-to-peer (P2P) network, will be migrated to the mobile network in the future, she said.

As the world's largest mobile operator, China Mobile is bent on developing technology to enhance the mobile internet experience with a cost advantage.
Source: China Daily

Thursday, 19 July 2007

Defining 4G (I mean IMT-Advanced)

3G Americas published a new white paper entitled "Defining 4G: Understanding the ITU Process for the Next Generation of Wireless Technology". The white paper provides the factual description of how IMT-Advanced or 4G will someday be defined by the International Telecommunications Union (ITU). ITU is the internationally recognized authority that will produce the official definition of the next generation of wireless technologies beyond IMT-2000 or 3G.

Chris Pearson, President of 3G Americas, stated, "The ITU is currently establishing criteria for IMT-Advanced and will be screening various technologies for inclusion in the IMT-Advanced family. Only then will we understand what is and can be rightly and credibly called 4G.” He continued, "Any claim today that a particular technology is a so-called ‘4G technology’, in reality, is simply a marketing spin, creating market confusion and deflating the importance of the telecommunications industry standards. Technologies should be verified against a set of agreed-upon requirements in order to qualify as 4G, and this will happen in the future when the requirements are outlined by the ITU."

Significant progress has been made by the Radiocommunication Sector of the ITU (ITU-R) in establishing an agreed and globally accepted definition of 4G wireless systems, and ITU-R is close to releasing a full set of documentation for this definition. Working under a mandate to address systems beyond 3G, ITU-R has progressed from delivering a vision of 4G in 2002 to establishing a name for 4G in 2005 (IMT-Advanced). In 2006, ITU-R set out the principles for the process of the development of IMT-Advanced. The work of the ITU encompasses the important elements of business success in the wireless industry, especially the balance of a market and services view, a technology view, a spectrum view and regulatory aspects. In early 2008, ITU-R will translate the vision into a set of requirements by which technologies and systems can, in the near future, be determined a part of IMT-Advanced and in doing so, earn the credible right to be considered 4G.

During 2008 and 2009, ITU-R will hold an open call for 4G (IMT-Advanced) candidates as well as an assessment of those candidates' technologies and systems. The culmination of this open process will be a 4G, or IMT-Advanced family of technologies. Such a 4G family of technologies, in adherence to the principles defined for acceptance into this ITU process, is globally recognized to be one which can grow to include all aspects of a marketplace that will arrive beyond 2010.

“Third generation technologies are growing immensely in the marketplace, but they too once started out with a vision and requirements from ITU,” stated Pearson. “The evolving wireless marketplace and its customers will be well served by the current ITU process for the next generation of wireless services.”



As can be seen in the picture above, the main requirements for 4G are as follows:
  • Peak data rate of 100Mbps for high mobility applications such as mobile access
  • Approx. 1Gbps for low mobility applications such as nomadic/local wireless access
A very important point in the report is what i have been saying for years:

The communications industry is witnessing significant posturing about wireless technologies and systems that are claiming to be “4G.” Any claim that a particular technology is a 4G technology or system today is, in reality, simply
a market positioning statement by the respective technology advocate. Such claims must be verified and substantiated against a set of requirements in order to qualify as 4G.

3G FDD Operating Band Frequencies


FDD reference frequencies for Operating Band 1
UL 1922.6 MHz - 1977.4 MHz
DL 2112.6 MHz - 2167.4 MHz
This is also known as WCDMA 2100 and is used mostly in Europe and Asia. Core band for region 1 with many deployments

FDD reference frequencies for Operating Band 2
UL 1852.6 MHz - 1907.4 MHz
DL 1932.6 MHz - 1987.4 MHz
This is known as WCDMA 1900 and is used mainly in North America. Alternative to core band, which is not available in region 1. Existing GSM deployments use 850 or 1900. Service providers are seeking agreement torefarm this spectrum

FDD reference frequencies for Operating Band 3
UL 1 712.6 MHz - 1 782.4 MHz
DL 1 807.6 MHz - 1 877.4 MHz
This band has got Interest from regions 2 and 3, especially for the refarming of existing GSM spectrum

FDD reference frequencies for Operating Band 4
UL 1712.6 MHz - 1752.4 MHz
DL 2112.6 MHz - 2152.4 MHz
Paired bands are of interest in region 2 and Japan. This is being used by T-Mobile in USA

FDD reference frequencies for Operating Band 5
UL 826.6 MHz - 846.4 MHz
DL 871.6 MHz - 891.4 MHz
Used in North America and Australia. Alternative to core band, which is not available in region 2. Existing GSM deployments use 850 or 1900. Service providers are seeking agreement to refarm this spectrum

FDD reference frequencies for Operating Band 6
UL 832.5 MHz - 837.5 MHz
DL 877.5 MHz - 882.5 MHz
Used in Region 3, Japan

FDD reference frequencies for Operating Band 7
UL 2502.6 MHz - 2567.4 MHz
DL 2622.6 MHz - 2687.4 MHz
Designated by the ITU as the global expansion band, so far with limited interest for UMTS/HSxPA, although WiMAX lobbying for access

FDD reference frequencies for Operating Band 8
UL 882.6 MHz - 912.4 MHz
DL 927.6 MHz - 957.4 MHz
Interest from all regions, especially for the refarming of existing GSM spectrum

FDD reference frequencies for Operating Band 9
UL 1752.4 MHz - 1782.4 MHz
DL 1847.4 MHz - 1877.4 MHz
Region 1, USA and Japan

FDD reference frequencies for Operating Band 10
UL 1712.6 MHz - 1767.4 MHz
DL 2112.6 MHz - 2167.4 MHz

Wednesday, 18 July 2007

SMS! Still the killer application


Portio Research’s new report ‘Mobile Messaging Futures 2007 – 2012’ on SMS says that while SMS revenue growth won’t match the growth of SMS volumes as a result of declining prices, by 2012 global SMS revenues will reach US$67 billion driven by 3.7 trillion messages.

What’s contributing to the success of SMS services, says Portio, is that it’s a very fast means of peer-to-peer mobile communication and an ever- growing base of new subscribers.

Case in point is Asia Pacific.

Portio estimates that every five minutes now and over the next six years 2,267 people will purchase their first mobile phone that will likely only include standard voice and SMS service. Asia Pacific could potentially produce an additional 1.4 billion new subscribers with a new SMS traffic. In 2011, the emergence of smartphones and wireless Internet services in North America, which was initially slower to adopt SMS services, could be the driving factor of why MIM (mobile instant messaging) could potentially replace SMS as a messaging service by 2011. Still, wireless operators, says Portio, will have to be careful to not cannabilize their SMS revenues by striking a balance between SMS and MIM pricing.

How much do you love your mobile



BBDO has done another survey of 3000 customers around the world and released findings from that research, but that was already in April of 2006. Still the findings have lots of insights into mobile phone users. Juicy tidbits:

81% of youth aged 15 - 20 sleep with their mobile phone turned on.

Women in Japan have daytime and evening phones just like they have daytime and evening handbags.

96% of people screen their incoming calls.

76% of Australians and 76% of Spanish have already responded to mobile marketing campaigns, ie interacted with a brand via mobile.

In China if forced to choose between retrieving a forgotten wallet or retrieving a forgotten phone, 69% will go get the phone rather than the wallet.

And 63% of the phone owners will not lend the phone to anyone else.

So yes, the research is a year old but still very valid today.

Tuesday, 17 July 2007

Whoa! 40Gbps Broadband (wireline, ofcourse)


A 75 year old woman from Karlstad in central Sweden has been thrust into the IT history books - with the world's fastest internet connection.

Sigbritt Löthberg's home has been supplied with a blistering 40 Gigabits per second connection, many thousands of times faster than the average residential link and the first time ever that a home user has experienced such a high speed.

But Sigbritt, who had never had a computer until now, is no ordinary 75 year old. She is the mother of Swedish internet legend Peter Löthberg who, along with Karlstad Stadsnät, the local council's network arm, has arranged the connection.

"This is more than just a demonstration," said network boss Hafsteinn Jonsson.

"As a network owner we're trying to persuade internet operators to invest in faster connections. And Peter Löthberg wanted to show how you can build a low price, high capacity line over long distances," he told The Local.

Sigbritt will now be able to enjoy 1,500 high definition HDTV channels simultaneously. Or, if there is nothing worth watching there, she will be able to download a full high definition DVD in just two seconds.
The secret behind Sigbritt's ultra-fast connection is a new modulation technique which allows data to be transferred directly between two routers up to 2,000 kilometres apart, with no intermediary transponders.
According to Karlstad Stadsnät the distance is, in theory, unlimited - there is no data loss as long as the fibre is in place.

"I want to show that there are other methods than the old fashioned ways such as copper wires and radio, which lack the possibilities that fibre has," said Peter Löthberg, who now works at Cisco.

Cisco contributed to the project but the point, said Hafsteinn Jonsson, is that fibre technology makes such high speed connections technically and commercially viable.

"The most difficult part of the whole project was installing Windows on Sigbritt's PC," said Jonsson.