Thursday, 18 June 2009
LTE QCI and End-to-end bearer QoS in EPC
Wednesday, 17 June 2009
SMS: Information, MisInformation, Emergency and Spam
The other day someone pointed out that the number of SMS send per day globally is 2 Trillion. I said, surely this cant be true. The population of the world is somewhere around 7 Billion mark. If we assume that everyone uses the phone and sends 1 message per day than that is still 7 Billion messages, 2 Trillion cant possibly be true.
According to a post earlier, 1 Trillion messages were sent in 2008, compared to 363 Billion in 2007. Thats between 3 and 3.5 Billion per day. We may have to wait probably just couple of years before we see 1 Trillion messages per day (assuming the Networks can cope with this amount of SMS's). The reason for sharp rise in the number would be due to various factors.
The first reason being Spam. China is already facing SMS Spam problems. Its becoming such a nuisance that the operators are considering limiting the number of SMS to a max. of 200 messages per hour and 1000 per day. On holidays, 500 and 2000 respectively. I am not sure if Spammers use phones, rather there are many websites allowing bulk messaging facilities. Many companies are also offering power texting facilities that allows big bundles for minimal pricing. The average price being 1 cent per SMS or even cheaper.
Another reason that we should not forget is the introduction of many QWERTY phones that is making life of texters easier. There is some debate as to whether its having good or bad impact on the teens but I think its the health problems we should be worried about more than anything else. Its just matter of time when you get a new phone, there will be a caution note saying: "Caution: Text messaging can seriously harm your health. It can cause sore thumbs, cause sleeping disorders, anxiety and in some cases depression. Please click on I Accept if you would like to use it at your own risk" :)
Deciphering teen text messages is an art in itself. I blogged about it earlier but things change faster than you can anticipate. LG have launched a DTXTR service that can help you decipher your teen text messages. I tried few codes and it failed miserably. I suppose for these kinds of services, one more thing you need is to know the location of the users. Same code word can mean different thing in different countries/states. Webopedia has a very detailed list of these abbreviations.
Finally, I have always wondered why emergency services dont allow SMS. If I am in a bank being robbed, its safer to send a text rather than call and speak to an operator. Good news is that, its already being tested in the US. This should complement the eCall feature in future.
Tuesday, 16 June 2009
Dictionary of LTE Acronyms
SMS good or bad for the teens?
When SMS was invented it was though that it’s an ideal way of communicating with somebody in short and that too cheaper than the actual call. What really picked up in the field of SMA was an easy way of communicating with somebody whilst busy doing something else. SMS specially has become a big hit the teens of today and they love every bit of it.
Teenagers worldwide, these days are sending thousands of text messages per month. While one might be tempted to imagine that it is not a problem due to the availability of unlimited text messaging plans, the issue here is hardly a financial one.
Teenagers have taken the texting to a different level where they depict a brilliant example of multitasking. Albeit concerns are growing over issues such as how excessive text messaging threatens proper sleep, as many teenagers text message late into the night. Or as I can imagine, probably even waking up in the middle of the night to check and reply to new text messages.
In the last five years itself text messaging has gained significant momentum with the teenagers worldwide and the pertinent question here is whether such use of mobile devices will create a generation of adults addicted to perpetually buzzing or beeping mobile gadgets. This could produce a generation that has trouble sitting still and focusing on the task at hand.
There is no doubt it’s easy to find a way of getting distracted especially when you are teen. Imagine you are busy doing something important and you phone beeps thus indicating of the arrival of a new message. In this scenario 99% of the teens including some adults as well will definitely be paying attention to the new SMS and mostly replying for it as well.
In my opinion SMS is like any other things to play for the teen which basically keep them interested and involved. Any fun which is easily and readily available to the teens will definitely attract them no matter which generation they belong to. So what can be a boon for some can be bane for others. What is your opinion on text messaging?
Monday, 15 June 2009
Free Sim, Free Calls forever and no Topup needed - Welcome to '3'
A minimum contract period of 30 days and the ability to make free Skype calls, all for the princely amount of £0 per month is not bad at all. For the occasional one off calls or texts, 3 will charge users 20p per minute regardless of the networks and the time of call while texts will cost users 10p each. Furthermore, each MB of data will be charged at 30p which is fairly reasonable.
