Sunday 25 October 2009

All eyes on China Mobile TD-SCDMA network


China Mobile plans to spend more on 3G terminal subsidies in 2010.

The outfit has tripled the amount of subsidies from the current year level and is expected to spend $4.4 billion next year. The huge amounts of cash will enable the outfit to push into the 3G space in the worlds largest economy.

China Mobile has 70 per cent of the Chinese wireless market but has been taking a caning from China Unicom. The outfit uses its own TD-SCDMA 3G standard but with that sort of money to spend it is fairly clear that foreign salesmen will be showing up trying to flog the outfit shedloads of 3G gear.

The company recently launched a line of smartphones dubbed Ophones based on the TD-SCDMA technology which uses Google's Android mobile operating system.

All three carriers have commercially launched their 3G networks over the recent months, but take-up has been slow. Market leader Mobile has been hamstrung by the limited number of handsets for the new TD-SCDMA system.

But now with its device range expanding and the network expected to be rolled out to 238 cities by year-end, the market’s 800-pound gorilla appears ready to assert itself.

Analyst firm BDA says China Mobile plans to spend 120 billion yuan on handset subsidies this year, most of it on TD-SCDMA. It laid out 50 billion on subsidizing phones in the first half of the year, with less than 12% going to TD phones.

Now a China Mobile source told has told website C114 that the company would leverage its financial strengths “to stage a price war to resist Telecom’s and Unicom’s 3G” services.

China Mobile has 503 million users, Unicom 142 million and China Telecom 44 million customers. Of these 3G comprises a tiny fraction - China Mobile has 1.3 million using TD-SCDMA, Unicom 350,000 using W-CDMA and China Telecom 1.3 million on its CDMA EV-DO network.


TD-SCDMA is primed to evolve into a global standard: TD-LTE. Granted, TD-LTE's sales pitch is not all that different from its ancestors - i.e. making use of unpaired spectrum to boost capacity in urban environments where FDD macro networks get overloaded. What is different this time around is a bigger ecosystem of vendors developing it - admittedly for just a single market at the moment, but also the biggest single mobile market in the world.

The other key difference is that TDD has always been primarily a data play. But from 2001 up to 2008, 3G cellcos were still primarily in the voice business, and FDD allowed them to continue milking that cash cow. That worked fine when 3G data usage was still mostly ringtones, wallpapers and other walled-garden content.

Then the iPhone happened. Smartphones got smarter and data usage skyrocketed so high that E1 backhaul links became the new bottlenecks. If ABI Research is to be believed, by 2014 mobile users will be transmitting a total of 1.6 exabytes a month (compared to 1.3 exabytes for all of last year).

Hence all the interest in LTE, as well as related technological tricks to offload data traffic and maximize RAN capacity like spectrum refarming in the 900- and 1800-MHz bands and femtocells. TD-LTE is another tool in the toolbox, and by the time we start hitting monthly exabyte levels in five years, its predecessor in China will have been put through the ringer enough to qualify as "seasoned" if not "mature".

Of course, all that depends on a ton of factors over the next five years. Still, TDD is a lot closer to realizing its potential than it was at the start of the decade.

If nothing else, TD-LTE may have the novel distinction of being the quietest evolution the cellular world has yet seen. That will depend on how much progress Qualcomm and other chipset vendors make with dual-mode FDD/TDD chipsets, but once devices are capable of roaming seamlessly between both, TD-LTE may be the first RAN acronym that won't need to be marketed to end-users who don't give a toss what it's called anyway.

ST-Ericsson is creating a strong foothold in the evolving Chinese 3G market, and is powering the first modem for TD-HSPA, which can take advantage of the fastest speeds offered by China Mobile.

The silicon joint venture is working with Chinese partner Hojy Wireless on modules that will turn up in data cards and dongles early next year. China Mobile will hope these will boost uptake of its new network by heavy duty data users, a market where China Telecom's EV-DO system has so far shone more brightly. The M6718 modem could also be included in notebooks, netbooks and smartphones in future, as the market moves beyond data cards.

