Thursday, 13 December 2012

Half Duplex Operation (HD-FDD) in LTE



It was interesting to hear the other day that there is an option for HD-FDD but it is still undergoing investigation and not standardised yet. From what I hear, operators are showing an interest and we may see it coming to an operator near us in the next couple of years.

Complete presentation below:



The advantages are obvious but probably the only reason this was not standardised actively is probably because then peak rates often quoted when promoting technology will be halved. The economy of scale is also important and we may not see this becoming popular unless many operators decide together to push for this.

Other posts of interest:



Wednesday, 5 December 2012

Quick update on 3GPP Release-12 progress

Some months back, I blogged about the 3GPP Rel-12 workshop, since then there has been progress on the Rel-12 features. Here is a quick update from 3GPP:



You can download the PPT from Slideshare.

Other related posts:


Tuesday, 4 December 2012

5 videos on Augmented Reality

Looks like Augmented Reality (AR) is getting hot, just in time for Christmas. I wonder how many products will be sold based on AR. As I suggested in an earlier post, there may be 1 Billion users by 2020. Here are the videos:

Google's Ingress is an AR baased game:



Augmented Reality Book of Spells, Harry Potter experience:

Wonder when/ever it will come to a mobile near you.

LightBeam - Interacting with Augmented Real-World Objects in Pico Projections:



The next is a bit old but worth mentioning:

LuminAR from MIT


Finally, the science of Haptics will allows us to "touch" objects in a virtual world in future

Augmented Reality and Touch



Saturday, 1 December 2012

Data growth from 0.6EB/Mo to 10.6EB/Mo by 2016 (18x)

A slightly old slide that I found while looking for some information but worth putting up here.

1 EB (Exabyte) = 1000000000000000000B = 1018 bytes = 1000000000gigabytes = 1000000terabytes = 1000petabytes

As we can see, Cisco predicts (and I agree) that the mobile data consumption will increase from 0.6 exabytes per month to 10.6 exabytes per month by 2016. What is really debatable is what actually is a mobile device and how much of this data will go through the operators network.

If for example a tablet contains SIM card but you use your own home/work WiFi. Does this qualify as a mobile device and is this data included. What if its exactly the same scenario and the device does not have a SIM card then would you say this is a mobile device? What happens when the operator allows you to use an Operator WiFi which is secured via login/password and you use the tablet without SIM card on an operator WiFi. Would you count this data, is the device considered as a mobile device.

The bottom line is that data usage will continue to grow but probably not on the mobile networks. WiFi would be a prime candidate for offloading, due to it being mostly free (or costing much less - except in the hotels). Some of the recent pricing by the operators make me feel that they do not want the users to use their network for every day use, only for important work.

See Also:



Thursday, 29 November 2012

Hotspot 2.0, Next Generation Hotspot (NGH), etc.


From ZDNET:


Hotspot 2.0 is about certifying the hotspot itself, providing authentication using SIMs or certificates and the 802.11i standard, and using the recent 802.11u standard to provide performance and other information about the hotspots visible to a device. This will allow you to roam onto a hotspot with good connectivity that you have the right account to use, doing away with the need to select the network or enter your details into a web page, as you do today.

The Wi-Fi Alliance deals with the Wi-Fi hardware and the authentication specification under the name Passpoint, but this certification doesn't cover everything. The Wireless Broadband Alliance is a group of mobile and Wi-Fi operators that takes the Passpoint certification and ensures interoperability with other parts of the network — including authenticating to carriers' remote access RADIUS (Remote Authentication Dial-In User Service) servers, as well as roaming and billing.

"Next Generation Hotspot is the implementation of Hotspot 2.0 into a real, live network", explains Nigel Bird, the NGH Standardisation Manager at Orange Group.

