Thursday 9 December 2010

Minimization of Drive Tests (MDT) in 3GPP Release-10

Another one that came from the SON conference.

At present, the network optimisation after it is operational is generally done by drive testing. In this an equipment (test mobile) that collects measurements and location information collects all the required information while the equipment is being driven in a car on the roads and this information is used offline to analyse the coverage in different locations and based on that the parameters, power, antenna locations, antenna tilts, etc. are optimised. After the changes to any of the optimisation paramaters, drive test has to be undertaken again to make sure that the impact of these changes are positive.

One more thing that has to be taken account of is that the drive tests have to be carried out at di9ffert times to be able to predeict the behaviour at different loads.

Using drive tests for network optimization purposes is costly and causes also additional CO2 emissions, so it is desirable to develop automated solutions, including involving UEs in the field, in 3GPP to reduce the operator costs for network deployment and operation. The studies done as part of the study item phase [1] have shown that it is beneficial to collect UE measurements to enable a more efficient network optimisation and it is feasible to use control plane solutions to acquire the information from devices. This information, together with information available in the radio access network can be used for Coverage Optimization purposes.

It should be remembered that drive tests form a big part of the Network opex and Deutsche Telekom for example expects a 40% cost saving with SON (and MDT is a part of that)

Goal of MDT in 3GPP Rel.10
– Automatic UE measurements collection and data logging used to replace the manual drive testing that the operators have to perform in their networks
– Evaluation of network performance per physical location
– For both HSPA & LTE


There are two different types of MDT:

Immediate MDT: MDT functionality involving measurement performance by UE in CONNECTED state and reporting of the measurements to eNB/RNC available at the time of reporting condition.

Logged MDT: MDT functionality involving measurement performance by UE in IDLE state at points in time when configured conditions are satisfied, its storage in measurement log for reporting to eNB/RNC at a later point in time.

The solutions for MDT shall be able to work independently from SON support in the network. Relation between measurements/solution for MDT and UE side SON functions shall be established in a way that re-use of functions is achieved where possible.

• Use cases
– 3GPP R10: Coverage optimization : Prio1
– For 3GPP > R10 :Capacity optimization, Mobility optimization, Parameterization of common channels, QoS verification, no specific measurements
- In Release-11 MDT Enhancements and evaluation of other MDT use cases, such as ”Parameterization of common control channels” and Positioning enhancements will be explored.

• MDT and SON
– MDT is about UE measurement collection for off-line processing No automatic mechanism is defined MDT
– SON is aiming at instantaneous/automated reaction on short to middle term network issues

It should be noted that MDT is a wide area and some of the boundaries between MDT and SON are a bit fuzzy. One of the other ways for SON is to enable detected cell measurements in the handset. This will give the indication about the cells that are not in the monitored set but the UE is able to see.

The RRC (control plane) measurements for LTE are not advanced enough and there are no measurements for UE position. On the other hand for UMTS/HSPA the UE positioning measurements could be used to report the exact location at the point of measurements. There are some discussions for enhancing the LTE measurements to include the longitude, latitude, altitude, velocity and even direction (too ambitious?).

Finally it should be pointed out that UE based reporting based on the User Plane Measurements (typically done by the operator installing a small application on the handset) can be performed by the operator in case a user is reporting poor coverage or failure in an area. Since these are proprietary applications, the operator can collect variety of information including but not limited to, position information, crrent cell and neighbour cell power levels, etc.

With all the control plane measurements and user plane measurements, the battery life could be severely affected and it has to be made sure that these are done very seldomly or with users permission.

Some of the things mentioned above may not be exactly true and if you know better please feel free to correct me.

[1] 3GPP TR 36.805 - Study on Minimization of drive-tests in Next Generation Networks

[2] 3GPP TS 37.320 - Universal Terrestrial Radio Access (UTRA) and Evolved Universal Terrestrial Radio Access (E-UTRA); Radio measurement collection for Minimization of Drive Tests (MDT); Overall description; Stage 2 (Release 10)

Wednesday 8 December 2010

SON for reducing Opex in Legacy Networks

Presented by Stéphane Téral, Principal Analyst, Mobile and FMC Infrastructure, Infonetics Research in the 1st Self-Organizing Networks Conference, 30th Nov and 1st Dec. 2010 at the Waldorf Hilton.