If you are likely to make more than 45 minutes worth of calls per month AND you'd like to stick to 3, then they've got a £9 price plan that gives you 100 anytime, any network minutes or texts, or any mix of the two plus free 300 minutes of 3-to-3 calls and a free mobile phone.
Users will not be coerced into topping up their mobile account regularly; 3 recommends using either theh INQ1 or the Skypephone S2 which are both available for £70 for the contract. Nevertheless, you should be able to plug any 3G phone to get the service.
Via: IT Portal
Nokia developing self-recharging phone
A new prototype charging system from the company is able to power itself on nothing more than ambient radiowaves – the weak TV, radio and mobile phone signals that permanently surround us. The power harvested is small but it is almost enough to power a mobile in standby mode indefinitely without ever needing to plug it into the mains, according to Markku Rouvala, one of the researchers who developed the device at the Nokia Research Centre in Cambridge, UK.
This may sound too good to be true but Oyster cards used by London commuters perform a similar trick, powering themselves from radiowaves emitted by the reader devices as they are swiped. And similarly old crystal radio sets and more recently modern radio frequency identification (RFID) tags, increasingly used in shipping and as antitheft devices, are powered purely by radiowaves.
The difference with Nokia's prototype is that instead of harvesting tiny amounts of power (a few microwatts) from dedicated transmitters, Nokia claims it is able to scavenge relatively large amounts of power — around a thousand times as much — from signals coming from miles away. Individually the energy available in each of these signals is miniscule. But by harvesting radiowaves across a wide range of frequencies it all adds up, said Rouvala.
Such wireless transfer of energy was first demonstrated by Nikola Tesla in 1893, who was so taken with the idea he attempted to build an intercontinental transmission tower to send power wirelessly across the Atlantic. Nokia's device is somewhat less ambitious and is made possible thanks to a wide-band antenna and two very simple circuits. The antenna and the receiver circuit are designed to pick up a wide range of frequencies — from 500 megahertz to 10 gigahertz — and convert the electromagnetic waves into an electrical current, while the second circuit is designed to feed this current to the battery to recharge it.
The trick here is to ensure that these circuits use less power than is being received, said Rouvala. So far they have been able to harvest up to 5 milliwatts. Their short-term goal is to get in excess of 20 milliwatts, enough power to keep a phone in standby mode indefinitely without having to recharge it. But this would not be enough to actually use the phone to make or receive a call, he says. So ultimately the hope is to be able to get as much as 50 milliwatts which would be sufficient to slowly recharge the battery.
Wireless charging is not intended as a sole energy source, but rather to be used in conjunction with other energy harvesting technologies, such as handset casings embedded with solar cell materials. According to Technology Review magazine, the phone could be on the market in three to five years.
Sunday, 14 June 2009
Verizon's bold step towards IPv6
As CircleID blogger and Pennsylvania State University senior systems programmer Derek Morr notes, the adoption of IPv6 is going to be particularly important for wireless carriers that are expecting a surge in mobile data traffic in the next few years, as they will need a fresh batch of Internet addresses to handle the multitude of wireless devices that will hook onto their networks.
Verizon is planning to launch its LTE services commercially in 25 to 30 U.S. markets in 2010. The network will be the first mobile broadband network in the United States to be based on the LTE standard, which is the latest variation of Global Systems for Mobile Communications (GSM) technology that is used for 3G High-Speed Packet Access (HSPA) networks. AT&T and T-Mobile have also announced plans to commercially launch LTE networks after 2010, while Sprint has already commercially launched its high-speed mobile WiMAX network.
One of the biggest drivers for carriers upgrading their mobile data networks to 4G technologies is the expected explosion in demand for mobile video services. A recent Cisco study on Internet traffic trends projects that 64% of mobile data traffic will be for video by 2013, vs. 19% for data services, 10% for peer-to-peer and 7% for audio. The study also says that the projected video traffic will increase four-fold between now and 2012
Saturday, 13 June 2009
Android as a platfrom is growing fast
If I don’t want to be too pedantic then Android is a software platform for mobile devices, powered by the Linux kernel, initially developed by Google and later the Open Handset Alliance. It allows developers to write managed code in the Java language, controlling the device via Google-developed Java libraries. Applications written in C and other languages can be compiled to ARM native code and run, but this development path is not officially supported by Google.
Android platform was first unveiled on 5 November 2007 in conjunction with the announcement of the founding of the Open Handset Alliance, a consortium of 48 hardware, software, and telecom companies devoted to advancing open standards for mobile devices. Google released most of the Android code under the Apache license, a free-software and open source license.
Since the above has taken place a lot has been developed on Android platform in terms of notebooks and mobile phones.
For instance recently Acer said it will produce netbooks based on Google's Android platform. Undoubtedly Android will contribute "significantly" to the growth of the global netbook market just like it will for the Smartphones. The company also revealed that its first Android-based handset would be available in the fourth quarter. Acer had confirmed it would produce an Android phone this year, but had not given a specific time frame.
In other Android news, Garmin-Asus, the smartphone partnership announced in February, said it would produce its first Android phone no later than the first quarter of 2010.
Based on the above developments together with some other, Google’s bullishness is increasingly becoming evident about the growth prospects for Android. Google envisage that that by the end of the year there will be at least 18 handsets on the market running on Android. According to Google this number does not include handset makers using the basic version of Android that have not notified Google of their plans.
Handset manufacturers that have committed to producing Android phones this year include Acer, HTC, Huawei, LG, Motorola and Samsung.
Indeed, the ramping-up of Android phones intensifies a battle among some of the world’s biggest software companies to create the operating system for the world’s phones. Android goes up against a coming-soon new version of Microsoft’s mobile version of Windows; Apple’s proprietary iPhone system; the BlackBerry platform; a new Palm OS for its Pre, called WebOS; Symbian (mostly proferred by Nokia); and a host of Linux-based systems.
Googles Android has certainly added to the competition which is good for the customers but indeed has given sleepless nights to the likes of Microsoft, Nokia etc. Android has unquestionably won accolades as new alternative software for smartphone makers. The first Smartphones with Android on board came out in the
I guess the future of application development is going to get even more interesting.
Friday, 12 June 2009
GPRS Roaming eXchange (GRX) for LTE/EPS Networks
The GSM Association (GSMA) has came to the realization that GPRS roaming based on bilateral relationships between individual GPRS operators is incredibly complex and expensive to maintain, in particular if the number of roaming partners is high. In fact, each operator will have to have N(N - 1) dedicated links to other operators (given that N is the global numbers of operators for which roaming should be supported). The GSMA has therefore recommended the use of a GPRS Roaming eXchange (GRX) for the Inter-PLMN GPRS roaming scenario.
The GRX is built on a private or public IP backbone and transports GPRS roaming traffic via the GTP between the visited and the home PLMN (Figure above). A GRX service provider has a network consisting of a set of routers and the links connecting to the GPRS networks. Moreover, the GRX network will have links connecting to other GRX nodes to support GRX peering between networks.
The GRX service provider acts as a hub, therefore allowing a GPRS operator to interconnect with each roaming partner without the need for any dedicated connections. This allows faster implementation of new roaming relations, faster time to market for new operators, and better scalability since an operator can start with low-capacity connections to the GRX and upgrade them depending on the bandwidth and quality requirements of the traffic. Other benefits of GRX are as follows:
Support of QoS: This aspect that will be very important for the GPRS services and, in particular, for the transition to 3G systems.
Security: The interconnection between the home operator and the visited operator uses the private GRX networks, hence does not require the overhead of maintaining expensive IPSEC tunnels over the public Internet.
DNS support: Through GRX it is possible to support a worldwide ".gprs" DNS root, where the various GRX operators will collaborate in managing the root and each operator's DNS servers will be connected to such roots to provide translation of DNS names specific to one operator.
In conclusion, GRX is introduced for GPRS roaming to facilitate the network operators for the interconnection between networks to support roaming and will play a very important role for the transition to third-generation systems.
In the LTE World Summit, Alex Sinclair, Chief Technology Officer, GSMA mentioned about the important role GRX will play in the LTE networks. The figure below are his views on GRX.