Tuesday, 22 May 2007

LTE in few words

Before it gets out from my mind. People keep on asking what LTE is without going in the details. So here it is:

3G LTE, as proposed in 3GPP Release 8, aims to increase cell data capacity by at least five times over the current implementations of HSPA. It will support more users per cell, as well as higher speeds to individual users, and is intended to match DSL speeds currently available to the home. A simplified protocol structure and re-definition of the functional split between network elements and basestations is intended to raise efficiency while making all VoIP networks possible.

Some of the highlights of LTE are:
  • OFDM-based air interface (Orthogonal Frequency Division Multiplexing) ... WCDMA is out.
  • Channel bandwidths from 1.25 to 20MHz are supported
  • Increased spectrum efficiency and peak data rates at cell edge.
  • Target peak rates of 100 Mbps/DL and 50 Mbps/UL. (Nokia-Siemens have already achieved 108Mbps though)
  • Increased spectrum efficiency and peak data rates at cell edge.
  • Reduced latency for both user and control plane: less than 10ms round trip delay for user plane between UE and the serving RAN node, less than 100ms transition time for control plane between inactive state and active state.
  • Support for diversity and MIMO

The first LTE-based networks are expected to roll out in 2009/2010. In contrast to other cellular technologies, conformance tests for LTE are expected to be available more than two years ahead of any service introduction according to Agilent. This will ensure user devices are available in volume when the network services are finally launched.

Long Term Evolution gaining momentum

There is lot of activity going on regarding the 3GPP Long Term Evolution popularly known as LTE (and i also refer to this term as Long Term Employment).
There have already been couple of high profile announcements this month on LTE. A press release from Nokia announced, "A group of world leading telecom technology manufacturers and network operators comprised of Alcatel-Lucent, Ericsson, France Telecom/Orange, Nokia, Nokia Siemens Networks, Nortel, T-Mobile, and Vodafone have announced a joint initiative aimed at driving forward the realisation of the next-generation of high performance mobile broadband networks based on 3GPP Release 8 "Long Term Evolution / System Architecture Evolution" (LTE/SAE) specifications."
I suppose this initiative is more of a reaction to the advancement of WiMax. There have been some high profile announcements about operators adopting WiMax as the technology of their choice rather than 3G and its evolution. The press release also said: "The companies participating in this initiative will collaborate on demonstrating the potential of 3GPP LTE/SAE mobile broadband technologies through a series of joint tests including radio transmission performance tests, early interoperability tests, field tests and full customer trials. Joint activities will commence in May 2007, and are expected to run for a period of 18-24 months."
Another press release, from Nokia-Siemens networks told us that using virtual MIMO the UL data rate has been increased in LTE from 54Mbps to 108Mbps. At present i cannot think of why we would need these high speeds but i am sure its always good to have the facility.
An Interview in a Indian newspaper with Nokia-Siemens networks head for the region gives an indication that Nokia is trying to play down WiMax card and promote LTE (which i think is sensible anyway).
At present it looks like only Nokia but i am sure other major players like Nortel, Ericsson and Qualcomm are not far behind.

Monday, 21 May 2007

MBMS Enhancements in Release 7

MBMS will be undergoing enhancements in Release 7 and this work item is seperate from E-MBMS or Enhanced MBMS which is part of 3GPP Long Term Evolution (LTE).

MBMS is being enhanced in Release 7 and IMS will be able to use MBMS transport. The advantage of this approach is:

  • MBMS reception is possible over IP accesses (e.g. I-WLAN)

  • Higher MBMS bit rate services possible (e.g. HDTV)

  • Support for adaptation of MBMS to the QoS resources provided by the access network(s)

  • MBMS services will be available regardless of access technologies and other services will be able to usse MBMS transport

This MBMS Enhancement is still under development and the following is being investigated:

  • Radio Interface Physical Layer: Introduction of new transmission schemes and advanced multi-antenna technologies

  • Layer 2 and 3: Signalling optimisations

  • UTRAN Architecture: Identify the most optimum architecture and functional splits between RAN network nodes

3GPP website lists some of the aims and objectives of these MBMS enhancements but theey do not look correct. They are copied from the LTE requirements documents. I will be revisiting this topic when more information is available

Friday, 18 May 2007

The rise of Mobile TV (18/05/07)

Have been slightly busy reccently working towards my new training on MBMS. While searching for some statistics i came accross this interesting report:

According to Infonetics research report titled, “Mobile Video Devices, Services and Subscribers” published in May 2007:
  • The number of worldwide mobile subscribers has increased by 300% between 2005 and 2006.
  • There will be 46 million Mobile Video subscribers by 2010
  • Asia Pacific will be the regional stronghold of mobile video subscribers through at least 2010, with 57 per cent of the world total in 2006, followed by EMEA at 31 per cent
  • The number of mobile video handsets sold worldwide nearly doubled from 2005 to 2006 (including video-capable handsets not necessarily tied to a specific mobile video service)
  • Mobile video service ARPU (average revenue per user) in all regions increases significantly from 2006 to 2010, tripling in Asia Pacific (from a low base) and more than doubling in CALA

It remains to be seen how users will usse the mobile TV once the novelty wears off.

Thursday, 17 May 2007

Qualcomm, OFDM and 4G (17/05/07)

Qualcomm is the pioneer of next generation wireless technologies. To stregthen their position further, they have also bought over some smaller companies to give them access to all their IPR, etc. Yesterday i read an interview of Bill Davidson, senior vice president of investor relations and international marketing at Qualcomm and IDG news service. Here are some interesting points:
IDGNS: Is OFDM a new area of development for Qualcomm?
Davidson: If you go back to the beginning of Qualcomm, OFDM was considered a path instead of CDMA. The company ended up going down the CDMA route because CDMA was better able to handle all the things you want to do on a wide-area wireless network. We believe that to this day.

IDGNS: Are you planning any more acquisitions of companies with OFDM technology?
Davidson: In the last couple of years, our acquisition activity has stepped up. Flarion was clearly the largest deal of the last few years.

IDGNS: Do intellectual property rights play a big role in your acquisition strategy?
Davidson: They can and, clearly in the case of Flarion, there was a double benefit. First and foremost, we got the only team -- to this day -- to deploy a working mobile OFDM system. We also got the intellectual property rights that came along with the business. Our acquisitions are focused on accelerating time to market on a build-versus-buy decision and augmenting engineering resources more than we're out trying to grab patents.

IDGNS: What's driving all the interest in OFDM?
Davidson: We're seeing interest in OFDM because spectrum is becoming available in the 10MHz blocks and wider. From an efficiency standpoint, there's not really a benefit for OFDM over CDMA. But when you get into wider branches of spectrum, it can be a little less complex to implement.

IDGNS: But isn't 4G -- in which OFDM will play a big role -- all about newer, faster services?
Davidson: I think OFDM is really just a spectrum play. And frankly, we don't subscribe to the "4G" term. The applications that I've heard discussed aren't a whole lot different from what is being enabled over 3G today.

IDGNS: Isn't 4G supposed to be a lot faster than 3G?
Davidson: Many are talking about data rates that we don't even get on landline systems today. Yes, you can enable HDTV over these enormously wide pieces of spectrum. But what is the practical cost to the end-user?

IDGNS: So do we really need 4G?
Davidson: There is an existing roadmap within existing 3G technologies that provide the very same and, in most cases, better performance than some of the new technologies being proposed by other groups.

IDGNS: So WiMax and LTE aren't necessary?
Davidson: I look at LTE and UMB as being comparable; WiMax is not comparable to those technologies in terms of performance. There is a mistake in the premise that whatever comes along -- what people are calling 4G -- will be something that supplants the existing networks. We've been saying for several years that it will be about multiple airlinks existing in the market and making them work effectively together.

IDGNS: Let me come back to WiMax: Why isn't it comparable to LTE?
Davidson: Because its original legacy is borne out of the fixed environment, there are immediate engineering trade-offs and performance issues that you come up against. There is this concept of link budget, or how effective a technology is over the airlink. WiMax suffers from poor spectral efficiency because of its heritage as not being a mobile standard.

IDGNS: Do you see any intellectual property rights issues with 4G?
Davidson: We believe that our OFDM, OFDMA, and MIMO portfolio is among the strongest out there and clearly believe that it's applicable to any OFDM/OFDMA systems. Unfortunately, those who are supporting WiMax are trying to make it sound that the IP (intellectual property) picture with this technology is very clear and that it's going to be simple. The IP picture in 3G is much clearer today than what exists in WiMax. The number of companies claiming IP that can be contributed to WiMax is enormous.

