Continuing from yesterdays post.
The WiMAX network architecture is designed to meet the requirements while maximizing the use of open standards and IETF protocols in a simple all-IP architecture. Among the design requirements are supports for fixed and mobile access deployments as well as unbundling of access, connectivity, and application services to allow access infrastructure sharing and multiple access infrastructure aggregation.
The baseline WiMAX network architecture can be logically represented by a network reference model (NRM), which identifies key functional entities and reference points over which the network interoperability specifications are defined. The WiMAX NRM differentiates between network access providers (NAPs) and network service providers (NSPs). The NAP is a business entity that provides WiMAX radio access infrastructure, while the NSP is the business entity that provides IP connectivity and WiMAX services to WiMAX subscribers according to some negotiated service level agreements (SLAs) with one or more NAPs. The network architecture allows one NSP to have a relationship with multiple NAPs in one or different geographical locations. It also enables NAP sharing by multiple NSPs. In some cases the NSP may be the same business entity as the NAP.
The WiMAX NRM, as illustrated in Fig. 3, consists of several logical network entities: MSs, an access service network (ASN), and a connectivity service network (CSN), and their interactions through reference points R1–R8. Each MS, ASN, and CSN represents a logical grouping of functions as described in the following:
• Mobile station (MS): generalized user equipment set providing wireless connectivity between a single or multiple hosts and the WiMAX network. In this context the term MS is used more generically to refer to both mobile and fixed device terminals.
• Access service network (ASN): represents a complete set of network functions required to provide radio access to the MS. These functions include layer 2 connectivity with the MS according to IEEE 802.16 standards and WiMAX system profile, transfer of auathentication, authorization, and accounting (AAA) messages to the home NSP (HNSP), preferred NSP discovery and selection, relay functionality for establishing layer 3 (L3) connectivity with MS (i.e., IP address allocation), as well as radio resource management. To enable mobility, the ASN may also support ASN and CSN anchored mobility, paging and location management, and ASN-CSN tunneling.
• Connectivity service network (CSN): a set of network functions that provide IP connectivity services to WiMAX subscriber(s). The CSN may further comprises network elements such as routers, AAA proxy/ servers, home agent, and user databases as well as interworking gateways or enhanced broadcast services and location-based services.
A CSN may be deployed as part of a green field WiMAX NSP or part of an incumbent WiMAX NSP. The following are some of the key functions of the CSN:–IP address management–AAA proxy or server–QoS policy and admission control based on user subscription profiles–ASN-CSN tunneling support –Subscriber billing and interoperator settlement–Inter-CSN tunneling for roaming–CSN-anchored inter-ASN mobility–Connectivity to Internet and managed WiMAX services such as IP multimedia services (IMS), location-based services, peer-to-peer services, and broadcast and multicast services –Over-the-air activation and provisioning of WiMAX devices
• Base station (BS): a logical network entity that primarily consists of the radio related functions of an ASN interfacing with an MS over-the-air link according to MAC and PHY specifications in IEEE 802.16 specifications subject to applicable interpretations and parameters defined in the WiMAX Forum system profile. In this definition each BS is associated with one sector with one frequency assignment but may incorporate additional implementation-specific functions such as a DL and UL scheduler.
• ASN gateway (ASN-GW): a logical entity that represents an aggregation of centralized functions related to QoS, security, and mobility management for all the data connections served by its association with BSs through R6t. The ASN-GW also hosts functions related to IP layer interactions with the CSN through R3 as well as interactions with other ASNs through R4 in support of mobility.
Typically multiple BSs may be logically associated with an ASN. Also, a BS may be logically connected to more than one ASN-GW to allow load balancing and redundancy options. The WiMAX network specification defines a single decomposed ASN profile (ASN C) with an open R6 interface as well as an alternative ASN profile B that may be implemented as an integrated or a decomposed ASN in which R6 is proprietary or not exposed. The normative definitions of intra-ASN reference points (R6 and R8) are only applicable to profile C. Note that in release 1.5 profile A has been removed to reduce the number of implementation options and create a better framework for network interoperability.