Friday, 24 July 2009
Google G0 - Ready to go...
Designed by Taiwan's Tryi Yeh the Google-G0 is both a touchscreen phone and a slider, with four big navigation buttons for quick access to email, web browsing and more, which change depending on what you're doing. We don't see any physical keyboard anywhere, so it's probably handled virtually. On the back there's a set of speakers and a camera.
It looks like the G0's functionality persists when you plug it into its charger, and there's an image of a dock that looks like it'd either let you watch TV on your phone, or use your G0 like a remote. Check out the gallery below for more of Yeh's Google-G0 concept touchscreen phone.
Labels:
Concept Mobile,
Google,
Mobile Phones and Devices
Thursday, 23 July 2009
On Self Organising Network Concept in Rel-8 and Rel-9
Self-Organising Networks popularly known as SON are feature of 3GPP Release 8 and Release 9. SON has been around for quite some time now and is not a new concept. Its not an evolutionary technology, rather a revolutionary technology. The first time I heard of SON was in relation to Femtocells. Remember, a Femtocell has to start in an unfamiliar environment, learn about its surrounding and then adapt to the environment.
Other terms often used to mean SON is 'Plug-n-play' or 'PnP', 'Zero Touch', 'Auto Configured', 'Self Managed...', etc. SON is a very useful feature that will allow for the automation of several tasks lowering the OPEX costs. Examples include plug and play or a cell in between existing ones, neighbour recognition and (re-)configuration, optimizations, etc. Properly implemented, it could kill off drive-testing.
In simplest of terms, SON can be explained with the basic diagram above. A new cell created in an existing environment possibly due to too many existing resources being in use or too many users in an area during a particular time (football match for example) and this cell has to look at the surrounding and adjust its conditions. The other existing cells also have to adjust tehmselves with the change in surroundings.
It is also known that about 24 % of a typical wireless operator’s revenue goes to network OPEX, which are the cost of network operation and maintenance, training and support, power, transmission, and site rental. SON’s self-optimizing functions will reduce a workload for site survey and analysis of network performances, and thus reduce OPEX. Moreover, SON’s energy-saving functions reduce the costs of power consumed by the equipment.
Self-optimizing and self-healing architectures improve user perceived qualities by mitigating quality degradations that result from inaccuracies of the planning or equipment faults as early as possible and by optimizing the network parameters under interference and overload conditions.
The paper also lists the Use cases and the problems ands solutions for the use cases.
3GPP has introduced SON items in its standardization path as required features for LTE deployments. Rel. 8 includes the first specifications on requirements, integration with operators’ processes, and identification of main use cases. Rel. 9 is expected to define advanced features, which will introduce self-healing and self-optimization capabilities into LTE. The SON related specifications are driven from the SA5 Working Group (WG) – mainly for architectural aspects– and the RAN3 WG – especially for the optimization of radio functions. Also, Rel. 8 defined the grounding documents for SON: “SON Concepts and Requirements” in TS 32.500, and two main use cases– “Self-Establishment of eNodeB” and “Automatic Neighbor Relation” – in TS 32.501, 32.502 and 32.511.
Other terms often used to mean SON is 'Plug-n-play' or 'PnP', 'Zero Touch', 'Auto Configured', 'Self Managed...', etc. SON is a very useful feature that will allow for the automation of several tasks lowering the OPEX costs. Examples include plug and play or a cell in between existing ones, neighbour recognition and (re-)configuration, optimizations, etc. Properly implemented, it could kill off drive-testing.
In simplest of terms, SON can be explained with the basic diagram above. A new cell created in an existing environment possibly due to too many existing resources being in use or too many users in an area during a particular time (football match for example) and this cell has to look at the surrounding and adjust its conditions. The other existing cells also have to adjust tehmselves with the change in surroundings.
According to recent analysis in NEC Whitepaper on SON (available here), about 17 % of wireless operator’s CAPEX is spent on engineering and installation services. SON’s self-configuring functions are expected to eliminate many on-site operations for the basic settings and subsequent updating of network equipments, and thus reduce CAPEX.
It is also known that about 24 % of a typical wireless operator’s revenue goes to network OPEX, which are the cost of network operation and maintenance, training and support, power, transmission, and site rental. SON’s self-optimizing functions will reduce a workload for site survey and analysis of network performances, and thus reduce OPEX. Moreover, SON’s energy-saving functions reduce the costs of power consumed by the equipment.