IDGNS: Will Qualcomm be active in WiMax in any way?
Davidson: As we said several years back when many were trying to say that Wi-Fi would come and kill 3G, to the extent that our customers want the integration of Wi-Fi into our chipsets, we'll accommodate that. We've said the same about WiMax. We're being pragmatic and view that it will be in the market.

Nokia CEO Olli-Pekka Kallasvuo said at the company's recent shareholders' meeting that the Finnish manufacturer can't give one company, Qualcomm, a chance to dictate rules for the whole industry. He said the issue is not Qualcomm versus Nokia but rather it's more about Qualcomm versus the rest of the industry. And your opinion?
Davidson: It's amusing to me that Nokia seems to think it's holding up the banner for the entire industry. If not for Qualcomm, there would be far fewer handset manufacturers for them to deal with as competitors and potential competitors. Our business model gives consumers a lot more choice so that Nokia can't dictate pricing into the market. Because we hold intellectual property, Nokia wants to paint us controlling the industry. We enable a lot of competition that causes them a lot of concern -- hence why we're being attacked by them.
The last point is amusing and i tend to agree with Qualcomm on this. Nokia has been dominating the market for long time and its about time other players get in the game.

Wednesday, 16 May 2007

Everyone wants a iPhone (16/05/07)

In a survey by Shiny Media about iPhone, everyone sounds very interested in it.
When questioned on how likely they were to buy an iPhone when it arrives, 7.6% said that they'd definitely be getting one. A massive 46.2% said that they'd seriously consider getting an iPhone, but only if the available deal was attractive. 17.4% said they'd get it if nothing better was on the market, while 23.9% said that they were unlikely to get it, and 4.8% said they'd definitely not buy an iPhone.
I am not very sure how useful these surveys are because we all want the latest gadgets and we definitely say so in the surveys but when it actually comes to buying them we have a second thought.

Tuesday, 15 May 2007

FMC: IMS and UMA (15/05/07)

One of the topics that came up during a discussion with a client is how would IMS replace UMA. My opinion is that UMA is something for present while IMS would be something for future. Doing some digging up afterwards turned up some interesting results.

An article in TMCNet confirmed my opinion. The following is a snippet of discussion with Steve Shaw, marketing director of Kineto wireless, it can be seen that UMA:

Shaw explained that carriers first started building IMS in order to standardize the process for wirelessly delivering the types of data services that IP enables—including push-to-talk, videoconferencing, and mapping.

As development of IMS got underway, Shaw told TMCnet, carriers realized that it could have applications for traditional voice services as well, and the specifications grew to become a potential enabler of FMS.

Today, IMS is generally viewed as the way in which all networks—both fixed and mobile—will evolve to become completely IP-based.

The problem is that, although IMS has lots of promise for many applications (including FMS), it is not yet fully developed and the number of specifications involved is still growing.

“IMS isn’t a specification, it’s a journey,” Shaw said

He added that IMS eventually will solidify and deliver on its promise, but that probably will take another decade or more.

Although beginning the transition to IMS-based systems now may theoretically be a good long-term investment, for many carriers the cost simply cannot yet be justified. That leaves them looking for a non-IMS way to cost-effectively deliver FMS now.

UMA, For Now

As a fully-developed specification capable of delivering low-cost FMS service today, UMA is the no-brainer choice for most operators, Shaw told TMCnet.

“UMA is unbelievably inexpensive and low-impact. There is really nothing else that has the same approach,” he said.

UMA isn’t perfect, of course, and cannot provide all the functionality that IMS promises to someday deliver.

Shaw noted that some companies who build IMS-based applications have positioned UMA as being a temporary solution, and one that operators will regret investing in because new specifications will come along and render UMA obsolete.

That could end up being true, but operators still need a way to cost-effectively deliver FMS now, and for the time being UMA is the only specification available to do that.

Shaw added that 3GPP has started work on a second-generation version of UMA—dubbed eUMA—that will add more functionality including the ability to natively connect into high-speed data portions of 3G networks.

There are couple of white papers from Kineto wireless which are an interesting reading. The first is "How UMA Enables Broadband IMS" and the other is "The Complementary Roles of UMA and IMS in Fixed-Mobile

I found another old article from last year talking about the same thing.

Moving here from old blog (15/05/07)

Finally i have decided that it is difficult to maintain my blog application myself and it has too many limitations so i am moving here from my old blog site at: