Tuesday, 16 October 2012

Extended Access Barring (EAB) in Release 11 to avoid MTC overload

M2M is going to be big. With the promise of 50 Billion devices by 2020, the networks are already worried about the overloading due to signalling by millions of devices occurring at any given time. To counter this, they have been working on avoiding overloading of the network for quite some time as blogged about here.

The feature to avoid this overload is known as Extended Access Barring (EAB). For E-UTRAN, in Rel-10, a partial solution was implemented and a much better solution has been implemented in Rel-11. For GERAN a solution was implemented in Rel-10. The following presentation gives a high level overview of EAB for E-UTRAN and GERAN.



In Rel-11, a new System Information Block (SIB 14) has been added that is used specifically for EAB. Whereas in Rel-10, the UE would still send the RRCConnectionRequest, in Rel-11, the UE does not even need to do that, thereby congesting the Random Access messages.

The following is from RRC 36.331 (2012-09)
***

–                SystemInformationBlockType14

The IE SystemInformationBlockType14 contains the EAB parameters.
SystemInformationBlockType14 information element
-- ASN1START

SystemInformationBlockType14-r11 ::= SEQUENCE {
    eab-Param-r11                        CHOICE {
       eab-Common-r11                       EAB-Config-r11,
       eab-PerPLMN-List-r11                 SEQUENCE (SIZE (1..6)) OF EAB-ConfigPLMN-r11
    }                                                  OPTIONAL, -- Need OR
    lateNonCriticalExtension             OCTET STRING          OPTIONAL, -- Need OP
    ...
}

EAB-ConfigPLMN-r11 ::=               SEQUENCE {
    eab-Config-r11                   EAB-Config-r11            OPTIONAL -- Need OR
}

EAB-Config-r11 ::=               SEQUENCE {
    eab-Category-r11                 ENUMERATED {a, b, c, spare},
    eab-BarringBitmap-r11            BIT STRING (SIZE (10))
}

-- ASN1STOP

SystemInformationBlockType14 field descriptions
eab-BarringBitmap
Extended access class barring for AC 0-9. The first/ leftmost bit is for AC 0, the second bit is for AC 1, and so on.
eab-Category
Indicates the category of UEs for which EAB applies. Value a corresponds to all UEs, value b corresponds to the UEs that are neither in their HPLMN nor in a PLMN that is equivalent to it, and value c corresponds to the UEs that are neither in the PLMN listed as most preferred PLMN of the country where the UEs are roaming in the operator-defined PLMN selector list on the USIM, nor in their HPLMN nor in a PLMN that is equivalent to their HPLMN, see TS 22.011 [10].
eab-Common
The EAB parameters applicable for all PLMN(s).
eab-PerPLMN-List
The EAB parameters per PLMN, listed in the same order as the PLMN(s) occur in plmn-IdentityList in SystemInformationBlockType1.

***

Here is my attempt to explain the difference in overload control mechanism in Rel-8, Rel-10 and Rel-11. Please note that not actual message names are used.





As usual, happy to receive feedback, comments, suggestions, etc.

Monday, 15 October 2012

Machine Type Communications (MTC): Architecture, Features, Standards in 3GPP Rel-10



The following 14 MTC Features have been identified during the 3GPP Release-10 timelines:


  • Low Mobility
  • Time Controlled
  • Time Tolerant
  • Packet Switched (PS) Only
  • Small Data Transmissions
  • Mobile Originated Only
  • Infrequent Mobile Terminated
  • MTC Monitoring
  • Priority Alarm Message (PAM)
  • Secure Connection
  • Location Specific Trigger
  • Network Provided Destination for Uplink Data
  • Infrequent Transmission
  • Group Based MTC Features




In Rel 10, 3GPP will focus on the general functionality required to support these features:

  • Overload control (Radio Network Congestion use case, Signalling Network Congestion use case and Core Network Congestion use case)
  • Addressing
  • Identifiers
  • Subscription control
  • Security



The following specifications are associated with the MTC work

Spec   - Specifications associated with or affected by MTC work
22.011 - Service accessibility
22.368 - Service requirements for Machine-Type Communications (MTC); Stage 1
23.008 - Organization of subscriber data
23.012 - Location management procedures
23.060 - General Packet Radio Service (GPRS); Service description; Stage 2
23.122 - Non-Access-Stratum (NAS) functions related to Mobile Station (MS) in idle mode
23.203 - Policy and charging control architecture
23.401 - General Packet Radio Service (GPRS) enhancements for Evolved Universal Terrestrial Radio Access Network (E-UTRAN) access
23.402 - Architecture enhancements for non-3GPP accesses
23.888 - System improvements for Machine-Type Communications (MTC)
24.008 - Mobile radio interface Layer 3 specification; Core network protocols; Stage 3
24.301 - Non-Access-Stratum (NAS) protocol for Evolved Packet System (EPS); Stage 3
24.368 - Non-Access Stratum (NAS) configuration Management Object (MO)
25.331 - Radio Resource Control (RRC); Protocol specification
29.002 - Mobile Application Part (MAP) specification
29.018 - General Packet Radio Service (GPRS); Serving GPRS Support Node (SGSN) - Visitors Location Register (VLR); Gs interface layer 3 specification
29.060 - General Packet Radio Service (GPRS); GPRS Tunnelling Protocol (GTP) across the Gn and Gp interface
29.118 - Mobility Management Entity (MME) - Visitor Location Register (VLR) SGs interface specification
29.274 - 3GPP Evolved Packet System (EPS); Evolved General Packet Radio Service (GPRS) Tunnelling Protocol for Control plane (GTPv2-C); Stage 3
29.275 - Proxy Mobile IPv6 (PMIPv6) based Mobility and Tunnelling protocols; Stage 3
29.282 - Mobile IPv6 vendor specific option format and usage within 3GPP
31.102 - Characteristics of the Universal Subscriber Identity Module (USIM) application
33.868 - Security aspects of Machine-Type Communications
36.331 - Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Resource Control (RRC); Protocol specification
37.868 - RAN Improvements for Machine-type Communications
43.868 - GERAN Improvements for Machine-type Communications
44.018 - Mobile radio interface layer 3 specification; Radio Resource Control (RRC) protocol
44.060 - General Packet Radio Service (GPRS); Mobile Station (MS) - Base Station System (BSS) interface; Radio Link Control / Medium Access Control (RLC/MAC) protocol
45.002 - Multiplexing and multiple access on the radio path


Here are couple of presentations I have extracted the above information from:



Saturday, 13 October 2012

Imagine the Future - by Cisco

Here is a video from Cisco from the last year, that I think is still relevant to help put in perspective where the future is going:




There is also a slide cast worth watching on the same topic from last month:



Wednesday, 10 October 2012

Small Cell Backhaul Solution Types

This is from a presentation by Julius Robson of CBNL, representing NGMN in the Cambridge Wireless Small Cells SIG event.
Interesting to see all possible options for Backhaul for small cells.

The presentation is available to view and download from here.

Related blog posts:


Monday, 8 October 2012

Small Cells as a Service - SCaaS

Last year I blogged about Femtocell as a Service (FaaS) but since we are talking in terms of Small Cell, we can use the term SCaaS that can form a superset to FaaS. This is from a presentation by Prof. Simon Saunders, in the Cambridge Wireless event.



Available to download from slideshare.

Sunday, 7 October 2012

Summary of Cambridge Wireless Event on Small Cells, 3rd Oct. 2012



We had another successful Small Cells SIG Event (jointly powered by the Radio Technology SIG) in Cambridge Wireless on the theme “Radio Challenges and Opportunities for Large Scale Small Cell Deployments”. I will be looking at the presentations in detail in separate blog posts as there are interesting bits and pieces from each of them that can easily be overlooked. Here is a high level summary of this event.






We had over a hundred delegates in this event and as one of the speakers admitted privately, they were expecting to see around a dozen people and were a bit overwhelmed by the number and caliber of the people. The delegates included small cell vendors, chipset vendors, test & measurement vendors, operators, industry analysts, regulators, etc. It was a lovely day to be in Cambridge with the sun shining the whole of morning and the afternoon to show us the best of the Downing college.


The event was kicked off by Prof. Simon Saunders, formerly the founding chairman of Small Cell Forum who talked about the long journey the small cells (or Femtocells as they were then known) have gone through, the benefits and the road ahead.


This was followed by a talk from Julius Robson of CBNL, who was also representing NGMN. The focus of the talk was on backhaul.



Nick Johnson, CTO of ip.access was the next speaker who started his presentation with humorous note. His presentation was titled "Building the World’s Largest Residential Small-Cell network" but as he said he was very tempted to change the title to “How to Screw Up the World’s Largest Residential Small Cell Deployment”. His talk had lots of real life examples on where and how things can go wrong and how to make sure they dont. If they do, what lessons should be learnt. Some of these problems have been faced by me too in various test scenarios. It was a very interesting talk.


After the break we heard a presentation from Steve Brown of Telefonica O2 UK. The talk was a bit familiar for me (and my blog readers) as I have already blogged on similar information in the past. It was though new information for the audience and could see that they were enjoying this information. A lot of questions were asked after the presentation and also in the panel discussion at the end. There is some interesting new information that I will blog later on.



The final talk was by Iris Barcia of Keima who talked about "Small Cell Network Design".

Finally we had a panel discussion with lots of interesting questions. Once the discussions finished there were people discussing and debating issues among themselves for a long time. I am looking forward to the next event in January in London on the topic "Lets get real!" where we are hoping to be able to hear from some more operators/vendors on the deployment and rollout issues. More details available on the Cambridge Wireless page here.