From Next Generation Hotspot whitepaper:


A new program called Next Generation Hotspot (NGH) - using the latest HotSpot 2.0 specification1 - allows a mobile subscriber to connect automatically and securely to Hotspots using his service provider credentials while maintaining roaming visibility for the operator. NGH enables operators to continuously monitor and manage “cellular-like” service over Wi-Fi domestically and internationally so as to enhance performance and meet the demand for mobile data services over heterogeneous RANs - cellular and Wi-Fi. This enables mobile operators to simultaneously optimize backhaul throughput, offload specific traffic rapidly (e.g. video) and achieve better economics than traditional, cellular-only solutions.

The Wireless Broadband Appliance (WBA) and Small Cells Forum recently announced collaboration on this topic, see here.

More details are available in this presentation embedded below:



Monday, 26 November 2012

'LTE' and 'Small Cells' specific applications

Some 4 years back, I posted my first presentation here, titled "LTE Femtocells: Stepping stone for 'killer apps' presentation". I had couple of apps in mind that I thought could benefit from both LTE and Small Cells (or Femtocells to be specific).

The first was your phone acting as a Wireless Hard Disk Drive (HDD) that can be used to store things remotely in a server somewhere. This is similar to what is known as the Cloud nowadays.

Picture Source: Dialaphone.

The other day when I read why LTE is suitable for cloud connectivity, I could see that my old idea could start to become a reality. The article is here. Selective abstract as follows:


The LTE network lends itself well to cloud connectivity because it:
  • provides high-bandwidth connections
  • is IP- and Ethernet-oriented, the technologies used to connect to the cloud and within data centers
  • offers tools that operators didn't have in 2G and 3G (such as more granular ability to manage traffic flows and a better, DPI-based view of traffic running on the network)
  • features low latency, which is vital to the small flows and sessions that characterize M2M communications.
The rise of both cloud services and LTE creates a virtuous cycle. Cloud services continue to grow, which helps operators sustain their LTE business model. That growth enables them to accelerate LTE investments. Then operators can support new types of enterprise services, including cloud-based applications.
To take full advantage of this opportunity, operators have to deploy the right backhaul infrastructure. In addition to IP awareness and content awareness, the right backhaul network can leverage the technical advantages that LTE presents:
  • flattened architecture that helps distribute compute and storage resources
  • seamless migration from 2G and 3G for various physical mediums and networking protocols
  • an increase in capacity that starts to put mobile connectivity on par with fixed broadband access.


My reasoning for Small Cell here is, in most cases when you are doing operations that require large amounts of data to be transferred, you will be indoors, either at home or in office or in a low mobility scenario. The requirement for high security and at the same time high speed data transfer that should not be affected by other users in the cell (capacity issues) can be easily solved by using a Small cell (Femtocell for indoors, Metrocell for outdoors).


The other application I had in mind was the Home Security System. I read the following on TotalTele the other day:


3UK's wholesale division on Friday detailed plans to capture high-margin machine-to-machine traffic by partnering with service providers that are likely to have higher-than-average bandwidth requirements.
As a 3G-only operator, the company cannot go after high volume, low margin M2M traffic because it typically only requires a 2G connection. However, there are opportunities to use its 3G network to address more data-hungry verticals that will generate higher traffic volumes.
"The margin on one CCTV M2M connection is more than 50 times bigger than the margin on a smart meter connection," claimed Tom Gardner, lead wholesale manager at 3UK, during Breakfast with Total Telecom in London.
"There is one CCTV camera for every 14 people in the U.K.," he said. "If I can put a SIM in every one of them I'll be a very happy man."
3UK, which on Thursday launched its Ericsson-based wholesale M2M platform, sees a big opportunity in CCTV, particularly for mobile and temporary installations at festivals, for instance. Other potentially lucrative sectors it has identified include digital signage, back-up for fixed Internet connections, and backhauling WiFi traffic from public transport.


I am sure some of you may be thinking that '3' UK uses HSPA network, not LTE, which is true. The point here is that it could be done better using LTE and Small Cells.

The reason for using LTE would be to provide higher data rates, meaning that information can be sent faster, with higher resolution and more regularly. This will help identify the problems earlier. If the CCTV is used indoors or in high usage areas, it would make sense that it connects via Small Cell to avoid creating capacity issues in the Macro network.

Here is the embed again, of my old presentation just in case if it interests you: