Wednesday 24 December 2008

India gets ready for 3G

So here comes 3G in India. It’s been long coming as the data needs were increasing rapidly in almost all the Indian states. With the existing cellular infrastructure not capable of holding huge traffic particular for data, arrival of 3G was imminent.

The Indian Department of Telecoms (DoT) has published its official timetable for the award of its 3G licences across the country as well as a breakdown of how the relevant spectrum will be allocated across the telecoms circles.

As expected, the state-owned operators BSNL and MTNL each have been reserved one block of 2x5MHz in each circle, with the exception of Rajasthan (State in North West India) which will have no 3G spectrum at all. The number of blocks of spectrum in the private auction differs depending on the circle (see the spectrum table, below).

The auction for the 15-year licences is planned for Jan. 15, 2009. In the majority of 3G service areas there is 25 MHz of paired frequency bandwidth available which relates to four blocks of 2x5 MHz spectrum available for auction in addition to the block reserved for the state-owned operators, Bharat Sanchar Nigam (BSNL) and Mahanagar Telephone Nigam (MTNL). Spectrum is rather limited in many other areas, including the major metro circle of Delhi where only two 2x5MHz blocks will be available to private operators.

All of the 3G spectrum will be in the 2.1 GHz band and in the 2.3 GHz and 2.5 GHz frequency bands, a separate auction for Broadband Wireless Access (WiMAX). In both these auctions, which will take place two days after the 3G auction, bidders are restricted to just one block of spectrum per service area.

The table below shows the proposed spectrum layout.


Service Area (Indian Cities or States)

Paired frequency bandwidth to be allotted

Paired frequency bandwidth to be allotted

Delhi

160

15

Mumbai

160

25

Kolkata

80

25

Maharashtra

160

25

Gujrat

160

15

Andhra Pradesh

160

25

Karnataka

160

25

Tamil Nadu

80

25

Kerela

80

25

Punjab

80

25

Haryana

80

25

Uttar Pradesh(e)

80

25

Uttar Pradesh (w)

80

10

Rajasthan

0

20

Madhya Pradesh

80

25

Bengal

80

25

Himachal Prades

30

25

Bihar

30

25

Orrisa

30

25

Assam

30

25

North East

30

5

Jammu And Kashmir

30

25

Texting and Internet being trialled on flights



BMI is piloting mobile internet and texting services on planes, but frequent flyers need not get up in arms about getting stuck next to chatty people, as the airline has wisely chosen to leave out voice calls.

The service, from OnAir, will be trialled for six months on just one plane – an Airbus A320, which flies between Heathrow and Moscow. Passengers will be able to use SMS, email and internet on mobiles, PDAs and laptops with GSM SIM cards or dongles.

Peter Spencer, managing director of BMI, said: “It opens up an exciting new era of travellers being able to stay in touch by text message and email whilst in the air.

The pilot project isn’t just about testing the tech or the take-up, however. “The trial will help us address some of the social and etiquette issues regarding the use of mobile communications devices inflight and provide valuable customer feedback which will be at the heart of deciding how the service is developed and rolled out across the remainder of our mid haul fleet,” Spencer said.

“We have chosen not to implement the voice call option as part of the trial,” he added.

On the other side of the world, Delta Air Lines officially launched Aircell's Gogo Inflight Internet service on six of its aircrafts. In-flight Internet initially will be available on five MD-88 aircraft flying Delta Shuttle routes between New York's LaGuardia Airport and Boston's Logan and Washington's Reagan airports plus one Boeing 757 flying throughout Delta's domestic system, with service spreading to other Delta routes as additional aircraft are introduced.

"In-flight Internet access is one of the most popular requests we receive from our customers," noted Tim Mapes, Delta's senior vice president of marketing. To celebrate the launch, Delta passengers traveling on the Gogo-equipped MD-88 Shuttle aircraft will be treated to a holiday surprise with complimentary access to Gogo during a Dec. 16 - 31, 2008 promotional period.

A "WiFi hotspot" decal will be prominently displayed adjacent to the boarding door of the MD-88 aircraft so customers will know Gogo Inflight Internet service is available on their flight. In addition, a Delta-Gogo instructional card will be available in each seatback, providing details on how to sign up for the service. Gogo representatives and Delta employees will be available at all three Delta Shuttle-served airports throughout the promotional period to provide information and assistance to customers traveling during this timeframe.

Tuesday 23 December 2008

Mobile healthcare named 2009 tech pioneer



The World Economic Forum on Thursday named Japan-based Mobile Healthcare Inc (MHC) as a 2009 Technology Pioneer. The company, which develops real-time mobile health solutions for preventing and managing diabetes, obesity and other lifestyle-related illnesses that can be accessed over mobile phones, became one of the 34 technology visionaries to be honored at the 2009 World Economic Forum.

MHC Founder & CEO James Nakagawa said, “We have aspired from the outset to be pioneers, exploring the life-changing potential of mobile technology and finding solutions that empower people to tackle their own health issues affordably and easily via their personal cellular devices and the Internet. I was at once ecstatic and humbled by the news that our work had gained disciples from amongst the venerable body of global business and financial leaders put forth by the World Economic Forum.”

The company’s flagship product, Lifewatcher, is a mobile phone-based health management application for people with so-called ‘lifestyle diseases’ such as diabetes and obesity. Users can monitor their own conditions by logging blood sugar levels, calorie intake, exercise and many other variables into their ‘always on’ mobile device, creating a one-glance health portfolio, which collates daily, monthly and even yearly data. It also delivers vital medical information, reminders and alerts with escalating alarm-levels if goals are not met.Using real-time cellular technology, diabetics and lifestyle illness sufferers can also be in constant dialogue with medical practitioners to ensure health measures are in check or, if not, to spark intervention that could save lives. With the dramatic rise of diabetes and obesity to pandemic levels in countries like Japan and the U.S., doctors have been welcoming this self-directed management tool that affordably and easily increases drug, nutrition, exercise and monitoring compliance for sufferers.

Motohisa Furukawa, a high-ranking Japanese politician and long-time participant at Davos said: “Japan is particularly proud this year to see Mobile Healthcare accepting this honor. It is my hope that government representatives attending Davos this year will recognize the particular relevance of innovative technologies like Lifewatcher, as a universal low-cost healthcare solution that is also environmentally sustainable, as we move forward in these tough economic times in a resource-constrained world.”

Nokia may be entering laptop market

With the telecoms market so tight every company especially the giants like Nokia are looking at the alternatives for their revenues to go further north. Some time ago there was a rumour that the Nokia might enter into the laptop market and hence widen its area of business. Although at that time this was categorically denied by Nokia, rumours the Finnish mobile giant may be planning to enter the laptop computer market have resurfaced. On this occasion it was through the medium of a research note from a Union Bank of Switzerland (UBS) analyst. For a report that could just be speculative it contained a remarkable amount of detail suggesting as it did that the Nokia device would be a 9 to 10 inch notebook/tablet computer with touchpad, NFC and Linux OS.

In its early days Nokia did produce computers but by the mid-1980s it had exited the business, merging its PC division with Ericsson Information Systems.

In the past of couple of years we have seen that companies like HP and Apple have moved into the smartphone business and hence taken a small share of the market. This has really affected likes of Nokia, Ericsson, Samsung and other vendors. Taking a leaf out of computer manufacturers such as HP and Apple who has moved into smartphone business, Nokia thinks that perhaps it is its time now to mount a counterattack.

Monday 22 December 2008

Indian m-Commerce service among top tech pioneers for 2009



JiGrahak is behind ngpay, the brand name of a free mobile-commerce service that allows consumers in India to shop, order meals, make charitable donations, do their banking, and pay their bills, among other things. Launched last February, ngpay already has attracted more than 230,000 users and has become the largest channel for mobile-based transactions with Indian Railways and HDFC Bank, and for movie ticketing. The company expects to have 1 million users by mid-2009.


More information available from this youtube video:


Femtocell 3GPP Specifications

Now with Release 8 frozen, if you are Femtocell follower then there are couple of specs that you can read:

3GPP TR 25.820 - 3G Home NodeB Study Item Technical Report: Contains study of items from RAN#2, RAN#3 and RAN#4 point of view.

3GPP TS TS 22.220 - Service Requirements for Home NodeBs and Home eNodeBs: It lists different requirements as the title suggests. You can see some more info on this at Martin's blog.

Over the next few months since the Femtocell race is heating up, you would find these documents being updated with lots of details and probably stage 2 and stage 3 documents detailing some implementation details, etc. Will keep you informed.

Sunday 21 December 2008

Mobile phones can be very distracting

There are so many telecoms blogs which we read and write in our daily life. Today I want to touch on a different but very serious subject regarding the mobile phones.
Everybody knows how dangerous or distracting a mobile phone can be when we are involved in some other jobs e.g. driving.

I thought to touch on this subject and outline some important facts about the do’s and don’ts before we go into the festive period.

It’s very much evident that while driving it’s simply dangerous to chat on the mobile phone. It doesn't matter much whether the talking happens with a phone held to the ear, or through a speaker-phone, it's all distracting to the driver. In the past, it has been reported that chatting on mobile phones slows traffic. It’s quite simple that drivers who are talking on a cell phone clog traffic because they're driving more slowly (and reacting much more slowly) than drivers who take the radical path of paying attention to their driving. Well, yet another study, this time conducted by researchers at the University of Utah, finds that mobile phone calls are just plain distracting to drivers (must read this article). Admittedly, the sample size consist only 41 adults, with 41 of their passenger friends. What is interesting about this study though is that it pits drivers having conversations using hands-free mobile phones against drivers maintaining in-car conversations with their passengers.

The study noted that drivers on their mobile phones tended to drift in their lanes, and were four times as likely to miss pulling off the highway at a prearranged location. Drivers maintaining conversation with their passengers apparently fared much better. A plausible reason for this is that the in-car passengers actually supported drivers by their talking about surrounding traffic.
Last week in one of my blog I reported how texting is picking up especially in teens. Texting on the mobile is even more dangerous than chatting while driving as your eyes are down. In September this year a train crash was reported in California where the driver was blamed for the crash as he was busy texting.

Well this was for the drivers but how about normal person on the road. Everyday we come across people who walk across the street looking at their cell phone and not at the traffic.
This business of walking with you eyes down on the cell phone is equally a risky business as it is while driving.

Well I know that there is nothing new in whatever I mentioned above and it has already been told to us millions of time. I still considered myself a duty bound and thought if I mention here soma of you may be extra cautious while using the cell phone specially when during this festive period.

Please take care and I wish you wonderful Christmas and Happy New Year.

Vodafone launches true "Pay as you go" data package


Vodafone launched a pay as you go USB modem that doesn't need topping up every month. It costs £39 upfront and comes with £15 worth of credit, which amounts to 1GB of data. According to Vodafone, 1GB of data lets you do 30 hours of Web surfing, or send 650 emails, or download 65 music tracks or short video clips.

Unlike certain other pay as you go mobile broadband services, the 1GB will not expire after 30 days. The minimum you can top up the dongle each time is £15, which can be done using a voucher or over the phone.

It is capable of speeds of up to 3.6Mbps, but customers should only expect speeds of up to 1Mbps to 2Mbps. The modem will also double as a 4GB USB memory stick.

I would like to refer to this as true pay as you go plan because the topup does not expire after a month. On the other hand, a similar amount on '3' would get you 3GB of data in their version of PAYG which expires after a month.

LTE functionality frozen as part of Release 8

According to 3GPP website: 3GPP has approved the functional freeze of LTE as part of Release 8.

There is significant commitment from operators to deploy this technology, and this landmark achievement will allow them to realize their early deployment plans.

But the 3GPP decided to give more time to the work on SAE -– a.k.a. evolved packet core (EPC) –- because the specs weren't complete enough. The standards body has drawn up a list of "exceptions" that will have until March 2009 to be finalized in order to be included in Release 8.

"There are a number of pieces of work which we thought should be included but weren't quite ready," says Scrase. "[There are] quite a number of parts for SAE, the work [on which] still lags behind LTE work. We have a high level of confidence that the items will be completed by March, otherwise we wouldn't have included them on the list."

Scrase says that it is common to extend deadlines in this way and that the 3GPP allowed a similar extension for Release 7.

The decisions about LTE and SAE took place at a 3GPP meeting in Athens last week, where the group definitively agreed on what is contained in Release 8 and what's not, according to Scrase. The group also agreed on what should be included in Release 9, which is scheduled to be frozen in December 2009.

And there is more to Release 8 than LTE and SAE. For example, some of the specifications for femtocells -- or "Home Node B" in 3GPP terminology -- are included in the release.

Thursday 18 December 2008

It's Aeroflex turn now to launch it's LTE product

As the competition is spicing up for the LTE race, companies have now started to launch their LTE products.

Continuing with the trends and keep the competition alive it’s now Aeroflex which launched the TM500 TD-LTE test mobile.

This latest LTE test mobile is designed to support Time Division Duplex for 3G LTE (TD-LTE) and will definitely compliment Aeroflex's TM500 LTE-FDD for 3G LTE Frequency Division Duplex quite well.
Ever since China mobile announced its plans for TD-LTE there was immense pressure on the equipment vendors to meet the demands. TM500 TD-LTE test mobile is designed to enable infrastructure equipment vendor’s match that demanding timescales for TD-LTE trials in China.
The TM500 TD-LTE's extensive Layer 1, Layer 2 and higher layer test features make it an indispensable testing peer that provides complete visibility even into the lowest layers of the radio modem by generating the detailed diagnostic data needed for engineers to verify the required functionality and optimize network operation and performance.
Following are further characteristics of TM500 TD-LTE:
  • Support MIMO,
  • Handover testing is simple and supported well,
  • The test mobile can support 20MHz channel bandwidths and downlink data rates of upto 150Mbit/

All the above characteristics if the test mobile will enable comprehensive development and test support of base station and network infrastructure for the next generation of Chinese mobile technology.

The TM500 TD-LTE can co-exist in the same unit as the TM500 LTE-FDD protecting investment and maximizing test flexibility for engineers working on both standards.
Aeroflex will provide full in-country support for the TM500 TD-LTE so that technical questions and integration issues can be dealt with in Chinese and Aeroflex engineers can get on-site quickly, if needed, without having to fly in from Europe or the USA.

The TM500 TD-LTE will be available for customer shipment in late 2008.
It will be available both as a standalone unit and as an upgrade to existing TM500 LTE-FDD systems.

Wednesday 17 December 2008

Satellite based Mobile Internet of the future

Background: The current US military satellite communications network represents decades-old technology. To meet the heightened demands of national security in the coming years, newer and more powerful systems are being developed.

Advances in information technology are fundamentally changing the way military conflicts are resolved. The ability to transmit detailed information quickly and reliably to and from all parts of the globe will help streamline military command and control and ensure information superiority, enabling faster deployment of highly mobile forces capable of adapting quickly to changing conditions in the field. Satellite communications play a pivotal role in providing the interoperable, robust, "network-centric" communications needed for future operations.

Military satellite communications (or milsatcom) systems are typically categorized as wideband, protected, or narrowband. Wideband systems emphasize high capacity. Protected systems stress antijam features, covertness, and nuclear survivability. Narrowband systems emphasize support to users who need voice or low-data-rate communications and who also may be mobile or otherwise disadvantaged (because of limited terminal capability, antenna size, environment, etc.).

For wideband communication needs, the Wideband Gapfiller Satellite program and the Advanced Wideband System will augment and eventually replace the Defense Satellite Communications System (DSCS). These satellites will transmit several gigabits of data per second—up to ten times the data flow of the satellites being replaced. Protected communications will be addressed by a global extremely high frequency (EHF) system, composed of the Advanced Extremely High Frequency System and Advanced Polar System. These systems are expected to provide about ten times the capacity of current protected satellites (the Milstar satellites). Narrowband needs are supported by the UFO (Ultrahigh-frequency Follow-On) constellation, which will be replaced by a component of the Advanced Narrowband System



Lockheed Martin Space Systems, Hughes Space and Communications and TRW have formed a National Team to build the Department of Defense's (DOD) next generation of highly secure communication satellites known as the Advanced Extremely High Frequency (AEHF) system.

The Advanced EHF programme provides the follow-on capability to the Milstar satellite programme. It provides the basis for the next generation military communications satellite system, for survivable, jam-resistant, worldwide, secure, communications for the strategic and tactical warfighter. The system replenishes the Milstar constellation in the EHF band.

Each of these Advanced EHF satellites employs more than 50 communications channels via multiple, simultaneous downlinks. Launch of the first AEHF satellite is planned for April 2008 with the second AEHF satellite scheduled for launch in April 2009.

The fully operational Advanced EHF constellation will consist of four crosslinked satellites, providing coverage of the Earth from 65° north latitude to 65° south. These satellites will provide more data throughput capability and coverage flexibility to regional and global military operations than ever before. The fifth satellite built could be used as a spare or launched to provide additional capability to the envisioned constellation.


Current Status: After being plagued with project overruns and a scaling back of the final system, the US military's next generation satellite communications network is another step closer to reality, with completion of the payload module for the third and final Advanced Extremely High Frequency (EHF) satellite.

Although the EHF band is a relatively lightly used part of the electromagnetic spectrum (30-300 GHz), it is for good reason. Atmospheric attenuation is the biggest problem faced in this band, especially around 60 GHz, however the frequencies are viable for short distance terrestrial based communication links, such as microwave Internet and telecommunication links (which already operate in this band). Millimetre wave radar, probably best known as the radar that can see through your clothes but not your skin, also operates in this band.

Designed to avoid problematic frequencies that are more susceptible to attenuation, but accepting increased overall atmospheric attenuation, are an increasing number of military and civil satellite systems that are using this band for uplink and downlink, as well as inter-satellite communication. Inter-satellite communication is really where EHF equipment shines (no atmosphere, small antennas, high data rates).

Civilian systems are currently around the Ku band (Intelsat), providing data rates of up to 2-4 Mbps (14 GHz uplink, 12 GHz downlink) however these rates have still to trickle into everyday user's hands for remote and mobile Internet access. It is more common that an aggregator will access this link/rate and use that to then portion out local Internet access. Systems such as this are in use for remote Australian territories like Cocos and Christmas Islands, and formed the backbone of Boeing's stillborn Connexion in-flight Internet access. High ongoing access costs (basically a share of the overall cost of the satellite) and limited access slots help keep the technology away from everyday use at this time. Militaries and governments around the globe also lease access on these circuits when they need the added capability, with Intelsat and Inmarsat systems being used in the first Gulf War.

Advanced EHF is designed to provide 24 hour coverage from 65 North, to 65 South across the K and Ka sub bands, and when combined with the prototyped Extended Data Rate (XDR) terminals and systems, will offer up to 8.2 Mbps data rates for around 4,000 terminals in concurrent use per satellite footprint (whether that scales to 12,000 systems in concurrent use globally isn't clear from source material).

Within the tri-satellite constellation, inter-satellite EHF links will allow terminals on opposite sides of the globe to communicate in near real-time without the use of a terrestrial link. Combined with smaller, directional antennas and the various options for anti-jamming technology, it represents a significant military capability for the US.

Already plans are being drawn up for the Transformational Satellite Communications System (T-Sat) which will replace Advanced EHF starting sometime in 2013, however it is already facing funding troubles. This could be problematic, with Advanced EHF still struggling to reach capability and the final launch not scheduled until April 2010. Dropping the fourth satellite of the Advanced EHF constellation has been planned to give the USAF time to implement T-Sat more rapidly.

If GPS and remote imaging (think Google Earth) have proven anything, it is that technology initially developed for military purposes, and extremely expensive for initial civil use, will eventually reach the point where it forms part of our daily lives without us ever being conscious of the massive investment to get to that point.

Tuesday 16 December 2008

Metro Femtos another option for LTE.

Around six months back, Unstrung article mentioned that Vodafone dreams of Metro Femto. Now Doug Pulley of picoChip s all set to champion this concept. In the recently concluded LTE World Summit, he said "The macrocell is dead. It's a fallacy to think you can reuse existing cell sites to get LTE services. That whole premise is broken."

Both China Mobile and T-Mobile have said they plan to use existing 3G cell sites for their LTE networks. But Pulley contends a traditional macrocell deployment won't work because of the basic laws of physics.

Here's the deal: "User throughput rolls off the further you get from the base station," says Pulley. "[With] increased throughput, the signal becomes more sensitive to noise and interference. The further it has to travel, the weaker it gets."

So that means LTE cell sites need to be small and a have smaller radii than traditional macro sites to get the full data throughputs that LTE can offer, which will be up to three to four times higher than 3G HSDPA release 6, according to Adrian Scrase, CTO at the 3rd Generation Partnership Project (3GPP) .

"You've got to have new sites, and the capex implications of that are potentially horrible," says Pulley.

So future LTE femtos have to be cheap. PicoChip is developing a system-on-chip (SoC), code-named Feynman, that will enable a dualmode HSPA/LTE residential femtocell with a bill of materials of $70 in 2011. A lamp-post mounted, dualmode HSPA/LTE version of the femtocell will have a bill of materials of about $170.

"This is orders of magnitude cheaper than doing it any other way," says Pulley.

For equipment suppliers, though, the concept of small, cheap base stations, especially those that might supplant current base station models, is causing some tension, according to Pulley.

T-Mobile is keen on LTE femtocells. "Femtocells [will be] an important measure to supplement LTE for indoor coverage and capacity scenarios," says Frank Meywerk, senior vice president for radio networks at T-Mobile.
And China Mobile suggested that operators outside China could use the TD-LTE (Time Division LTE) version of LTE for capacity-enhancing femtocell deployments. That's an option for many European operators that, as part of their spectrum allocations for 3G UMTS services, have been awarded 5 MHz of time-division duplex (TDD) spectrum, along with their primary allocation of frequency-division duplex (FDD) spectrum.


TD-LTE would be a particularly useful choice for operators looking to maximize coverage in dense urban areas, as such deployments would "not interfere with FDD spectrum," according to Bill Huang, general manager at the China Mobile Research Institute. "I've heard that without having fixed spectrum allocated to femtos, it's not possible to deploy femtocells" because of interference issues.

Canada's Telus presented findings that femtocells do indeed have better performance in metro deployments.

"We're all here today to determine if there is a performance difference with going with very small cells," said Sam Luu, associate director of technology planning and strategy at Telus. "There is a significant performance difference at the edge and at the site."

But Luu cautioned that metro femtos are, for now, still only an interesting idea. "You can talk about technical better performance," he says. "But it still requires the R&D to get it off the ground. We're still in the early stages of evaluating the technology."

I have mentioned here and here that Femtocells can be considered as starting point for LTE rollout. Thinking about all the posts, it may be a better that an enhanced version of Femtocell or Femto++ is used. By this i mean that traditionally HSPA/LTE Femtocells are to allow max. 4 calls (more correct would be 4 radio links because the users could be in multi-call with CS and PS connection ... I know there is no CS for LTE but I am talking about HSPA) simultaneously and the Femto++ would allow 16 calls simultaneously.

In fact Huawei has a 16 channel Femtocell that is being trialled but not everyone is happy to refer to it as a Femtocell. A better term suggested is Picocell or my personal view is that depending on the power output, it could be classed as Femto++ or Picocell.

Operators can also reduce the cost of rolling out Metro Femtos by encouraging users to keep the access open on their Femtocells open and giving them a reward for every originating and terminating call made on their Femto.

More information on Metro Femtocells is available here:

Monday 15 December 2008

LG causes a stir with the first LTE handset modem chip

LG recently announced that it has independently developed the first handset (user equipment) modem chip based on 3GPP Long Term Evolution (LTE) technology standards. The modem chip can theoretically support wireless download speeds of 100Mbps (megabits per second) and upload speeds of 50Mbps. This represents a significant step toward creating a market-ready 4G phone.

LG demonstrated the chip at its Mobile Communication Technology Research Lab in Anyang, Korea, achieving wireless download speeds of 60 Mbps and upload speeds of 20 Mbps. The fastest phones currently on the market use HSDPA technology and download at a maximum speed of 7.6 Mbps.

For the past three years, LG have been pursuing 3GPP LTE standardization, working to develop and test commercially viable LTE technology with approximately 250 of R&D staffs. The result is a 13 by 13 mm modem chip, perfectly sized for the next generation of slim-yet-powerful handsets. For its demonstration today, LG used a test terminal running Windows Mobile to play back high quality, on-demand video. In addition to this handset modem, LG is also developing the first preliminary LTE-based data card, which can replace the wireless cards currently used in computers.

“Now that LG has developed and tested the first 4G handset modem, a commercially viable LTE handset is on the horizon,” said Dr. Woo Hyun Paik, CTO of LG Electronics. “This latest breakthrough gives us a strong technology advantage that we will use to bolster our industry leadership.”

Dr. Paik added, "Our successful development of this LTE handset modem signals the start of the 4G mobile communications market. LG will continue to advance this technology and develop further technologies to maintain global leadership.”

Mobile phone carriers have now built LTE test networks and are currently working on early stage handsets. The first LTE mobile phones will likely reach the market in 2010.

If you remember, LG was one of the partners with T-Mobile and Nortel when they tested LTE some months back.

Anyway, LG also caused a stir with this announcement because it boasted of having 300 patents related to the technology.

The report, in Korea Times, caused ripples of nervousness because LG is not a participant in the patent pool that several large vendors formed last spring for LTE. The aim of this group is to create a cross-licensing framework, and sign up sufficient numbers of IPR holders, that it will achieve “fair and non-discriminatory pricing” amounting to a single digit percentage of the cost of a handset, and single digit dollars for a laptop, for all associated intellectual property, commented Arstechnica.

Patent pools are gaining in popularity as new standards emerge with ever larger numbers of patents involved, but with rising pressures to be cost effective. The WiMAX community created the Open Patent Alliance earlier this year, and this week, the IEEE standards body struck a two-year deal with Via Licensing, one of the most prominent patent pool administrators. This agreement will create one or more patent pools for key IEEE communications standards, including Wi-Fi. The standards group believes this will help drive its specifications into the market more quickly because vendors will have greater confidence that IPR licensing will be fair and patents declared upfront before standards find their way into commercial products.

There were some interesting discussions on IPR framework in the LTE World Summit that i will hopefully blog soon about.

via: LTE Watch

Sunday 14 December 2008

Forward texts to your email account

In the past few years text messaging has really grown especially with the young people like me although it’s a different matter I prefer to call instead of texting.

It’s not a rocket science that texting is cheaper and sometimes keep people going on their mobiles and also it’s a way of passing time for today’s youths.

I came across some interesting thing called txtForward earlier today, which I thought was worth a mention here. As its name suggests, txtForward automatically forwards incoming or outgoing text messages to a specified email address.

Now this can encourage young people like me who find dealing with email quite easy than the actual texting on the phone.

But at the same time this could be a boon for the heavy text user who might just want a simple and reliable way to archive their messages. And in case you didn't realize, text messaging is apparently being used by teens to avoid taking phone calls by their parents. How amazing, today’s youth like me are definitely one step ahead than the older ones.

Anyway, the unfortunate state of affair is that most smartphones simply do not treat text messages as important, and hence are generally limited in terms of message-level searching, as well as in their backup and archival.

Available for the BlackBerry and Windows Mobile, the BlackBerry version of the software worked flawlessly for me. Of course, the trial is limited to only 10 forwarded messages, so my experience with it is limited. One downside for privacy advocates is that the emails are sent out via Electric Pocket's servers, though the company gave assurance on its website that no logging, recording, or monitoring of messages takes place.

Still something to cheer up for wireless sector


In the last year as everybody knows because of the lack of money in the market situation has turned towards grimness. In these difficult times everybody tend to take measures whether right or wrong we can’t say for sure. One thing though which is sure is that everybody tries to cut cost in these difficult circumstances and hence results in the some unpopular decisions. Telecomm companies are no different than others and hence quite rightly taken stern steps towards cutting costs. There is some nervousness especially among the investors which gives an impression that spending in the wireless sector will be hot has as well.

Although the certain trends and strategic vibes coming out of the major companies doesn’t suggest so for the time being. Infact I must say wireless infrastructure spending has overtaken wired in the majority of large enterprises.

I can see the main reason behind this increased spending is that companies are well aware that majority of us like to have wireless these days. Majority of the companies, no doubt also expect all their networked equipment to be wireless enabled. This obviously presents a strategic view in front of the companies and investors as a need for mobility and hence the need to upgrade or replace an existing wired LAN.

As everyday passes by in these hard economic times the budget is getting reduced and hence there is a sense of urgency to be more efficient. I might not be very wrong is say that at the moment wireless/mobility sector seems to be achieving that efficiency by taking certain calculated steps.

Companies are trying every possible bit to get the maximum out of the existing or newly planned wireless infrastructure and the technology as such.

Once such company which everybody thought will say goodbye to Wireless is Alcatel-Lucent.
In the highly anticipated strategic announcement by the newly appointed CEO of Alcatel-Lucent, Ben Verwaayen, has announced and hence strongly countered that it is committed to being a major supplier of mobile infrastructure.

I guess Ben Verwaayen see that there is a huge potential in the wireless market and hence despite being pressured by some of its major investors he still wants to go ahead with the spending on the wireless infrastructure major being the LTE.



In the last year whenever I spoke to my friends in different companies I got the view that everybody wants to cut the cost so that they can continue or maintain their R&D section. In my view this is the right thing to do specially for the giants of telecoms. It’s quite simple that R&D projects will enable to develop new and exciting products and hence the revenues.

Based on the above information which gained by talking to different people at the top of the industry I’m 100% confident that companies like Ericsson, Nokia Siemens Network, Alcatel-Lucent etc will maintain its R&D resources and will be ready with LTE products when the market demands. It is very much obvious companies will focus in a more targeted way than in the past and thus may be putting LTE at the very centre of their efforts. The whole ideas to regain the market share and become a leading supplier within 18 months.

340m 'Active' mobile broadband users by 2014


Mobile broadband computing (MBC) has grown very strongly in 2008, to 35m global subscribers. This is forecast to increase almost 10x by 2014, to 341m according to a new report titled "Mobile Broadband Computing" by Dean Bubley from Disruptive Analysis.

Some of the interesting highlights from the report as follows:
  • Growth has been driven by cheap HSDPA modems and flatrate data plans.
  • The majority of MBC users exploit conventional-seized laptops with separate 3G USB modems (“dongles”). This model will continue to lead despite the growth of netbooks, built-in 3G, WiMAX and MIDs (mobile Internet devices).
  • At present, Europe accounts for 50% of global mobile broadband users, reflecting earlier introduction of consumer-friendly USB dongles and ferociously-competitive low-priced HSDPA tariffs.
  • “Free” netbooks, provided on a subsidised basis by mobile operators on typical 2-year contracts are popular, but have a limited addressable market.
  • By the end of 2011, about 30% of mobile broadband users will be exploiting notebooks with built-in 3G or WiMAX modules. 58%, roughly twice that proportion, will use external modems like USB dongles.
  • By 2014, there will be 150m users of notebooks and netbooks with embedded mobile broadband worldwide. In terms of shipments, 100m wireless-enabled laptops will be sold annually by then – but not all will be activated.
  • By 2012, there will be 45m users of WiMAX-enabled MBC devices. 11m of these will also use 3G or LTE connections in various hybrid approaches.
  • Use of LTE in mobile broadband computing devices will be very limited until 2012. After that, ramp-up will be rapid, reaching 75m units shipped in 2014.
  • By 2011, only 40% of mobile broadband users will be on long-term monthly contracts. Most will use prepaid, session-based, bundled or “free” models.
Some of the other interesting points from the extended summary as follows:
  • Some operators' marketing teams have become over-zealous about competing with fixed broadband. In some markets, HSDPA is now cheaper than ADSL/cable. This is unsustainable, as the cost structures differ hugely. There are physical limits to the capacity of mobile data networks, which will rapidly be reached with the explosion of low-cost traffic. Some cellular networks now see more than 90% of 3G traffic from PCs. Network operators are now hostage to future high-bandwidth Internet applications gaining viral adoption among mobile users.
  • Adoption of embedded-3G and embedded-WiMAX notebooks will grow slowly alongside separate “dongle” modems. Predictions of 50%+ attach rates in 2-3 years are over-optimistic; there are numerous practical, commercial and economic reasons for delayed adoption
  • To date, most mobile broadband users have connected with an existing notebook PC, together with a separate datacard or USB dongle. Looking forward, a broader set of choices are emerging, with the advent of embedded-WWAN notebooks, small & inexpensive 7-10” sized netbooks, MIDs and the use of 3G handsets as “tethers”. Implicitly, these all compete to some degree against higher-end smartphones as well.
  • At present, the majority of mobile broadband subscribers are engaged through
    traditional monthly contracts, typically over 12-24 month periods. However, further evolution is necessary. Disruptive Analysis expects a variety of new business models to emerge and take a significant share of the overall user base, including:
    • Session-based access, similar to the familiar WiFi hotspot model.
    • Bundling of mobile broadband with other services, for example as an adjunct to fixed broadband or mobile voice services.
    • “Comes with data included” models, where the upfront device purchase price
      includes connectivity, perhaps for a year.
    • Free, guest or “sponsored” mobile broadband, paid for by venue owners or
      event organisers.
  • Incrementing capacity of Networks by perhaps another 10x in the next 6 years will need investment in more spectrum, more cell sites, newer radio technology, better backhaul and dedicated “hotspot” solutions like femtocells and WiFi. Yet in the current climate, these investments face delay, meaning a “capacity crunch” is possible in some cases.
On an unrelated note, More than 25 per cent of the content that workers view each day will be dominated by pictures, video or audio by 2013, according to research by Gartner. Though this does not specifically say mobile content, I think the same phenomenon will be observed in the mobile world and maybe to a larger extent with applications like Youtube already very popular with the mobile users.

Saturday 13 December 2008

Help to decipher the text messages


The world of text messaging is evolving so fast that honestly its becoming difficult for me to keep track of the 'text slangs'. If you are in a situation like me then dont worry help is at hand.

ITPro published an article recently reporting that the 'Post Office' (yup you read it correctly) has released a guide that lists lot of common slangs being used for texting. A word of caution would be that some of the terms are specific to Brits so they may not be applicable in other english speaking countries.

Some of the interesting terms listed are:

  • ATM - At the moment
  • 4EVA - Forever
  • Code 18 - Someone who is bad at using technology
  • 404 - Clueless
  • BAB - Boring
  • P999 - Parent Alert (Note 999 is emergency number in UK. So this would become P911 in US, P112 in Europe and P100 in India)
  • GOOD job - Get Out Of Debt job
  • Code 11 - Old Fashioned (London specific)
  • 143 - I Love You (more commonly used one is ILU)

The guide is available from the Post office site here. (Ftp link for PDF)

There is also a very interesting book called "Txtng: the gr8 db8" that was published not too long ago.




The book is not expensive and I found it very interesting as it contains loads of useful information and statistics. The best thing is that in the end it contains very detailed list of text abbreviations, not only in english but also in 11 other languages (using english charachters though) including Chinese, French, Italian, Spanish and Welsh.

Wednesday 10 December 2008

iBangle: Not a phone but great concept



The iBangle is Gopinath Prasana’s vision of a future iPod where the devices have become darn close to becoming jewelry. If you factor in inflation and the cost of Apple products today - might as well call it jewelry because it’ll cost as much. I digress, the iBangle is a thin piece of aluminum (of course) with a multi-touch track pad. To achieve the perfect fit, a cushion inside the ring inflates to keep itself taught against your wrist. Unisex? Maybe.

If this concept becomes reality, it would be just mater of time before a phone is rolled in along with this.

The wearable concept is also puched in the Nokia concept phones like the Nokia 888 and Morph.

Tuesday 9 December 2008

LTE Advanced: NSN Proves relaying technology



Nokia Siemens Networks has broken new ground with another technological first: mobile broadband communications beyond LTE. Company researchers have successfully demonstrated Relaying technology proposed for LTE-Advanced, enabling an exceptional end-user experience delivered consistently across the network.

Completed in Nokia Siemens Networks research facilities in Germany, the demonstration illustrated how advances to Relaying technology can further improve the quality and coverage consistency of a network at the cell edge - where users are furthest from the mobile broadband base station.

Relaying technology, which can also be integrated in normal base station platforms, is cost efficient and easy to deploy as it does not require additional backhaul. The demonstration of LTE Advanced means operators can plan their LTE network investments knowing that the already best-in-class LTE radio performance, including cell edge data rates, can be further improved and that the technological development path for the next stage of LTE is secure and future-proof.

These performance enhancements have been achieved by combining an LTE system supporting a 2x2 MIMO (Multiple Input Multiple Output) antenna system, and a Relay station. The Relaying operates in-band, which means that the relay stations inserted in the network do not need an external data backhaul. They are connected to the nearest base stations by using radio resources within the operating frequency band of the base station itself. Towards the terminal they are base stations and offer the full functionality of LTE. LTE-Advanced is currently being studied by 3GPP for Release 10 and will be submitted towards ITU-R as the 3GPP Radio Interface Technology proposal.

The improved cell coverage and system fairness - meaning offering higher user data rates for and fair treatment of users distant from the base station - will allow operators to utilise existing LTE network infrastructure and still meet growing bandwidth demands.

The demonstration has been realised by using an intelligent demo relay node embedded in a test network forming a FDD in-band self-backhauling solution for coverage enhancements. With this demonstration the performance at the cell edge could be increased up to 50% of the peak throughput.


More info on LTE-A coming soon.

Monday 8 December 2008

No LTE networks in UK before 2011

According to Silicon.com, any rollout of a next generation mobile network in the UK is still years away, says telecoms kit maker Ericsson's UK CTO John Cunliffe.

"I would say probably the end of 2010 at the very earliest," he told silicon.com. "Networks will be ready for rolling out - shipping in commercial quantities - next year and then the devices, we think, will start to come in 2010," he added.

Cunliffe would not give an estimate on how much a commercial rollout of LTE in the UK might cost. "People need to do more modelling around rollout costs," he said. "It's a new equation."
However, he claimed operators switching to LTE would reap the benefits of "total lower capex and lower opex" - provided they are willing to stump up the infrastructure cash.


However Cunliffe highlighted that any large-scale deployment of rival 4G technology WiMax would also require similar investment in infrastructure to that of an LTE deployment. "If you think about WiMax starting off as essentially a radio you need a much bigger ecosystem around it," he said.

"By the time you actually deliver a service, the operators still have to pay for the infrastructure that goes around it and they've still got their opex - their people costs and so on - so the WiMax piece - the radio piece - is actually a small piece of the equation. In terms of the maturity of the 3GPP ecosystem, it's well ahead of where WiMax is."

"The fastest being deployed in the UK at the moment is 7.2Mbps but our roadmap continues until 42Mbps. We can even see that it may be possible for the technology to reach as much as 80Mbps…so there is certainly a lot of mileage in HSPA…People maybe think that we've got to have LTE to get to the higher speeds but HSPA will go a long way before we need to get to LTE speeds."

Cunliffe added the top speed of LTE currently being demoed by Ericsson in lab conditions is 160Mbps and a drive test has reached a maximum of 154Mbps, with an average of 78Mbps.

What are the biggest hurdles to a UK LTE network being rolled out? Cunliffe believes they are timing - when operators will switch, especially those with significant investment in HSPA - as well as the inexorable issue of ROI: "Obviously there will be questions about return on investment," he concluded.

Sunday 7 December 2008

2009 is crucial for mobile vendors


Some time ago I wrote in my blog about the good results posted by the companies for that particular quarter. At that time I was slightly bullish in terms of future earning of the telecoms giants.

With the new financial results predicting more economic woes, the early signs suggest that the majot telecoms companies might have a rocky ride ahead.

Most of the major vendors have already issued warnings for their handset sales. The news comes amid a week of profit warnings from other handset makers, including Research In Motion and Palm, as the handset market faces declining demand in the midst of a global economic slowdown. The research firm Gartner also released statistics about the smartphone market, which saw its weakest year-on-year growth since the firm started tracking the industry, and Nokia saw its share of the smartphone market fall to 42.4 percent, down from the 48.7 percent share it had a year earlier.

I remember during the year 2000/2001 when we saw the major telecoms burst, Nokia was still holding up and it produced some good results. I expect/expected similar this time as well from Nokia.

I was proven wrong when Nokia issued a market warning for the second time in less than a month, cutting its outlook for global handset sales, as the world's largest handset maker braces for a slowdown in the coming year.The Finnish giant now expects global handset sales to drop below the 330 million units for the fourth quarter it estimated on Nov. 14, and also said its estimate of 1.24 billion units for 2008 would have to be revised down. Those numbers were cuts from previous estimates. The company also said it expects growth to slow in 2009, with the market contracting 5 percent from its 2008 levels.

Indeed these figures coming out of Nokia presents bleak picture and make everybody nervous. It is very much evident by looking at the current climate that year 2009 will be challenging for telecoms industry.

However I still believe that companies like Nokia have a strong, enviable base to build on and I believe even in tough situation it will continue to strengthen its position on many fronts.

There is no doubt that in the face of a global economic downturn and weakening demand, handset makers and vendors affiliated with cell phone components are probably headed toward a large shakeup.

Companies with more high-end portfolios, including Apple, Research In Motion and HTC will be better positioned to handle any turmoil that would affect the handset market. All three have showcase devices that could help propel them through any choppy waters. In the case of RIM, there are multiple devices that could turn into large sellers, most notably the BlackBerry Storm, which Verizon Wireless has already launched.


However, others such as Motorola and Sony Ericsson, which cut 450 jobs from its North American headquarters earlier this fall, are in a weaker position. Motorola has said it is planning on focusing more on phones running on Windows Mobile and Google's Android platform to chart it back to growth, but said an Android phone would not be in the market until the end of 2009.

Most of the handset vendors will develop a strategy where they will concentrate on the market where the handset sales are still on the up. Europe has already been considered saturated in terms of mobile sales and hence this doesn’t come as surprise when Ovum declared in its report that Europe has become the first regional mobile market to be hit by the economic downturn.
But the the US mobile market has to date resisted the downturn and developing markets such as Latin America continue to enjoy double-digit revenue growth rates. Markets such as Latin America which remains overwhelmingly buoyant gives enough hope to vendors hence the expectation that they will be able to ride out the current financial crises.

I guess 2009 is going to be interesting.

Thursday 4 December 2008

SMS Rocks! Long distance shoulder amputation by text

We have heard of dumping and divorce through SMS, betting through SMS but none can beat this one. A surgeon carried out an operation in Democratic Republic of Congo by following instructions received over SMS.

A British surgeon volunteering in the Democratic Republic of Congo saved the life of a teenage boy by amputating his shoulder using instructions texted by a colleague in London.

