Wednesday, 18 November 2009

Updates from GSMA Asia Mobile Congress 09 - Day 1

Summary of interesting facts from the GSMA Mobile Asia Congress 09, Via Tomi Ahonen's, Communities Dominate Brands:
  • According to Rob Conway, CEO of the GSM Association, the number of subscribers will grow to 8 Billion (not sure when though).
  • China Unicom, China's second largest mobile operator with 142 million subscribers - bigger than AT&T and Sprint put together.
  • Bharti Telecom of India has over 110 million subscribers
  • According to Manoj Kohli, the CEO of Bharti Telecom, India already 20% of all mobile phone owners have 2 or more subscriptions. He also told us that as India will add 500 million new subscribers by the time frame of 2014-2015. India is currently adding 10 million new mobile subscribers every month. And most revealingly, he said that in India the customers will go from 'no internet' directly to 'mobile internet'.
  • According to Wang Jianzhou the Chairman and CEO of China Mobile, the world's biggest mobile operator with over 500 million subscribers, on the Chinese 3G standard of TD-SCDMA, they already have 3G phones being sold that cost about 1,000 Yuan, or about 130 US dollars. The average China Mobile customer spends 1 minute per day on voice calls, but sends on average 3.6 SMS text messages per day.
  • According to Yamada-san, the President and CEO of Japan's NTT DoCoMo, on NTT DoCoMo's network, today already 42% of their total revenues come from non-voice data services. NTT DoCoMo is so far in its migration of its customer base from 2G to 3G, they will terminate 2G in March of 2011.
  • Yamada-san also told of their new 3G video TV service, they call BeeTV. BeeTV is special in that it is optimized for the small screen, not re-purposed video content from TV and the internet. BeeTV in only six months has achieved 800,000 paying subscribers - who pay 315 Yen per month (about 3 USD).
  • Yamada-San's 20 minute presentation also mentioned that NTT DoCoMo's i-Consierge service (yes, think of it as your personal butler, the phone learns your habits and starts to help you with your life, this is like magic) has 2.3 million paying subscribers one year from launch. Their i-Channel idle screen invention is spreading and they have launched it also with their partner in India, Tata, who offer Cricket game updates via the idle screen using i-Channel.
  • Japan's mobile advertising market in 2008 was worth 900 million dollars.
  • Grameenphone and Huawei won the 'Green Mobile' award for their 'green' network initiatives.

Read the complete blog here.

Tuesday, 17 November 2009

Motorola believes in TD-LTE


According to Fierce Broadband Wireless:

Motorola is being very strategic about the contracts it goes after, said Bruce Brda, senior vice president and general manager of the vendor's wireless networks business, in an interview with FierceBroadbandWireless.

"We are not trying to go head to head in every part of the globe. We've been selective in our engagements, focusing on the customers that we think we have a higher advantage with," Brda said. "Our initial thrust is in places in Asia where we have a significant competitive advantage." That's why it won an LTE contract with Japan's KDDI, he said, despite the fact 10 vendors in all competed for that business.

Motorola's other sweet spot is the TDD (unpaired spectrum) version of LTE, otherwise known as TD-LTE, a technology China Mobile is keen on deploying. Brda believes that Motorola's OFDM experience with WiMAX coupled with its TDD experience, again with WiMAX, will give Motorola an advantage in China.

TD-LTE, in fact, won't be a niche market, Brda said. "With the demand for data that exists around the world, it will be a solution set that solves the equation, not just FDD, but a series of solutions, and TD-LTE will play in increasingly large role, maybe coexisting in the same network as FDD LTE."


Brda noted that Motorola is talking to a number of European operators that envision TD-LTE and FDD LTE coexisting. "You could have one set of services carried over the TDD network and another set going over FDD," he said. "It's would create a more efficient use of the network, but I also think more and more TDD spectrum is going to be available. It's been kind of ignored around most of the world, but it's much easier to find un unpaired block of spectrum than a paired block."

Another aspect that has been largely ignored is the fact that experience in mobile WiMAX is highly transferable to the LTE world. Motorola, which has constructed about 20 WiMAX networks, and Samsung are now the two major vendors that have stuck with the mobile WiMAX game to a high degree. Many vendors such as Alcatel-Lucent, Ericsson and Nokia Siemens Networks either shunned mobile WiMAX or significantly scaled back on their efforts in favor of LTE.

Picture source: ChinaByte

Monday, 16 November 2009

The Secret world of WiMAX Femtocell

We have talked of WiMAX femtocells before and since I have mostly been focussing on 3GPP standardised Femtocell, I thought it is wise to focus on WiMAX femtocell and learn more about its terminology and implementation. Whenever possible, I will draw comparisons with the 3GPP femtos and try to provide more insight if I can.

Surprisingly I found it difficult to find the information on WiMAX femtocells. I am sure its not because no one is interested in the technology but its more because of the standards not being available in public domain. An old article on Think Femtocell informs us of the initial players of WiMAX femtocells. I havent tried digging in who is doing what in the WiMAX femtocell world, so if you are aware of potential players, feel free to highlight them via comments.

In WiMAX terminology, femtocells are known as femto base stations (BSs) or WiMAX femto access points (WFAPs). They are intended to serve the same purpose as the 3GPP femtocell that I have mentioned time and again. WiMAX as a technology is intended for data and voice can be an OTT application. In a way its a disadvantage for this technology but can be considered as an advantage as it doesnt have the baggage of old Circuit Switched system.

Another thing that I should clarify here is that WiMAX is intended to operate in licensed spectrum and so are the WFAPs. All femtocells start playing important role when high data rates are required and when the operating frequencies are high. Higher frequencies means lower penetration inside homes and the signal inside the offices can be easily enhanced with femtocells (or for that matter picocells in big buildings).

The WiMAX Forum has commenced the development of femtocell standards in two phases. The first phase is based on IEEE 802.16-2009 (aka 802.16Rev2) and system profile Release 1.0 or Release 1.5, so no change in the air interface standard or legacy MS is required to enable basic femtocell deployments. Some optional software upgradable enhancements in the MS may be used to enable additional femtocell functionalities only for such femto-aware MSs. The network framework to support femtocells in phase 1 is being developed in the WiMAX Forum as part of Network Working Group (NWG) release 1.6. The complete end-to-end femtocell specifications are expected to be finalized by the end of 2009. The second phase of WiMAX femtocell development, which brings additional functionalities and more optimal performance, will be introduced in system profile and network Release 2 based on the 802.16m air interface. The evolution to phase 2, which is expected to be completed by 2011–2012, enables enhanced femtocell systems with 802.16m MSs’ advanced functionalities while continuing the support of phase 1 legacy MSs with basic functionalities. Femtocells are expected to play an important role in terms of cost-effective delivery of new services, such as multimedia, gaming, social networking, and other demanding applications with the high quality of service (QoS) level expected by users in an indoor environment. However, femtocells are in an early stage of development and have some technical challenges to overcome.



Sunday, 15 November 2009

Saturday, 14 November 2009

Bangladesh: Learn English on your Mobile

More than 300,000 people in Bangladesh, one of Asia’s poorest but fastest-growing economies, have rushed to sign up to learn English over their mobile phones, threatening to swamp the service even before its official launch on Friday.

The project, which costs users less than the price of a cup of tea for each three-minute lesson, is being run by the BBC World Service Trust, the international charity arm of the broadcaster. Part of a UK government initiative to help develop English skills in Bangladesh, it marks the first time that mobile phones have been used as an educational tool on this scale.

Since mobile-phone services began in Bangladesh just over a decade ago, more than 50.4m Bangladeshis have acquired phone connections, including many in remote rural areas. This far outnumbers the 4m who have internet access.

English is increasingly seen as a key to economic mobility. An estimated 6.2m Bangladeshis work overseas and hundreds of thousands of others want to follow in their steps. However, English is also important for securing jobs at home, where about 71 per cent of employers look for workers with “communicative English”.

Through its Janala service, the BBC offers 250 audio and SMS lessons at different levels. Each lesson is a three-minute phone call, costing about 3 taka (2.6p).

One basic lesson involves listening to and repeating simple dialogue like: “What do you do?” “I work in IT, what about you?” “I’m a student.” “That’s nice.” Another is devoted to differentiating vowel sounds like those in ship and sheep or leaf and live.

All six mobile phone operators in Bangladesh have agreed to cut the cost of calls to the service by 50 per cent to make it more affordable. Ms Chamberlain said the project team was in talks with the mobile phone companies to increase capacity to cope with the unexpectedly high demand.

The launch of the service comes just weeks after Grameenphone, the country’s largest mobile phone operator, held Bangladesh’s largest IPO, raising $71m from retail investors in the largest offering ever held in the country.

The language lessons are mainly targeting 18 to 24-year-olds, who typically had five or more years of formal education, but whose training in English had been weak. The target market is people living on less than 10,000 taka ($145, €97, £87) a month, who would struggle to pay for formal English lessons.

The relatively low cost of mobile handsets and connection charges has led to an explosion in their use and an estimated 50 million people now have access to phones.

Now users will be able to listen via their phones to weekly bilingual ­English language lessons and receive lessons by text as part of a low-cost service. Lessons are available at four levels, ranging from basic conver­sation skills, to support with sounds that Bangladeshis find difficult to pronounce, and the higher-level vocabulary of English language news media.

New lessons will be available each week with older lessons accessible from an archive. Learners can also ­assess their skills by doing audio quizzes and tests delivered by text message.

The trust says that it has negotiated reductions on standard mobile tariffs of up to 75% to make the service affordable to users with limited incomes.

Allan Freedman, country director for BBC World Service Trust Bangladesh, said: “Young people across Bangladesh have told us they consider learning English as a path to better jobs and opportunities. Our project is about meeting that demand and helping millions of people access English learning tools for the first time.

“It’s arguably the most exciting use of English to improve the lives of ­people in the developing world today.”

The Janala lessons will also be available via the internet on a ­website designed to develop both English-­language and web-user skills, in a country where computer use has been severely restricted by high costs and lack of electricity in rural areas.

Janala will also be promoted via a weekly television programme, BBC Buzz, produced by the World Service Trust, which started broadcasting last month. The show features stories aimed at younger viewers and covers topics such as careers, politics, fashion and music.

It includes the English language learning exploits of a cartoon character called Rinku. Viewers can receive follow-up lessons via mobile phone that build on language points raised by Rinku and have a say on future ­episodes.

Tuesday, 10 November 2009

eMBMS: Naughty after 11pm ;)


I have blogged about MBMS in past about how it didn't take off even though it was a promising technology. Now you may probably be aware that eMBMS is part of Release-9. I heard some interest in this feature.

The expectation is that the demand for data drops off later in the night after around 10pm. The operators may start some channels say after 11pm because the network will have lots of spare capacity that could be used for television channels. You could have late night movies, sports channels and adult channels.

An advantage of going eMBMS way would mean that even if you are roaming, you can have pay per view kind of approach as long as the other network is Release-9 compliant.

Interesting idea, not sure if it will take off.

Friday, 6 November 2009

Inter-Layer Communication Primitives


IEEE defines service primitives that are used for communication between different layers in a protocol stack. There are 4 types of service primitives as can be seen in the diagram above and are described below:

Request: This is sent by the initiating side and from a higher layer to a lower layer. For example when RRC wants to send a message to peer RRC entity, it sends an RLC Data Request to RLC.

Indication: This primitive on the receiving entity is passed from Layer N to the layer above (N+1). For example when RLC entity receives MAC data from MAC and its addressed to RRC, it sends RLC Data Ind to the RRC.

Response: This is the response to the Indication on the receiving entity. So in our example case, RLC Data Resp would be sent by RRC when it receives RLC Data Ind.

Confirm: This is used as a reply in the sending entity as the lower layer conveys the result of one or more previous request primitives. The confirm will generally contain status code indicating success or failure of the procedure. In our example, RLC Data Cnf will be sent by RLC as a response to RLC Data Req.

'One Voice Initiative': IMS Based approach adopted


AT&T*, Orange, Telefonica, TeliaSonera, Verizon, Vodafone, Alcatel-Lucent, Ericsson, Nokia Siemens Networks, Nokia, Samsung Electronics Co. Ltd., and Sony Ericsson have defined the preferred way to ensure the smooth introduction and delivery of voice and SMS services on Long Term Evolution (LTE) networks worldwide.

The above telecommunications industry leaders have jointly developed a technical profile for LTE voice and SMS services, also known as the One Voice initiative. The profile defines an optimal set of existing 3GPP-specified functionalities that all industry stakeholders, including network vendors, service providers and handset manufacturers, can use to offer compatible LTE voice solutions.

Open collaborative discussions have concluded that the IP Multimedia Subsystem (IMS) based solution, as defined by 3GPP, is the most applicable approach to meeting the consumers’ expectations for service quality, reliability and availability when moving from existing circuit switched telephony services to IP-based LTE services. This approach will also open the path to service convergence, as IMS is able to simultaneously serve broadband wireline and LTE wireless networks.

By following the jointly defined technical profile, the industry can help guarantee international roaming and interoperability for LTE voice and SMS services, ensuring subscribers continuity of these vital services – all while offering service providers a smooth and well-defined path to LTE.

The objective of the initiative is to ensure the widest possible ecosystem for LTE and to avoid fragmentation of technical solutions. LTE will, with this initiative, not only serve as a broadband access for increasing data traffic, but also for continuing voice and SMS services. Network operators will be able to more quickly develop their customized LTE ecosystem in collaboration with both network equipment vendors and device manufacturers. In addition, the reassurance of global interoperability in an LTE voice landscape and the ability to offer both broadband access and telephony services over LTE will create strong foundations for future business.

The profile for the initial solution has been finalized and is available through the companies associated with this press release. The objective is to hand over the profile and continuing work to existing industry forums.

To view the technical profile, please visit http://news.vzw.com/OneVoiceProfile.pdf.

From Rethink Wireless:

One of the trickiest issues for early LTE deployers is uncertainty over how voice and SMS services - still the key cash cows for most operators - can be supported. Eventually, all these services will be carried over IP, using the IMS (IP Multimedia Subsystem) standard, but only a few carriers, like Verizon Wireless, are looking to deploy all-IP from day one. However, there is pressure to accelerate the process and reduce the cost and risk of LTE/IMS for carriers, and this is the objective of the new One Voice initiative.

Some operators believe they will initially deploy LTE as a data-only network, but most want to support voice and, even more importantly, SMS (which underpins many cellco processes and customer communications). Faced with the risk that large players might delay their plans until they have a strong route to voice, One Voice has defined a profile based on existing 3GPP standards for IMS-enabled voice.

The work has initially emerged from Nokia Siemens, which was previously trying to get wide industry support for its own interim voice over LTE solution, VoLTE (which only worked with its own softswitches). The company's convergent core marketing manager, Sandro Tavares, said One Voice should ease fears over how voice will be deployed by resolving roaming and interworking issues at an early stage. It is not creating a new standard, but aims to ensure compatibility between networks and devices by creating a common profile, which defines an optimal set of existing 3GPP functionalities for use by vendors and operators. "There is no new standard," added Tavares. "It's just using what is there already."

NSN is already producing LTE equipment that complies with the new profile, and so has a headstart in offering an important feature to early triallists - which could boost its so-far low profile in LTE tests, dominated by Ericsson and Huawei. However, the vendor will now hand its work to the 3GPP and GSM Association so that other companies can work on and adopt the profile. So far, it has signed support from most of the key operators that tend to wield influence over cellular standards, apart from DoCoMo and China Mobile - AT&T, Orange, Telefonica, TeliaSonera, Verizon Wireless and Vodafone are there, plus a strong line-up of vendors. These are Alcatel-Lucent and Ericsson on the infrastructure side and Nokia, Samsung and Sony Ericsson for devices. The group needs to get the Chinese vendors on board to complete the set, as well as Motorola.

The supporters of the initiative say this is their "preferred path" for voice over LTE, though for carriers that do not want to move to IMS at an early stage, there are other options available - namely open web-based voice; the stopgap solution of Circuit Switch Fallback (also enshrined in 3GPP standards), where the handset is forced off the LTE network onto 2G or 3G for voice calls; and variations on the theme of using circuit switch over packet techniques. There are two main approaches to this - MSC Voice, which is tied to a switch, with NSN's VoLTE the most prominent example; and VoLGA, which is architecture independent, and uses the UMA/GAN (Unlicensed Mobile Access/Generic Access Network) protocol. This Kineto originated technology was originally adopted for Wi-Fi/3G fixed-mobile convergence and as such did find its way into the 3GPP. VoLGA does not require modifications in the LTE RAN or core, or the MSC, but uses a separate gateway controller.

Some of the One Voice supporters are already involved in VoLGA (though its major carrier T-Mobile has not yet joined the new group). Steve Shaw, who heads up corporate marketing for Kineto and VoLGA, believes that IMS is the way that, ultimately, voice will be handled, but it has a long way to go before it is usable, and so there will still be a role for several years for approaches like VoLGA.

T-Mobile will I assume soon have to follow suit and fall in line otherwise they may have limited devices that are available and there will also be inter-operability issues.

Last week I attended a presentation by IET Berkshire on Voice Services over LTE, presented by Iain Sharp from Nortel. Even though this announcement came yesterday, Iain did say that IMS is the way forward for Voice over LTE. If interested you can see the presentation here.


Thursday, 5 November 2009

Network Operator commitments to LTE as of Oct. 2009



Operators everywhere are talking up LTE as the future, but few have put a stake in the ground with specific timeframes. Even fewer have selected LTE vendors for their endeavors. Lack of spectrum, a shaky economy and the belief that existing networks still have some mileage are contributing to the not-so-solid commitments. Nonetheless, there are plenty of network trials to go around.

Fierce Broadband Wireless has compiled list of operators' LTE plans based on those companies that have made specific intentions around LTE. While South Korean operators KT Freetel and SK Telecom haven't made public specific dates regarding their commercial launch plans, they have indicated their intentions to invest in LTE by 2010. Zain in Bahrain hasn't announced a commercial launch date yet either, but has tapped Nokia Siemens Networks as its LTE vendor.

See the complete table of rollouts here.

WiMAX Network reference model



Continuing from yesterdays post.

The WiMAX network architecture is designed to meet the requirements while maximizing the use of open standards and IETF protocols in a simple all-IP architecture. Among the design requirements are supports for fixed and mobile access deployments as well as unbundling of access, connectivity, and application services to allow access infrastructure sharing and multiple access infrastructure aggregation.

The baseline WiMAX network architecture can be logically represented by a network reference model (NRM), which identifies key functional entities and reference points over which the network interoperability specifications are defined. The WiMAX NRM differentiates between network access providers (NAPs) and network service providers (NSPs). The NAP is a business entity that provides WiMAX radio access infrastructure, while the NSP is the business entity that provides IP connectivity and WiMAX services to WiMAX subscribers according to some negotiated service level agreements (SLAs) with one or more NAPs. The network architecture allows one NSP to have a relationship with multiple NAPs in one or different geographical locations. It also enables NAP sharing by multiple NSPs. In some cases the NSP may be the same business entity as the NAP.

The WiMAX NRM, as illustrated in Fig. 3, consists of several logical network entities: MSs, an access service network (ASN), and a connectivity service network (CSN), and their interactions through reference points R1–R8. Each MS, ASN, and CSN represents a logical grouping of functions as described in the following:

Mobile station (MS): generalized user equipment set providing wireless connectivity between a single or multiple hosts and the WiMAX network. In this context the term MS is used more generically to refer to both mobile and fixed device terminals.

Access service network (ASN): represents a complete set of network functions required to provide radio access to the MS. These functions include layer 2 connectivity with the MS according to IEEE 802.16 standards and WiMAX system profile, transfer of auathentication, authorization, and accounting (AAA) messages to the home NSP (HNSP), preferred NSP discovery and selection, relay functionality for establishing layer 3 (L3) connectivity with MS (i.e., IP address allocation), as well as radio resource management. To enable mobility, the ASN may also support ASN and CSN anchored mobility, paging and location management, and ASN-CSN tunneling.

Connectivity service network (CSN): a set of network functions that provide IP connectivity services to WiMAX subscriber(s). The CSN may further comprises network elements such as routers, AAA proxy/ servers, home agent, and user databases as well as interworking gateways or enhanced broadcast services and location-based services.

A CSN may be deployed as part of a green field WiMAX NSP or part of an incumbent WiMAX NSP. The following are some of the key functions of the CSN:–IP address management–AAA proxy or server–QoS policy and admission control based on user subscription profiles–ASN-CSN tunneling support –Subscriber billing and interoperator settlement–Inter-CSN tunneling for roaming–CSN-anchored inter-ASN mobility–Connectivity to Internet and managed WiMAX services such as IP multimedia services (IMS), location-based services, peer-to-peer services, and broadcast and multicast services –Over-the-air activation and provisioning of WiMAX devices

Base station (BS): a logical network entity that primarily consists of the radio related functions of an ASN interfacing with an MS over-the-air link according to MAC and PHY specifications in IEEE 802.16 specifications subject to applicable interpretations and parameters defined in the WiMAX Forum system profile. In this definition each BS is associated with one sector with one frequency assignment but may incorporate additional implementation-specific functions such as a DL and UL scheduler.

ASN gateway (ASN-GW): a logical entity that represents an aggregation of centralized functions related to QoS, security, and mobility management for all the data connections served by its association with BSs through R6t. The ASN-GW also hosts functions related to IP layer interactions with the CSN through R3 as well as interactions with other ASNs through R4 in support of mobility.

Typically multiple BSs may be logically associated with an ASN. Also, a BS may be logically connected to more than one ASN-GW to allow load balancing and redundancy options. The WiMAX network specification defines a single decomposed ASN profile (ASN C) with an open R6 interface as well as an alternative ASN profile B that may be implemented as an integrated or a decomposed ASN in which R6 is proprietary or not exposed. The normative definitions of intra-ASN reference points (R6 and R8) are only applicable to profile C. Note that in release 1.5 profile A has been removed to reduce the number of implementation options and create a better framework for network interoperability.