Tuesday 7 December 2010

SON framework in 3GPP

From a Presentation by Cinzia Sartori from Nokia Siemens Networks (NSN) in the Self-Organising Networks Conference in London, Nov. 2010

Release 8 functionality
• Self-configuration procedures

Release 9 enhancements
• Self-optimization procedures
• Energy Saving Intra-RAT

Release 10 objectives
• Extend Self-optimization procedures , including inter-RAT
• Minimization of Drive Test (MDT)
• Energy Saving extension, including Multi-RAT (Study Item)
• 3G-ANR
• SON Conflict Resolution

SON features for R11 (Probably - Under Discussion)
• Minimization of Drive Tests (MDT) enhancements
• Mobility Robustness Optimization for MultiRAT
• SON for LTE-A features defined in Rel.10
•• Hetrogeneous Networks aka. HetNet?
•• SON for Relays
•• SON for Carrier Aggregation

Sunday 5 December 2010

Inter-Operability Testing (IOT) Process Flow

I have been asked couple of times about the IOT process, how it works, etc. The above picture is from a Huawei Presentation in "The 3GPP release 8 IMS Implementation, Deployment & Testing workshop".

You can read more about 3G/4G testing from my old article here.

Saturday 4 December 2010

Role of ENUM in NGN Interconnect

I have blogged about ENUM here and here and its been quite a while. In these last couple of years ENUM has evolved a bit and now GSMA has its own Number translation service called Pathfinder.

The following is a presentation by GSMA in the recently concluded The 3GPP release 8 IMS Implementation, Deployment & Testing workshop.

Friday 3 December 2010

Presentation: IMS for 3G Voice Services and Migration Strategies

Very interesting presentation from NTT DoCoMo in the IMS workshop I blogged about yesterday. It shows their strategy to move from legacy core network to an All IP Network (AIPN).


Thursday 2 December 2010

The 3GPP release 8 IMS Implementation, Deployment & Testing workshop

The 3GPP release 8 IMS Implementation, Deployment & Testing workshop took place in Sophia Antipolis on 24-25 November 2010.

The event was attended by 70 delegates actively participating to the discussions.
Presenting companies included: Tel : A1 Telekom Austria, Alcatel Lucent, Codenomicon, Conformiq, Eircom, Elvior, ETSI, France Telecom, GSMA, Huawei, Huawei, Mobitel, NTT DoCoMo, SFR, Telecom Italia, TestingTech, TU Berlin, Wind, Wipro, ZTE.

Here are the highlights from the ETSI document:

Goals and Outcome for this workshop

Share exprience from IMS implementation
Highlight areas for further specifications, for
Standards and Testing
Learn of issues and possible resolutions

Comments from The IMS Network Testing Group

Develop IMS core network test specifications based upon 3GPP, for:
• Interoperability
• conformance
• network integration
Hold interoperability events (IMS Plugtests)
Coordinate with other organisations such as OMA, MSF, GSMA

Implementations

• Beyond small islands, second wave to replace unscalable, unmaintenable early VoIP systems
• Implementation options - Hybrid CS-GW for transition from CS to LTE, which already has 2 million subscribers on IMS/CS-GW/RNC
• Auto provisioning - to simplify complexity
• IMS functions must be implemented in the core – not in any access network, such as LTE, and can be used for non-Voice as well


Implementing RCS (Rich Communication Suite)

• RCS trial feedback - Good feedback from 400 trial users on RCS but difficult to configure SBC
• RCS implementations should include aggregation with SNS (Social Network Services)– eg contact list from Facebook
• Most appreciated feature of RCS is: - cross-operator interworking and compatibility with ordinary phones, not just smartphones


Specific Issues and Resolutions

• FAX – Delay and Jitter issues - FTTH will solve long delays etc
• Emergency and Lawful Intercept with IMS -There are standards and developed solutions available but Currently still falls back to CS /TDM
• Data Provisioning speed is important, to achieve no service interruption.
• 3GPP II-NNI: Inter-IMS Network to Network Interface - Two levels: Solx (service with control function) and Coix (connection – a pipe for media).
• “PathFinder” Global ENUM – like DNS for phone number; It is a solution to number portability and can optimise routing


About Services

• Most issues are Beyond IMS - integrating OSS/BSS, existing systems, inter-vendors interfaces
• IMS and IN - Pity the Standards did not bring IN and IMS close together; Need iFC enhancements, like in IN; Need to support combining services
• OTT and SNS dominate growth - occupies the minds of commercial people, GSMA-like services have slowed down
• Service layer (Wipro) – Telcos want one SDP to serve all - include IMS and non-IMS services, human and non-humans on NAB, context based, and charge only what is ‘consumed’


Testing Methods, Tools and Test Beds

• Integrate Conformance checking with interoperability testing
• Automation of interoperability trace checking – it can reduce costs by more than 50 % compared to manual validation
• Independent Test Bed- available EPC playground for prototyping applications
• Protocol message customisation tool - allows changing the message and customise the flow
• Security testing tool - testing by ‘fuzzing’, 100% TTCN free – everything is already build in
• IMS is a multi vendor environment - Testing and validation must be an integral part of the deployment process


Memorable Quotes

“IMS is a Journey, not a destination” (ALU)
“SDP is almost anything” (Matjas Bericic, Mobitel)
“Voice as an app versus Voice as a Service” is a challenge (Manuel Vexler, Huawei)
“IMS is not a box, it is a network” (Matjas Bericic, Mobitel)
“global ENUM is DNS for phone numbers” (Adrian Dodd, GSMA)
“Kill with one SIP” (Ari Takanen, Codenomicon)
“ IOP is the red thread running through the entire ETSI standards development process “ (Milan Zoric, ETSI)

All documents from this workshop is available at: http://docbox.etsi.org/Workshop/2010/201011_IMSWORKSHOP/

Wednesday 1 December 2010

Monday 29 November 2010

LSTI: Job nearly done!

According to Mobile Europe magazine, LSTI has nearly completed the tasks it had been created for. The following is from the report:

LSTI said it has reached Milestones for Interoperability Development Tests (IODT), Interoperability Tests (IOT) and for Friendly Customer Trials (FCT). With these Milestones complete, LSTI said it could move to its last working phase and "finish all LTE trials in a timely manner".

Following on from the Proof of Concept (PoC) tests, which was the first testing phase of the LSTI alliance, and which was completed a year ago, LSTI has now completed all Interoperability Development Tests (IODT) for both FDD (Frequency Division Duplex) and TDD (Time-Division Duplex). Furthermore, penultimate Milestone for Interoperability Tests (IOT) has also been passed. That means that the LSTI members have proved that at least three vendors for each case are about to deliver to the market interoperability tested access network and terminal equipment.

The Core Network Interface S1 (Connection Access Network to Core) IOT is almost completed and more results are expected to be delivered soon.

“Overall these results are well aligned with the previous results shared in the LSTI PoC phase. This testing and the co-operation of the vendors and operators involved have brought forward the growth of the LTE ecosystem and enabled a accelerated commercialisation of LTE-EPC by fostering technology alignment across all parties”, said Christian Kuhlins, LSTI Activity Manager IOT, Ericsson AB. “We can now see that the telecommunications industry is about to launch LTE/SAE equipment. More and more commercial network and terminal equipment will be available on the market very soon.”

Eleven LSTI operators have set-up their LTE/EPC trials and have already delivered reports built on a common testing methodology. The Trial Group has achieved one major step in passing the “Radio Access Testing” milestone which includes: Latency, State Transition, Throughput, Cell Capacity, Mobility, Basic Quality of Service and User Experience testing domains.

LSTI said that last results are expected during the next few weeks and will be presented at the Mobile World Congress 2011.