David Nott, 52, a general and vascular surgeon at Chelsea and Westminster hospital, was working with the charity Médecins sans Frontières (MSF) in the town of Rutshuru when he came across the badly injured 16-year-old in October.

The teenager's left arm had been so badly damaged - either in an accident or as a result of the fighting between Congolese and rebel troops - that it had already had to be amputated. But the flesh and bone that remained had become badly infected and gangrenous.

"He was dying" said Nott. "He had about two or three days to live."

The doctor realised the boy's best chance of survival was a forequarter amputation which requires the surgeon to remove the collar bone and shoulder blade. The only problem was that it was an operation Nott had never performed. But he remembered that one of his colleagues at home had carried out the procedure.

"I texted him and he texted back step-by-step instructions," he said.

"Even then I had to think long and hard about whether it was right to leave a young boy with only one arm in the middle of this fighting.

"But in the end he would have died without it, so I took a deep breath and followed the instructions to the letter."

Such an operation, if performed in the UK, would require careful planning with every sort of modern medical product on hand if things went wrong.

But in Congo Nott had just one pint of blood and an elementary operating theatre.

Despite the basic conditions, the operation was a success and the teenager made a full recovery.

This news could not have come at a better time because the inventor of SMS, Matti Makkonen, received this year's Economist Innovation Award for Computing and Telecommunications.

If I remember my stats correctly, there are 3Billion+ users or SMS worldwide with 1Billion+ SMS exchanged daily and its nearly 20 years since SMS has been launched.

Tuesday 2 December 2008

Nokia admits defeat in Japan



Finnish mobile phone giant Nokia has said it will stop selling its handsets in Japan after struggling to grow its market share in the country.

Nokia said it would continue selling its luxury Vertu brand in Japan, and would dedicate its Japanese business to research purposes.

Nokia has nearly 40% of the global market for mobile phones, but it reportedly managed to take only 0.3% of Japan's market last year.

Samsung and LG have also faced problems in Japan - a market dominated by sophisticated domestic phones.

According to research firm IDC Japan, foreign companies account for only 5% of the Japanese market, which is dominated by local firms selling phones with features such as TV broadcasting and electronic payment functions.

The Nokia-owned luxury brand Vertu was created in 1998 and focuses on one-off specialist phones costing from 3,500 euros to more than 100,000 euros.

Source: BBC

Monday 1 December 2008

Nokia to power Smarter Homes

Nokia Home Control Center - My home is where my phone is

Nokia Home Control Center is a solution based on an open Linux based platform enabling the home owner to build a technology-neutral smart home that can be controlled with a mobile phone, using a unified user interface. Nokia Home Control Center supports the most common smart home technologies, including Z-Wave as well as enabling the incorporation for proprietary technologies. Thus, it allows third parties to develop their own solutions and services on top of the platform, expanding the system to support new services and smart home technologies.

Building blocks for an intelligent house are readily available in the market. Putting it all together is, however, like trying to build a house from blocks that do not fit with each other. There are smart refrigerators, energy-saving washing machines, heating systems that can adjust the room temperature with one-celcius-accuracy, security systems with touchpanels, low-energy walls, programmable thermostats, self-adjusting curtains, configurable set-top boxes, self-operating yard lights and much more. The problem is all these systems are separate and you end up having a dozen remote controllers and miles of cables in the living room.

Until now, solutions to home automation challenges have been sought through the development of better sensor networks. Although they are, of course, very important parts of new smart home solutions, no single sensor network technology can solve the challenges in this field. Z-Wave, ZigBee, and KNX are all attempts to define a common command language for home networks. So far, there has not been a clear winner in the battle for the de facto standard of home networks. Hence, it can be assumed that a future home will use several different technologies.

The Nokia Home Control Center acts as a dictionary that translates different technological languages so that they can be presented in a unified user interface. Furthermore, the platform enables grouping different physical devices, even from different manufacturers, to be presented for the user in an easy-to-understand way.

The whole Nokia solution consists of four main components:

1. The heart of the solution is the Nokia Home Control Center which is built on top of standard gateway architecture.
2. Two most important control nodes are the mobile phone and web browser.
3. The back-end server architecture ensures a seamless and secure link between a mobile device and the home gateway and also makes possible updating and upgrading software easily.
4. The partner devices. In addition to the components that Nokia is providing, the value for the end customer comes from the integration of different third party devices and systems under the control of one user interface.

It will be possible for example to monitor and control electricity usage, to swich devices on and off, and monitor different objects, such as temperature, camera, and motion. On one hand, Nokia Home Control Center can be used as WLAN gateway. On the other hand, the platform covers everything from a basic security solution to a more sophisticated heating control system. Users are free to build a solution that fits to their needs and expand it when ever they want.

Mobility is becoming increasingly important in home environments, as wireless technologies for smart home solutions are emerging. As structure wiring is no longer required, these are no longer niche market products meant for new houses. Wireless broadband has become main stream and multimedia consumption over home networks is increasing. From many studies we know that moving from a multimedia network to a smart home network is a much smaller step than building a wired smart home from the scratch. Finally, the last barrier of high equipment prices is breaking down as the technology becomes more and more common.

Nokia 'Home Control Center' features and technical data can be seen here.

The following is additional info from the press release:

Nokia today also announced a partnership with one of Europe's biggest energy companies, RWE. The co-operation aims at developing a comprehensive solution for managing energy consumption and CO2 footage at home. This cooperation combines RWE's energy competence with Nokia's technological know-how.

With this in mind, the first joint solution from Nokia and RWE on late 2009 will focus on home heating management. The product consists of a central control unit together with remote-controlled thermostats for the actual radiator. The user interface will be the PC and the mobile phone. In addition, a separate display will be available. RWE is also planning special offers combining these devices with new energy supply contracts. In a second step, Nokia and RWE are planning additional services in connection with smart meters beyond 2009. These services will provide consumers with real-time information about their energy consumption and allow them to control their energy bill remotely.

"We are delighted to have secured a world-leading technology partner in Nokia for our range of smart home energy products. Our aim is to offer innovative and affordable energy-efficient solutions for every household that are simple and convenient to operate", said Carolin Reichert, Head of New Business at RWE.

Nokia Home Control Center will be part of Nokia's home offering. The solution will be demonstrated at the Nokia World event in Barcelona, Spain, on December 2-3, 2008 and is expected to become commercially available by the end of 2009.