Tuesday, 7 December 2010

SON framework in 3GPP

From a Presentation by Cinzia Sartori from Nokia Siemens Networks (NSN) in the Self-Organising Networks Conference in London, Nov. 2010

Release 8 functionality
• Self-configuration procedures

Release 9 enhancements
• Self-optimization procedures
• Energy Saving Intra-RAT

Release 10 objectives
• Extend Self-optimization procedures , including inter-RAT
• Minimization of Drive Test (MDT)
• Energy Saving extension, including Multi-RAT (Study Item)
• 3G-ANR
• SON Conflict Resolution

SON features for R11 (Probably - Under Discussion)
• Minimization of Drive Tests (MDT) enhancements
• Mobility Robustness Optimization for MultiRAT
• SON for LTE-A features defined in Rel.10
•• Hetrogeneous Networks aka. HetNet?
•• SON for Relays
•• SON for Carrier Aggregation

Sunday, 5 December 2010

Inter-Operability Testing (IOT) Process Flow

I have been asked couple of times about the IOT process, how it works, etc. The above picture is from a Huawei Presentation in "The 3GPP release 8 IMS Implementation, Deployment & Testing workshop".

You can read more about 3G/4G testing from my old article here.

Saturday, 4 December 2010

Role of ENUM in NGN Interconnect

I have blogged about ENUM here and here and its been quite a while. In these last couple of years ENUM has evolved a bit and now GSMA has its own Number translation service called Pathfinder.

The following is a presentation by GSMA in the recently concluded The 3GPP release 8 IMS Implementation, Deployment & Testing workshop.

Friday, 3 December 2010

Presentation: IMS for 3G Voice Services and Migration Strategies

Very interesting presentation from NTT DoCoMo in the IMS workshop I blogged about yesterday. It shows their strategy to move from legacy core network to an All IP Network (AIPN).


Thursday, 2 December 2010

The 3GPP release 8 IMS Implementation, Deployment & Testing workshop

The 3GPP release 8 IMS Implementation, Deployment & Testing workshop took place in Sophia Antipolis on 24-25 November 2010.

The event was attended by 70 delegates actively participating to the discussions.
Presenting companies included: Tel : A1 Telekom Austria, Alcatel Lucent, Codenomicon, Conformiq, Eircom, Elvior, ETSI, France Telecom, GSMA, Huawei, Huawei, Mobitel, NTT DoCoMo, SFR, Telecom Italia, TestingTech, TU Berlin, Wind, Wipro, ZTE.

Here are the highlights from the ETSI document:

Goals and Outcome for this workshop

Share exprience from IMS implementation
Highlight areas for further specifications, for
Standards and Testing
Learn of issues and possible resolutions

Comments from The IMS Network Testing Group

Develop IMS core network test specifications based upon 3GPP, for:
• Interoperability
• conformance
• network integration
Hold interoperability events (IMS Plugtests)
Coordinate with other organisations such as OMA, MSF, GSMA

Implementations

• Beyond small islands, second wave to replace unscalable, unmaintenable early VoIP systems
• Implementation options - Hybrid CS-GW for transition from CS to LTE, which already has 2 million subscribers on IMS/CS-GW/RNC
• Auto provisioning - to simplify complexity
• IMS functions must be implemented in the core – not in any access network, such as LTE, and can be used for non-Voice as well


Implementing RCS (Rich Communication Suite)

• RCS trial feedback - Good feedback from 400 trial users on RCS but difficult to configure SBC
• RCS implementations should include aggregation with SNS (Social Network Services)– eg contact list from Facebook
• Most appreciated feature of RCS is: - cross-operator interworking and compatibility with ordinary phones, not just smartphones


Specific Issues and Resolutions

• FAX – Delay and Jitter issues - FTTH will solve long delays etc
• Emergency and Lawful Intercept with IMS -There are standards and developed solutions available but Currently still falls back to CS /TDM
• Data Provisioning speed is important, to achieve no service interruption.
• 3GPP II-NNI: Inter-IMS Network to Network Interface - Two levels: Solx (service with control function) and Coix (connection – a pipe for media).
• “PathFinder” Global ENUM – like DNS for phone number; It is a solution to number portability and can optimise routing


About Services

• Most issues are Beyond IMS - integrating OSS/BSS, existing systems, inter-vendors interfaces
• IMS and IN - Pity the Standards did not bring IN and IMS close together; Need iFC enhancements, like in IN; Need to support combining services
• OTT and SNS dominate growth - occupies the minds of commercial people, GSMA-like services have slowed down
• Service layer (Wipro) – Telcos want one SDP to serve all - include IMS and non-IMS services, human and non-humans on NAB, context based, and charge only what is ‘consumed’


Testing Methods, Tools and Test Beds

• Integrate Conformance checking with interoperability testing
• Automation of interoperability trace checking – it can reduce costs by more than 50 % compared to manual validation
• Independent Test Bed- available EPC playground for prototyping applications
• Protocol message customisation tool - allows changing the message and customise the flow
• Security testing tool - testing by ‘fuzzing’, 100% TTCN free – everything is already build in
• IMS is a multi vendor environment - Testing and validation must be an integral part of the deployment process


Memorable Quotes

“IMS is a Journey, not a destination” (ALU)
“SDP is almost anything” (Matjas Bericic, Mobitel)
“Voice as an app versus Voice as a Service” is a challenge (Manuel Vexler, Huawei)
“IMS is not a box, it is a network” (Matjas Bericic, Mobitel)
“global ENUM is DNS for phone numbers” (Adrian Dodd, GSMA)
“Kill with one SIP” (Ari Takanen, Codenomicon)
“ IOP is the red thread running through the entire ETSI standards development process “ (Milan Zoric, ETSI)

All documents from this workshop is available at: http://docbox.etsi.org/Workshop/2010/201011_IMSWORKSHOP/

Wednesday, 1 December 2010

Monday, 29 November 2010

LSTI: Job nearly done!

According to Mobile Europe magazine, LSTI has nearly completed the tasks it had been created for. The following is from the report:

LSTI said it has reached Milestones for Interoperability Development Tests (IODT), Interoperability Tests (IOT) and for Friendly Customer Trials (FCT). With these Milestones complete, LSTI said it could move to its last working phase and "finish all LTE trials in a timely manner".

Following on from the Proof of Concept (PoC) tests, which was the first testing phase of the LSTI alliance, and which was completed a year ago, LSTI has now completed all Interoperability Development Tests (IODT) for both FDD (Frequency Division Duplex) and TDD (Time-Division Duplex). Furthermore, penultimate Milestone for Interoperability Tests (IOT) has also been passed. That means that the LSTI members have proved that at least three vendors for each case are about to deliver to the market interoperability tested access network and terminal equipment.

The Core Network Interface S1 (Connection Access Network to Core) IOT is almost completed and more results are expected to be delivered soon.

“Overall these results are well aligned with the previous results shared in the LSTI PoC phase. This testing and the co-operation of the vendors and operators involved have brought forward the growth of the LTE ecosystem and enabled a accelerated commercialisation of LTE-EPC by fostering technology alignment across all parties”, said Christian Kuhlins, LSTI Activity Manager IOT, Ericsson AB. “We can now see that the telecommunications industry is about to launch LTE/SAE equipment. More and more commercial network and terminal equipment will be available on the market very soon.”

Eleven LSTI operators have set-up their LTE/EPC trials and have already delivered reports built on a common testing methodology. The Trial Group has achieved one major step in passing the “Radio Access Testing” milestone which includes: Latency, State Transition, Throughput, Cell Capacity, Mobility, Basic Quality of Service and User Experience testing domains.

LSTI said that last results are expected during the next few weeks and will be presented at the Mobile World Congress 2011.


Friday, 26 November 2010

Iridium NEXT: Next Generation Satellite Network


Presented by Dan Mercer, VP & General Manager, EMEA & Russia on November 9th , 2010 at Digital Communications Knowledge Transfer Network And Cambridge Wireless Future Wide Area Wireless SIG – ‘Networks and the New Economy’

To download see: http://www.cambridgewireless.co.uk

Thursday, 25 November 2010

LIPA, SIPTO and IFOM Comparison

Enhancing macro radio access network capacity by offloading mobile video traffic will be essential for mobile communications industry to reduce its units costs to match its customer expectations. Two primary paths to achieve this are the use of femtocells and WiFi offloading. Deployment of large scale femtocells for coverage enhancement has been a limited success so far. Using them for capacity enhancements is a new proposition for mobile operators. They need to assess the necessity of using them as well as decide how to deploy them selectively for their heavy users.

Three alternative architectures that are being standardized by 3GPP have various advantages and shortcomings. They are quite distinct in terms of their dependencies and feasibility. Following table is a summary of comparison among these three approaches for traffic offloading.


Looking at the relative strengths of the existing traffic offload proposals, it is difficult to pick an outright winner. SIPTO macro-network option is the most straight-forward and most likely to be implemented rather quickly. However, it doesn't solve the fundamental capacity crunch in the radio access network. Therefore its value is limited to being an optimization of the packet core/transport network. Some other tangible benefits would be reduction in latency to increase effective throughput for customers as well as easier capacity planning since transport facilities don't need to be dimensioned for large number of radio access network elements anymore.

LIPA provides a limited benefit of allowing access to local premises networks without having to traverse through the mobile operator core. Considering it is dependent on the implementation of femtocell, this benefit looks rather small and has no impact on the macro radio network capacity. If LIPA is extended to access to Internet and Intranet, then the additional offload benefit would be on the mobile operator core network similar to the SIPTO macro-network proposal. Femtocell solves the macro radio network capacity crunch. However, the pace of femtocell deployments so far doesn't show a significant momentum. LIPA's market success will be limited until cost of femtocell ownership issues are resolved and mobile operators decide why (coverage or capacity) to deploy femtocells.

IFOM is based upon a newer generation of Mobile IP that has been around as a mobile VPN technology for more than 10 years. Unfortunately success record of mobile IP so far has been limited to enterprise applications. It hasn't become a true consumer-grade technology. Introduction of LTE may change this since many operators spearheading LTE deployments are planning to use IPv6 in handsets and adopt a dual-stack approach of having both IPv4 and IPv6 capability. Since many WiFi access networks will stay as IPv4, DSMIPv6 will be the best tunneling mechanism to hide IPv6 from the access network. Having dual-stack capability will allow native access to both legacy IPv4 content and native IPv6 content from major companies such as Google, Facebook, Yahoo, etc. without the hindrance of Network Address Translation (NAT). Considering the popularity of smartphones such as iPhone, Blackberry and various Android phones, they will be the proving ground for the feasibility of DSMIPv6.

Source of the above content: Whitepaper - Analysis of Traffic Offload : WiFi to Rescue