Self-optimizing and self-healing architectures improve user perceived qualities by mitigating quality degradations that result from inaccuracies of the planning or equipment faults as early as possible and by optimizing the network parameters under interference and overload conditions.
Nomor research has got an excellent paper on SON with regards to LTE. The full paper is available here. Here is an extract from that paper.
The main functionality of SON includes: self-configuration, self-optimization and self-healing.
Self-configuration process is defined as the process where newly deployed nodes (eNBs) are configured by automatic installation procedures to get the necessary basic configuration for system operation
Self-optimization process is defined as the process where UE & eNB measurements and performance measurements are used to autotune the network
Self-healing function aims at automatic detection and localization of most of the failures and applies self-healing mechanisms to solve several failure classes, such as reducing the output power in case of temperature failure or automatic fallback to previous software version.
A Self-configuration Subsystem will be created in OAM to be responsible for the selfconfiguration of eNB. For self-optimisation functions, they can be located in OAM or eNB or both of them. So according to the location of optimisation algorithms, SON can be divided into three classes: Centralised SON, Distributed SON and Hybrid SON.
The paper also lists the Use cases and the problems ands solutions for the use cases.
NEC whitepaper on SON is quite recent and it lists the recent standards status:
3GPP has introduced SON items in its standardization path as required features for LTE deployments. Rel. 8 includes the first specifications on requirements, integration with operators’ processes, and identification of main use cases. Rel. 9 is expected to define advanced features, which will introduce self-healing and self-optimization capabilities into LTE. The SON related specifications are driven from the SA5 Working Group (WG) – mainly for architectural aspects– and the RAN3 WG – especially for the optimization of radio functions. Also, Rel. 8 defined the grounding documents for SON: “SON Concepts and Requirements” in TS 32.500, and two main use cases– “Self-Establishment of eNodeB” and “Automatic Neighbor Relation” – in TS 32.501, 32.502 and 32.511.
Labels:
Femtocells,
LTE,
Release 8,
Release 9,
SON,
Technical Details
Wednesday, 22 July 2009
All data packets are not created equal
Have a look at this video from last year then read this extract from a report in Mobile Europe:
The most inefficient mobile data applications are mobile email, location based services, secure applications and things like stock updates and tickers.
This is what Alcatel-Lucent’s Mike Schabel, Phd, Alcatel-Lucent General Manager, 9900 Wireless Network Guardian, told journalists in an excellent presentation on the difficulties the huge increases in wireless data usage will give mobile operators.
Schabel said that although attention has been focused on P2P traffic because of the volume involved, such services are in fact very efficient in terms of the network resources they use. In essence, a user downloading a film, or watching a video, gets online, establishes a radio connection, does what they have to, and then gets offline.
This kind of behaviour is predictable and manageable, Schabel said. In contrast, Schabel’s team found that in one operator, mobile email was using 25% of the available signaling capacity, even though it was only responsible for 4% of the network traffic volume. This is because of the constantly on-off nature of a push mobile email device as it receives messages, continuously signing on and off the network. Location based services, that also required a constant “conversation” with the network, are also very resource intensive.
Schabel said that examples such as this show that there is a “hidden cost” in many of the data services that mobile operators are looking to deploy. Operators need to factor in cost per minute and cost per bit, he said. A further cost comes when as a result of not understanding network activity such as this, or the way an application works imperfectly on a device, can cause outages and delays in the network – causing poor user experience.
The answer, he said, is first to understand the root cause of problems occurring within the network, or on other elements upon which the service relies (content/ app server, handset, web server, etc).
Second, operators then can plan and design their networks to meet predictable and known demand (“System engineering 1.0”, in Schabel’s words). This may include additional bearers and resources, but it may also be something as simple as re-aligning existing resources. Only then would operators need to consider other throttling or management methods such as policy management, or CRM and billing tools.
Schabel was speaking to publicise his company’s tool, the 9900 Wireless Network Guardian. This is a device that takes in core network data information in real time, analyses it, and produces data on specific issues of network performance.
Schabel said that the issue to date is that wireless network monitoring tools have been “blind” to IP traffic, while packet inspection and other IP techniques cannot “see” the wireless network. What is needed is a system that marries to two together, so operators can see services operating both in cost per bit, and cost per minute terms.
Read Complete report here.
Labels:
Apps,
Mobile Data,
Operators,
Videos
Tuesday, 21 July 2009
LTE Subscribers forecast and market movements
A report last year mentioned that the number of LTE subscribers by 2013 will be 85 million but a new report from research firm Forward Concepts, which looks at trends including 3G evolution and handset shipment growth, claims that the number of LTE users will be 56 million by 2013.
According to the report, HSPA+ will begin to displace W-CDMA and HSDPA technologies, and the first LTE devices to hit the market in 2010 will be data cards and dongles.
The Forward Concepts study also takes a look at some other trends in the industry. The firm predicts that global handset shipments will be down this year, and forecasts a 4.4 percent contraction. The report predicts a resurgence in unit shipments in 2010, however, and calls for a 12.8 percent growth in shipments. The one bright spot for 2009 is smartphones: Forward Concepts predicts a 25 percent jump in smartphone sales.
LCD display technology also will come under pressure from other technologies, including OLED, ePaper, Qualcomm's Mirasol and Liquavista, according to the report. The market for these "post-LCD" displays will grow to over $3 billion in 2013, the report said.
On the operator front, NTT DoCoMo is sticking to its plan to be a first stage deployer, with first roll-out in 2010, while work has begun on outdoor testing of the TD-LTE technology that all three Chinese carriers will use.
DoCoMo chief Ryuji Yamada told the London Financial Times that the cellco has not gone cool on its 2010 timescale. The firm needs to enable new services to respond to UQ's aggressive launch of mobile broadband offerings based on WiMAX, and to stay ahead of established rivals KDDI and Softbank, and the disruptive and data-driven newcomer eMobile. Yamada said DoCoMo wants to be "in the leading group in this technology", and that he sees a move to LTE as a way to be fully compatible with global standards, which will improve device economics. In 3G, DoCoMo moved so early that it deployed a pre-standard implementation of W-CDMA, FOMA. This is now used by 91% of its base, with over 50m subscribers after almost eight years in commercial service, but it has two downsides that will drive DoCoMo to LTE early - over-dependence on Japanese handset makers, with the high costs of slightly off-standard devices; and networks that are older than those of newer cellcos and in areas are becoming obsolete.
The Chinese operators have similar dilemmas, especially China Mobile, which is stuck with an off-standard 3G technology, TD-SCDMA, and wants to move quickly to a platform that brings global economies of scale and allows it to be more cutting edge in services. While it may have virtually no opportunity to get ROI on its 3G spend, it aims also to be in the first group of LTE deployers, though it will be using the TDD strain of the standard.
Earlier this year, it took over the trial sites in Spain that had previously been used by Vodafone and Verizon Wireless for FDD-LTE, and is now reported to be moving this initial test program to China and towards more real world outdoor trials. Sources say these outdoor tests could also involve other Chinese operators, and will involve six vendors working in the Beijing area. Surprisingly, if the insiders are right, these vendors do not include Motorola, which has been the main supplier in the Spanish project, and claims it has a major headstart in TD-LTE because of its extensive experience with TDD mobile broadband, using WiMAX. But the new Chinese tests involve four homegrown vendors (Huawei, ZTE, Datang and Potevio, the latter a Nokia venture) plus Ericsson and Nokia Siemens. The inclusion of more CDMA-oriented suppliers, notably Motorola and Alcatel-Lucent, is likely to follow when CDMA carrier China Telecom starts its own TD-LTE tests.
The testing process determined by the TD-LTE Working Group has three stages - indoor, outdoor and large-scale outdoor testing, the last of these involving two or three major cities with at least 100 base stations each. The local vendors have already been working on indoor testing in China since the start of the year.
Japanese Mobiles suffering from Galápagos syndrome
Excellent article from NY Times:
At first glance, Japanese cellphones are a gadget lover’s dream: ready for Internet and e-mail, they double as credit cards, boarding passes and even body-fat calculators.
But it is hard to find anyone in Chicago or London using a Japanese phone like a Panasonic, a Sharp or an NEC. Despite years of dabbling in overseas markets, Japan’s handset makers have little presence beyond the country’s shores.
“Japan is years ahead in any innovation. But it hasn’t been able to get business out of it,” said Gerhard Fasol, president of the Tokyo-based IT consulting firm, Eurotechnology Japan.
The Japanese have a name for their problem: Galápagos syndrome.
Japan’s cellphones are like the endemic species that Darwin encountered on the Galápagos Islands — fantastically evolved and divergent from their mainland cousins — explains Takeshi Natsuno, who teaches at Tokyo’s Keio University.
This year, Mr. Natsuno, who developed a popular wireless Internet service called i-Mode, assembled some of the best minds in the field to debate how Japanese cellphones can go global.
The only Japanese handset maker with any meaningful global share is Sony Ericsson, and that company is a London-based joint venture between a Japanese electronics maker and a Swedish telecommunications firm.
And Sony Ericsson has been hit by big losses. Its market share was just 6.3 percent in the first quarter of 2009, behind Nokia of Finland, Samsung Electronics and LG of South Korea, and Motorola of Illinois.
Yet Japan’s lack of global clout is all the more surprising because its cellphones set the pace in almost every industry innovation: e-mail capabilities in 1999, camera phones in 2000, third-generation networks in 2001, full music downloads in 2002, electronic payments in 2004 and digital TV in 2005.
Japan has 100 million users of advanced third-generation smartphones, twice the number used in the United States, a much larger market. Many Japanese rely on their phones, not a PC, for Internet access.
Several Japanese companies are now considering a push into overseas markets, including NEC, which pulled the plug on its money-losing international cellphone efforts in 2006. Panasonic, Sharp, Toshiba and Fujitsu are said to be planning similar moves.
“Japanese cellphone makers need to either look overseas, or exit the business,” said Kenshi Tazaki, a managing vice president at the consulting firm Gartner Japan.
At a recent meeting of Mr. Natsuno’s group, 20 men and one woman crowded around a big conference table in a skyscraper in central Tokyo, examining market data, delivering diatribes and frequently shaking their heads.
The discussion then turned to the cellphones themselves. Despite their advanced hardware, handsets here often have primitive, clunky interfaces, some participants said. Most handsets have no way to easily synchronize data with PCs as the iPhone and other smartphones do.
Because each handset model is designed with a customized user interface, development is time-consuming and expensive, said Tetsuzo Matsumoto, senior executive vice president at Softbank Mobile, a leading carrier. “Japan’s phones are all ‘handmade’ from scratch,” he said. “That’s reaching the limit.”
Then there are the peculiarities of the Japanese market, like the almost universal clamshell design, which is not as popular overseas. Recent hardware innovations, like solar-powered batteries or waterproofing, have been incremental rather than groundbreaking.
The emphasis on hardware makes even the newest phones here surprisingly bulky. Some analysts say cellphone carriers stifle innovation by demanding so many peripheral hardware functions for phones.
The Sharp 912SH for Softbank, for example, comes with an LCD screen that swivels 90 degrees, GPS tracking, a bar-code reader, digital TV, credit card functions, video conferencing and a camera and is unlocked by face recognition.
Read the complete article here.
Follow discussion on this article at Forum Oxford here.
Labels:
Apps,
Japan,
Mobile Phones and Devices,
NEC
Monday, 20 July 2009
eMBMS: evolved Multimedia Broadcast Multicast Control
I spent a lot of time working on MBMS but operators decided not to roll out the technology. It was killed in its infancy. Earlier I blogged that MBMS wont be present in Release 8 but now there is interest in some quarters about MBMS being present in Release 9.
As I have mentioned earlier, the main advantage of MBMS over other TV technologies is that no additional infrastructure is required, the same technology and spectrum is used as for the 3G/LTE case and user interaction is possible thereby involving participation.
At the moment, I was only able to see eMBMS information in 3GPP TS 36.300 but I am sure more is on way soon. Section 15 of 36.300 is dedicated to eMBMS information.
In E-UTRAN, MBMS can be provided with single frequency network mode of operation (MBSFN) only on a frequency layer shared with non-MBMS services (set of cells supporting both unicast and MBMS transmissions i.e. set of "Unicast/MBMS mixed cells").
MBMS reception is possible for UEs in RRC_CONNECTED or RRC_IDLE states. Whenever receiving MBMS services, a user shall be notified of an incoming call, and originating calls shall be possible. ROHC is not supported for MBMS.
So where does it fit in the overall architecture?
Multi-cell/multicast Coordination Entity (MCE): The MCE is a logical entity – this does not preclude the possibility that it may be part of another network element – whose functions are the allocation of the radio resources used by all eNBs in the MBSFN area for multi-cell MBMS transmissions using MBSFN operation. Besides allocation of the time/ frequency radio resources this also includes deciding the further details of the radio configuration e.g. the modulation and coding scheme. The MCE is involved in MBMS Session Control Signalling. The MCE does not perform UE - MCE signalling. When the MCE is part of another network element, an eNB is served by a single MCE.
E-MBMS Gateway (MBMS GW): The MBMS GW is a logical entity – this does not preclude the possibility that it may be part of another network element – that is present between the BMSC and eNBs whose principal functions is the sending/broadcasting of MBMS packets to each eNB transmitting the service. The MBMS GW uses IP Multicast as the means of forwarding MBMS user data to the eNB. The MBMS GW performs MBMS Session Control Signalling (Session start/stop) towards the E-UTRAN via MME.
“M3” Interface: MCE – MME: An Application Part is defined for this interface between MME and MCE. This application part allows for MBMS Session Control Signalling on E-RAB level (i.e. does not convey radio configuration data). The procedures comprise e.g. MBMS Session Start and Stop. SCTP is used as signalling transport i.e. Point-to-Point signalling is applied.
“M2” Interface: MCE – eNB: An Application Part is defined for this interface, which conveys at least radio configuration data for the multi-cell transmission mode eNBs and Session Control Signalling. SCTP is used as signalling transport i.e. Point-to-Point signalling is applied.
“M1” Interface: MBMS GW – eNB: This interface is a pure user plane interface. Consequently no Control Plane Application Part is defined for this interface. IP Multicast is used for point-to-multipoint delivery of user packets.
It is not precluded that M3 interface can be terminated in eNBs. In this case MCE is considered as being part of eNB. However, M2 should keep existing between the MCE and the corresponding eNBs. This is depicted in Figure above which depicts two envisaged deployment alternatives. In the scenario depicted on the left MCE is deployed in a separate node. In the scenario on the right MCE is part of the eNBs.
It will be possible to have an MBMS Dedicated cell or a MBMS/Unicast mixed cell. For transmission, it will be possible to have a Single-cell transmission or Multi-cell transmission. Multi-cell transmission where the safe information is sent synchronously over multiple cells will have an advantage of receivers being able to combine information from Multiple cells and also to roam in the area of transmission seamlessly.
More information when detailed specs are available.
Labels:
(e)MBMS,
LTE,
Release 9,
Technical Details
Friday, 17 July 2009
Dilbert humour on Mobile Rebates
Missed this one earlier but otherwise I am a big Dilbert fan. Thought it would be nice to end the week with.
By the way, last year I blogged about the Mobile Billing strategies which may be useful for you if you are considering getting new contract.
By the way, last year I blogged about the Mobile Billing strategies which may be useful for you if you are considering getting new contract.
Labels:
Billing,
Mobile Humour
Thursday, 16 July 2009
Texting teen falls down New York manhole
Last year there was a talk here in UK about adding padding to the lamp-posts because people were bumping into them while texting. The survey of over 1,000 Britons suggested that one in 10 had suffered an injury from a collision while sending an SMS. The research claimed that there were 68,000 SMS-related injuries in the UK last year, ranging from minor bumps to skull fractures.
Her mother, Kim Longueira, said it did not matter that her daughter was texting when she fell down the hole. "Oh my God, it was putrid," she told MNBC. "One of her sneakers is still down there."
Whether texting and walking is now so common that a court ruling will require workmen – and the rest of us – to adjust our actions accordingly remains to be seen.
Now, I read this news about Alexa Longueira, 15, whose family is suing after the teenager fell into an open manhole in Staten Island, New York, while trying to send a text message. Poor Alexa apparently suffered a fright and some scrapes on her arms and back when she fell.
Her mother, Kim Longueira, said it did not matter that her daughter was texting when she fell down the hole. "Oh my God, it was putrid," she told MNBC. "One of her sneakers is still down there."
If the case comes to court it is destined to join such infamous lawsuits as the woman who sued McDonald's after spilling hot coffee on herself, which inspired an annual award for the most ridiculous lawsuit. A glance at British legal history suggests Longueira may have actually have a chance of winning. In the 1964 case of Haley v London Electricity Board it was deemed workmen should have known a hole might pose a threat to visually impaired people.
Whether texting and walking is now so common that a court ruling will require workmen – and the rest of us – to adjust our actions accordingly remains to be seen.
Labels:
Apps SMS,
Mobile Humour
Iranians start boycott Nokia campaign
The mobile phone company Nokia is being hit by a growing economic boycott in Iran as consumers sympathetic to the post-election protest movement begin targeting a string of companies deemed to be collaborating with the regime.
Wholesale vendors in the capital report that demand for Nokia handsets has fallen by as much as half in the wake of calls to boycott Nokia Siemens Networks (NSN) for selling communications monitoring systems to Iran.
There are signs that the boycott is spreading: consumers are shunning SMS messaging in protest at the perceived complicity with the regime by the state telecoms company, TCI. Iran's state-run broadcaster has been hit by a collapse in advertising as companies fear being blacklisted in a Facebook petition. There is also anecdotal evidence that people are moving money out of state banks and into private banks.
Nokia is the most prominent western company to suffer from its dealings with the Iranian authorities. Its NSN joint venture with Siemens provided Iran with a monitoring system as it expanded a mobile network last year. NSN says the technology is standard issue to dozens of countries, but protesters believe the company could have provided the network without the monitoring function.
Siemens is also accused of providing Iran with an internet filtering system called Webwasher.
"Iranians' first choice has been Nokia cellphones for several years, partly because Nokia has installed the facility in the country. But in the past weeks, customers' priority has changed," said Reza, a mobile phone seller in Tehran's Big Bazaar.
"Since the news spread that NSN had sold electronic surveillance systems to the Iranian government, people have decided to buy other company's products although they know that Nokia cellphones function better with network coverage in Iran."
Some Tehran shops have removed Nokia phones from their window displays. Hashem, another mobile phone vendor, said: "I don't like to lose my customers and now people don't feel happy seeing Nokia's products. We even had customers who wanted to refund their new Nokia cellphones or change them with just another cellphone from any other companies.
"It's not just a limited case to my shop – I'm also a wholesaler to small shops in provincial markets, and I can say that there is half the demand for Nokia's product these days in comparison with just one month ago, and it's really unprecedented. People feel ashamed of having Nokia cellphones," he added.
News of the boycott has appeared on the front page of Iranian pro-reform papers such as Etemad-e Melli, owned by the reformist candidate Mehdi Karroubi. Hadi Heidari, a prominent Iranian cartoonist, has published an image of a Nokia phone on a No Entry traffic sign.
A Nokia spokeswoman refused to comment on the company's sales in Iran.
The Iranian authorities are believed to have used Nokia's mobile phone monitoring system to target dissidents. Released prisoners have revealed that the authorities were keeping them in custody on the basis of their SMS and phone calls archive, which was at officials' disposal.
One Iranian journalist who has just been released from detention said: "I always had this impression that monitoring calls is just a rumour for threatening us from continuing our job properly, but the nightmare became real when they had my phone calls – conversations in my case.
"And the most unbelievable thing for me is that Nokia sold this system to our government. It would be a reasonable excuse for Nokia if they had sold the monitoring technology to a democratic country for controlling child abuse or other uses, but selling it to the Iranian government with a very clear background of human rights violence and suppression of dissent, it's just inexcusable for me. I'd like to tell Nokia that I'm tortured because they had sold this damn technology to our government."
NSN spokesman Ben Roome said: "As in every other country, telecoms networks in Iran require the capability to lawfully intercept voice calls. In the last two years, the number of mobile subscribers in Iran has grown from 12 million to over 53 million, so to expand the network in the second half of 2008 we were required to provide the facility to intercept voice calls on this network."
The SMS boycott, meanwhile, has apparently forced TCI into drastic price hikes. The cost of an SMS has doubled in recent days. Protesters view the move as a victory.
Labels:
Apps SMS,
Mobile Humour,
Mobile Phones and Devices,
Nokia
Wednesday, 15 July 2009
IP Access Virtual Fridge Notes Demo
Yesterday I blogged about the Airvana HubBub demo, so someone pointed out to me the IP access demo of Virtual Fridge notes. I saw the demo in Femtocells World Summit and wasnt clear on how exactly it worked, but this Youtube video shows it quite well.
When I was discussing this app with a friend, the first question he asked was, why cant we send an SMS directly to the person rather than using the Facebook app. I think the main reason is convinience. You need an app somewhere so why not put it in a popular social networking website. There is a plan of Femtocells being available with SIM cards. In that case it maybe possible in future to have a way where you send the SMS directly to the Femto and it can relay that SMS to any unique UE that enters its range for a limited time. I am sure someone will already be working on a similar thing ;)
When I was discussing this app with a friend, the first question he asked was, why cant we send an SMS directly to the person rather than using the Facebook app. I think the main reason is convinience. You need an app somewhere so why not put it in a popular social networking website. There is a plan of Femtocells being available with SIM cards. In that case it maybe possible in future to have a way where you send the SMS directly to the Femto and it can relay that SMS to any unique UE that enters its range for a limited time. I am sure someone will already be working on a similar thing ;)
Labels:
Apps SMS,
Femtocell Applications,
Femtocells,
Small Cells,
Videos
Subscribe to:
Posts (Atom)