Mobile broadband modules, for incorporation in a range of devices, are an important part of the broader ST-Ericsson portfolio, with co-parent Ericsson a key customer as it bolsters its module business in 3G and LTE. The M6718 is a dual-mode TD-HSPA/EDGE device, supporting 2.8Mbps downlink and 2.2Mbps uplink.

LTE: moving from a promising technology to real business

Interesting presentation.

Tuesday 20 October 2009

IMT-Advanced Proposals by 3GPP and IEEE

The proposals for IMT-Advanced that I mentioned about earlier have been put up on 3G4G website.

The 3GPP proposal for LTE-Advanced is here.

The IEEE proposal for 802.16m is here.

Saturday 17 October 2009

Vodafone Access Gateway (VAG) femtocell setup

I blogged about ALU and Vodafone Femto earlier. Here is an Interesting Video showing unboxing, setting up and using the Femtocell.

Thursday 15 October 2009

On Relay Technology in LTE-Advanced and WiMAX standards

I blogged earlier about Relay technology that is part of LTE-Advanced. In the IEEE Communications Magazine, this month there is a complete article on Relay technology. Here is a brief summary from that paper with my own understanding (and words).

We have mentioned about IMT-Advanced and LTE-Advanced before. International Mobile Telecommunications-Advanced is going to be the first 4G technology and as i discussed earlier, there are two main technologies vying for the 4G crown. I am sure both are as good and both will succeed. From 3GPP point of view, the standards will be part of Release-10 and should be ready end 2010 or beginning 2011. The understanding is that IMT-Advanced systems will support peak data rates of 100 Mb/s in high mobility environment (up to 350 km/h) and 1 Gb/s in stationary and pedestrian environments (up to 10 km/h). The transmission bandwidth of IMT-Advanced systems will be scalable and can change from 20 to 100 MHz, with downlink and uplink spectrum efficiencies in the ranges of [1.1, 15 b/s/Hz] and [0.7, 6.75 b/s/Hz], respectively. There will be a minimum requirement on voice over IP (VoIP) capacities in high- and low-mobility environments of around 30 and 50 active users/sector/MHz. The latency for control and user planes should be less than 100 ms and 10 ms, respectively, in unloaded conditions.


As I mentioned last week, the 3GPP candidate for IMT-Advanced is LTE-Advanced. On the IEEE front, 802.16j group published the relay-based multihop techniques for WiMAX and IEEE 802.16m has been submitted for the IMT-Advanced approval last week. The normal 802.16 WiMAX standard has been approved as 3G standard by the ITU.

So what exactly are Relays. Relay transmission can be seen as a kind of collaborative communications, in which a relay station (RS) helps to forward user information from neighboring user equipment (UE)/mobile station (MS) to a local eNode-B (eNB)/base station (BS). In doing this, an RS can effectively extend the signal and service coverage of an eNB and enhance the overall throughput performance of a wireless communication system. The performance of relay transmissions is greatly affected by the collaborative strategy, which includes the selection of relay types and relay partners (i.e., to decide when, how, and with whom to collaborate).



There are two different terminology used for Relay's. First is Type-I and Type-II and other is non-transparency and transparency. Specifically, a Type-I (or non-transparency) RS can help a remote UE unit, which is located far away from an eNB (or a BS), to access the eNB. So a Type-I RS needs to transmit the common reference signal and the control information for the eNB, and its main objective is to extend signal and service coverage. Type-I RSs mainly perform IP packet forwarding in the network layer (layer 3) and can make some contributions to the overall system capacity by enabling communication services and data transmissions for remote UE units. On the other hand, a Type-II (or transparency) RS can help a local UE unit, which is located within the coverage of an eNB (or a BS) and has a direct communication link with the eNB, to improve its service quality and link capacity. So a Type-II RS does not transmit the common reference signal or the control information, and its main objective is to increase the overall system capacity by achieving multipath diversity and transmission gains for local UE units.


Different relay transmission schemes have been proposed to establish two-hop communication between an eNB and a UE unit through an RS. Amplify and Forward — An RS receives the signal from the eNB (or UE) at the first phase. It amplifies this received signal and forwards it to the UE (or eNB) at the second phase. This Amplify and Forward (AF) scheme is very simple and has very short delay, but it also amplifies noise. Selective Decode and Forward — An RS decodes (channel decoding) the received signal from the eNB (UE) at the first phase. If the decoded data is correct using cyclic redundancy check (CRC), the RS will perform channel coding and forward the new signal to the UE (eNB) at the second phase. This DCF scheme can effectively avoid error propagation through the RS, but the processing delay is quite long. Demodulation and Forward — An RS demodulates the received signal from the eNB (UE) and makes a hard decision at the first phase (without decoding the received signal). It modulates and forwards the new signal to the UE (eNB) at the second phase. This Demodulation and Forward (DMF) scheme has the advantages of simple operation and low processing delay, but it cannot avoid error propagation due to the hard decisions made at the symbol level in phase one.

Relay starts becoming interesting because according to the 3GPP LTE-Advanced and IEEE 802.16j, an RS can act as the BS for legacy UE units and should have its own physical cell identifier. It should be able to transmit its own synchronization channels, reference symbols and downlink control information. So an RS shall have the full functions of an eNB/BS (except for traffic backhauling), including the capabilities of knowing the radio bearer of received data packets and performing traffic aggregation to reduce signaling overhead. There should be no difference between the cell controlled by an RS and that controlled by a normal eNB.

There are much more details and simulation results in the IEEE article. For those interested, can always get hold of the article and dig deeper.
More information also available in the following:

Monday 12 October 2009

LTE Stuff

Just added some new material on LTE at 3G4G website. Check the LTE section here. Also started collection FAQ's. See here.

As always, comments, criticisms, suggestions and feedback welcome :)

Sunday 11 October 2009

Google's strategy for winning in a nutshell

Interesting analysis by Zigurd Mednieks on his blog 4thscreen. Though not directly linked to mobiles, I am sure a similar approach is being taken for mobiles.

Google wants to enable Google applications to run as well as possible as many places as possible. Here is how:

Google applications: Web applications run in browsers, on all kinds of systems. No need to be installed or updated, and hard to block. Anyone with IE, Firefox, Safari, Opera, or, of course, Chrome has access to all the latest applications.

Gears: Web applications run in a sandbox and don't have much access to your system. Gears enables more access. Applications are still in a sandbox, but the Gears-enabled sandbox is bigger, and can persist. This frees Web applications from having to be connected all the time.

GWT: The Google Web Toolkit (GWT) is a radical abstraction of of the browser runtime environment. GWT applications are written in Java and compiled to JavaScript. The GWT library provides fixes for incompatibilities between browsers, as well as a rich UI library.

Chrome: Google's browser. Chrome provides the ideal browser runtime environment for Google applications. Fast JavaScript execution. Separate processes for each Web page.

Chrome Frame: Chrome Frame puts the Chrome browser inside Internet Explorer. This shows the lengths Google will go to in order to give Google applications the best possible runtime environment is as many situations as possible.

Android: Android is a Linux-based OS for mobile handsets and other devices. Android has exploded in popularity among handset manufacturers. This is Google's first win in computing platforms, and Google influences the software “stack” all the way down to the hardware. Android has a Webkit-derived browser.

Chrome OS: Chrome OS is meant for things larger than handsets. Chrome will be Google's attempt to bring a Linux-based OS and Web-based applications to netbooks and PCs.

Google's strategy is comprehensive: Control the software all the way down to the hardware where possible, and, if that isn't possible, be compatible, and maximize capabilities, on every possible platform.

Google's strategy is also technologically coherent: Java, Linux, Webkit, SQLite, Eclipse, and other common components are reused across multiple Google products and platforms. You can expect Google to contribute to and influence the development of these key ingredients. You can also see some design philosophy in common across Google products. For example, Android runs Java applications in multiple tasks, and Chrome runs Web pages/apps in multiple tasks to make these systems resilient to apps that crash.

While Google's applications, like Gmail, are proprietary, Android, Chrome, Gears, GWT and many other components of Google's strategy are open source software, many with permissive licensing that would not preclude competitors from using them. Open source builds confidence in Google's partners and in software developers using Google platforms.

Google's strategy has formed recently and moved quickly. It can be hard to perceive the impact. As fast as Google is implementing this strategy, you can expect a similarly fast emergence of an application ecosystem around Google's strategy. This will be one of the most significant developments in software in the coming years.

Meanwhile google has recently added search options to mobiles. You can now search only forums and you can search for posts that were posted within last week. Very powerful feature but shame so many PC users dont even know hot to use them.

Another very interesting feature that has been added is that when you search using desktop, you will be able to see that in your search history in mobiles as well. Google now synchs between your desktop and mobile as long as you have iPhone, Android or Palm phone.

I wonder how will Google surprise us next.

Friday 9 October 2009

IMT-Advanced Proposals to be discussed next week

Depending on which camp you belong to, you would have read atleast one press release.

The 3GPP Partners, which unite more than 370 leading mobile technology companies, made a formal submission to the ITU yesterday, proposing that LTE Release 10 & beyond (LTE-Advanced) be evaluated as a candidate for IMT-Advanced. Complete press release here.

The IEEE today announced that it has submitted a candidate radio interface technology for IMT-Advanced standardization in the Radiocommunication Sector of the International Telecommunication Union (ITU-R).

The proposal is based on IEEE standards project 802.16m™, the “Advanced Air Interface” specification under development by the IEEE 802.16™ Working Group on Broadband Wireless Access. The proposal documents that it meets ITU-R’s challenging and stringent requirements in all four IMT-Advanced “environments”: Indoor, Microcellular, Urban, and High Speed. The proposal will be presented at the 3rd Workshop on IMT-Advanced in Dresden on 15 October in conjunction with a meeting of ITU-R Working Party 5D. Complete press release here.

The workshop next week will see lots of announcements, discussions and debates about both these technologies. More details on workshop here. My 3G4G page on LTE-Advanced here.
I am sure there is a place for both these technologies and hopefully both of them will succeed :)

Thursday 8 October 2009

TD-SCDMA Politics!


I posted sometime back about China Mobile standards ready to battle the 3G standards. I read this interesting piece in The IET Magazine:

The wait is over for millions of Chinese mobile phone users. Following several years of delays, the government has finally issued the licences that were necessary for the introduction of third-generation cellular services in the country.

As ordered by the Ministry of Industry and Information Technology, each of the nation’s three main operators will have to build and operate a network based on one of the three different standards that were vying for a share of the world’s largest cellular market.

China Mobile (by far the dominant carrier with over 460 million subscribers) will operate on TD-SCDMA, the 3G technology that was developed entirely in the People’s Republic by the Chinese Academy of Telecommunications Technology in collaboration with Datang and Siemens. China Telecom will run on W-CDMA, while China Unicom gets CDMA2000.

Considering how immature TD-SCDMA technology still is - and how discouraging its build-up trials have proved - China Mobile seems to have landed the worst possible deal.

Then again, that was the whole idea of this so-called reorganisation of the country’s telecoms industry. Let the incumbent cellco work on the many problems that will have to be ironed out before TD-SCDMA can be considered a credible 3G alternative, and that should give the two smaller operators enough time to catch up by taking advantage of proven technologies and an established pool of equipment suppliers.

The Chinese government wants a more balanced, more competitive telecoms market, and this should help do the trick. But the move is also likely to have some strange consequences in the relationship between mobile operators and phone makers.

China Mobile faces two different handset-related challenges when it comes to 3G. The first one is qualitative: existing TD-SCDMA phones are technically inferior to those that subscribers have been using in the rest of the world for well over eight years now. The second is quantitative: only 40 or so TD-SCDMA models exist, while China Mobile says it will need several hundred.

So the company is resorting to some unprecedented behaviour for a cellular operator. At the last Mobile World Congress in Barcelona, Wang Jianzhou, the chairman of China Mobile, met with a group of handset vendors (including Nokia, LG, Samsung, Sony Ericsson and some of the Chinese manufacturers) and offered to pay them part of the R&D costs of developing better TD-SCDMA products.

Handset makers have rarely witnessed such generous attitudes from an operator. Even rarer is the fact that the offer is coming from what is now the world’s largest operator. Add to that the unfavourable financial conditions most of these OEMs are enduring and you could safely assume they’ll go and see what they can do to help China Mobile.

You can also read about what TD-SCDMA is here. More about the current status of TD-SCDMA here.