Showing posts with label LTE. Show all posts
Showing posts with label LTE. Show all posts

Monday 7 December 2020

Nokia Lectures in Collaboration with Bangalore University

Nokia recently delivered some lectures virtually to Bangalore University students. The talks covered a variety of talks from LTE to 5G, Security & IMS. The playlist from Nokia is embedded below. The video contains following topics:

Part 1: 5G - General Introduction and IoT Specific Features
Part 2: 5G Overview
Part 3: Network Security Practices and Principles
Part 4: LTE Network Architecture - Interface and Protocols
Part 5: IMS - IP Multimedia Subsystem

Related Posts:

Saturday 4 July 2020

An Introduction to Vehicle to Everything (V2X) and Cellular V2X (C-V2X)


We made an introductory tutorial explaining vehicle to everything. There are 2 different favours of V2X as shown in this tweet below


One is based on IEEE 802.11p (802.11bd in future). It is known by different names, DSRC, ITS-G5, etc. The other is the cellular V2X or C-V2X. It started as basic D2D but has evolved over the time. The slides and video are embedded below but this topic will need revisiting with more details.







Related Posts:

Tuesday 23 June 2020

Comparison Layer 2 Measurements LTE vs. 5G NR


Yesterday (2020-06-22) 3GPP uploaded the version 1.0 of TS 38.314 "Layer 2 Measurements" for 5G New Radio Rel. 16.

I was wondering about the difference compared to the same LTE standard defined in 3GPP TS 36.314.

The initial look at the table of contents shows significantly less measurements in the NR spec, but a new counter for the number of stored inactive UE contexts. This is due to the introduction of RRC Inactive state in NR RRC specified in 3GPP TS 38.331)

All other differences in the NR standard are related to chapter number 4.2.1.6 "Other measurements defined in TS 28.552".

Here one finds the references to Data Volume, Average Throughput Measurement per UE and DRB as well as PRB usage measurements.

Adding these additional measurements to the list we see in the table of contents it emerges that indeed the number of stored inactive UE contexts is the only major difference in comparison with the LTE standard. 

Monday 20 April 2020

A Look at the same RRC Message in LTE and 5G Stand-alone Call Scenarios


Some weeks ago the differences in 4G LTE RRC (3GPP 36.331) and 5G NR RRC (3GPP 38.331) and how both protocols interact in EN-DC call scenarios have been discussed in another blog post.

Now I would like to share a visual comparison of the RRC (Connection) Setup Complete message as it is seen in LTE (including EN-DC) and 5G stand-alone (SA) radio connections.

From the figure below one can see that although this message fulfills the same purpose in both radio access technologies its particular contents may look quite differently.

Different variants of RRC (Connection) Setup Complete message in LTE and 5G stand-alone call scenarios

Thursday 29 August 2019

LTE / 5G Broadcast Evolution


It's been a while since I last wrote about eMBMS. A report by GSA last month identified:
- 41 operators known to have been investing in eMBMS
- 5 operators have now deployed eMBMS or launched some sort of commercial service using eMBMS
- GSA identified 69 chipsets supporting eMBMS, and at least 59 devices that support eMBMS


BBC R&D are testing the use of 4G/5G broadcast technology to deliver live radio services to members of the public as part of 5G RuralFirst - one of 6 projects funded under the UK Government’s 5G Phase 1 testbeds and trials programme (link).

A press release by Samsung Electronics back in May announced that it has signed an expansion contract with KT Corporation (KT) to provide public safety (PS-LTE) network solutions based on 3GPP standard Release 13 for 10 major metropolitan regions in South Korea including Seoul by 2020. One of the features of PS-LTE that the PR listed was LTE Broadcast (eMBMS): A feature which allows real time feeds to hundreds of devices simultaneously. It enables thousands of devices to be connected at once to transfer video, images and voice simultaneously using multicast technology

Dr. Belkacem Mouhouche – Samsung Electronics Chief Standards Engineer  and Technical Manager of 5G projects: 5G-Xcast and 5G-Tours Presented an excellent overview on this topic at IEEE 5G Summit Istanbul, June 2019. His presentation is embedded below.



5G-Xcast is a 5GPPP Phase II project focused on Broadcast and Multicast Communication Enablers For the Fifth Generation of Wireless Systems.

They have a YouTube channel here and this video below is an introduction to project and the problems it looks to address.




Further Reading:

Related posts:

Thursday 18 July 2019

5G SpeedTests and Theoretical Max Speeds Calculations


Right now, Speed Tests are being described as 5G killer apps.



A good point by Benedict Evans



Everyone is excited and want to see how fast 5G networks can go. If you use Twitter, you will notice loads and loads of speed tests being done on 5G. An example can be seen above.


I recently heard Phil Sheppard, Director of Strategy & Architecture, '3 UK' speak about their 5G launch that is coming up soon. Phil clearly mentioned that because they have a lot more spectrum (see Operator Watch blog post here and here) in Capacity Layer, their 5G network would be faster than the other UK operators. He also provided rough real world Peak Speeds for Three and other operators as can be seen above. Of course the real world speeds greatly depend on what else is going on in the network and in the cell so this is just a guideline rather than actual advertised speeds.


I have explained multiple times that all 5G networks being rolled out today are Non-Stand Alone (NSA) 5G networks. If you don't know what SA and NSA 5G networks are, check this out. As you can see, the 5G NSA networks are actually 4G Carrier Aggregated Networks + 5G Carrier Aggregated Networks. Not all 4G spectrum will be usable in 5G networks but let's assume it is.

To calculate the theoretical maximum speed of 5G NSA networks, we can calculate the theoretical maximum 4G Network speeds + theoretical maximum 5G Network speeds.

I have looked at theoretical calculation of max LTE Carrier Aggregated Speeds here. Won't do calculation here but assuming 3CA for any network is quite possible.

I also looked at theoretical calculation of 5G FDD New Radio here but then found a website that helps with 5G NR calculation here.

If we calculate just the 5G part, looking at the picture from Three, we can see that they list BT/EE & O2 speeds as 0.61 Gbps or 610 Mbps, just for the 5G part.

Looking at the calculation, if we Input Theoretical max values in this equation:

Calculating just for DL

J - number of aggregated component carriers,
maximum number (3GPP 38.802): 16
input value: 1

v(j)Layers - maximum number of MIMO layers ,
3GPP 38.802: maximum 8 in DL, maximum 4 in UL
input value: 8

Q(j)m modulation order (3GPP 38.804)
For UL and DL Q(j)m is same (QPSK-2, 16QAM-4, 64QAM-6, 256QAM-8)
input value: 8 (256QAM)

f(j) Scaling factor (3GPP 38.306)
input value: 1

FR(j) Frequency Range 3GPP 38.104:
FR1 (450 MHz – 6000 MHz) и FR2 (24250 MHz – 52600 MHz)
input value: FR1

µ(j) -value of carrier configuration (3GPP 38.211)
For DL and UL µ(j) is same (µ(0)=15kHz, µ(1)=30kHz, µ(2)=60kHz, µ(3)=120kHz)
input value: 0 (15kHz)

BW(j)- band Bandwidth, MHz (3GPP 38.104),
should be selected with Frequency Range and µ(i) configuration:
input value: BW:40MHz FR1 µ:15kHz:

Enter a PRB value (if other)
default: 0

Rmax (if you don't know what is it, don't change)
Value depends on the type of coding from 3GPP 38.212
(For LDPC code maximum number is 948/1024 = 0.92578125)
default: 0.92578125

*** Only for TDD ***
Part of the Slots allocated for DL in TDD mode,
where 1 = 100% of Slots (3GPP 38.213, taking into account Flexible slots).
Calculated as: the number of time Slots for DL divided by 14
default value: 0.857142

Part of the Slots allocated for UL in TDD mode,
where 1 = 100% of Slots (3GPP 38.213, taking into account Flexible slots).
Calculated as: 1 minus number of Slots for DL
default value: 0.14285800000000004

Calculated 5G NR Throughput, Mbps: 1584


As you may have noticed, BTE/EE has 40 MHz spectrum while Vodafone in UK have 50 MHz of spectrum.

Changing
BW(j)- band Bandwidth, MHz (3GPP 38.104),
should be selected with Frequency Range and µ(i) configuration:
input value: BW:50MHz FR1 µ:15kHz:

Calculated 5G NR Throughput, Mbps: 1982

Now Three UK has 100 MHz, immediately available for use. So changing

µ(j) -value of carrier configuration (3GPP 38.211)
For DL and UL µ(j) is same (µ(0)=15kHz, µ(1)=30kHz, µ(2)=60kHz, µ(3)=120kHz)
input value: 1 (30kHz)

BW(j)- band Bandwidth, MHz (3GPP 38.104),
should be selected with Frequency Range and µ(i) configuration:
BW:100MHz FR1 µ:30kHz:


Calculated 5G NR Throughput, Mbps: 4006

In theory, a lot of speed is possible with the 100 MHz bandwidth that Three will be able to use. We will have to wait and see who can do a theoretical max SpeedTest. In the meantime remember that a 1Gbps speed test will use over 1 GB of data.



Related Posts:

Sunday 19 May 2019

VoLTE Hacking


The 10th Annual HITB Security Conference took place from the 6th till the 10th of May 2019 in The Netherlands. The theme for the conference this year is 'The Hacks of Future Past'. One of the presentations was on the topic 'VoLTE Phreaking' by Ralph Moonen, Technical Director at Secura.

The talk covered variety of topics:

  • A little history of telephony hacking (in NL/EU)
  • The landscape now
  • Intercepting communications in 2019
  • Vulnerabilities discovered: some new, some old
  • An app to monitor traffic on a phone

The talk provides details on how VoLTE can potentially be hacked. In a lot of instances it is some or the other misconfigurations that makes VoLTE less secure. One of the slides that caught my attention was the differences in VoLTE signaling from different operators (probably due to different vendors) as shown above.

Anyway, I am not going into more details here. The presentation is available here.


The thread in the Tweet above also provided some good references on VoLTE hacking. They are as follows:



Related Posts:


Thursday 21 March 2019

Update from 3GPP on LTE & 5G Mission Critical Communications


Adrian Scrase, CTO of ETSI & Head of MCC, 3GPP presented an update at BAPCO / CCE 2019 on Public Safety LTE and 5G. His presentation is embedded below.

There has been quite a progress in this area since I wrote my last post on Release-14 here.
This is the list of features that are planned for Release-16. There is also an update on Satellite communications but I will look at it separately in another post. Here are the slides:



The presentation can be directly downloaded from 3GPP website here.

Related posts:

Sunday 17 March 2019

Update on UK's Emergency Services Network (ESN) from #BAPCO2019


I have discussed about the UK's Emergency Services Network (ESN) multiple times but I manged to hear about the progress first hand this week. Bryan Clark, ESN Programme Director, Home Office gave a keynote address at BAPCO on Day 2 and the title of his presentation was "2019: The year vision becomes reality"

British APCO or BAPCO Annual Conference and Exhibition 2019 was going to be a big launchpad for the ESN network. The ESN LinkedIn post said "Representatives from ESN and EE will be on hand to discuss coverage and ESN Assure. See an installation of the ESN Gateway solution within a police car, plus a live demonstration showing how ESN coverage can be extended from a vehicle into a building. We’ll also have a ‘Motorola Zone’ where you can watch demos of Kodiak and the ESN self-service portal – and a large touchscreen demo of the Samsung ESN Galaxy"


Bryan started by cracking a joke about people referring to 'ESN' as 'ES When' programme because it has been delayed multiple times. He said straight in the beginning that he going to talk about what the ESN programme is doing now and what comes next.

He started with this short video, embedded below but detailed info available on this LinkedIn post

x

So here is a short summary of the talk:
  • There are roughly 350,000 customers of this service
  • There are 137 separate organizations that will take advantage of this new this new technology. 
  • There are couple of vehicles in the display area (pic on the top and video below) and roughly 50,000 vehicles that need to have a kit
  • Over 100 aircraft need to have an air network access that currently isn't there. 
  • There are nearly 30 direct suppliers to the program and that doesn't include the whole supply chain through each of those suppliers.
  • Looking at the coverage, there is a commitment to providing a signal along half a million (0.5 million) kilometers of roads in England, Scotland & Wales. It extends 12 nautical miles out to sea and 10,000 feet in the air right across England, Scotland & Wales.
  • In London alone there are over 400 kilometres of tunnels that were actually almost finished cabling out.
  • 300 masts are being built as part of the ESN programme to extend services into remote areas.
  • EE has extended their network by adding 700 additional masts. 
  • Thousands of special locations will need to have effective access to ESN network
  • ESN is a large programme so it's hardly surprising that it's very late. It's Bryan's job over the past 10 months to work out how to get it back on track. 
  • People are going through quite a detailed review of where ESN has got to in terms of next steps. 
  • The programme now has a very clear and approved plan to complete the technical element of the work, most of it should be done by late summer next year.
  • One of the first products, Assure, is a way of testing the effectiveness of the network in the field. 
  • A demonstration of Push-To-Talk (PTT) on a 4G network will be demoed within 3 weeks.
  • This is the first generation end-to-end solution
  • Emergency services is critical national infrastructure so any new solution can only replace the legacy once we are absolutely confident that we've got an effective replacement
  • Even though the technical piece is quite challenging, when you compare it to the business change that follows, the technical part looks pretty simple. 
  • To ensure that everything works effectively operationally, plans are in place but more detailed plans are going to follow in the coming three to four months.
  • Individual components are already being tested in the field
  • Programme deployment should start by the end of 2019 in terms of having basically completed laying the core components and a clear plan will be in place for how to test in an operational context. 
  • The ESN programme is not only responsible for the replacement solution but also for operations to date based on the Airwave contract with Motorola currently
  • The number one priority is to provide critical voice communications of sufficient quality that people can rely on in the field and enable them to move away from the TETRA technology that served them so well. So we aren't going anywhere until we've got rock solid critical voice communications. It's our number one priority, simply because people's lives depend on it.
The following are various videos from the ESN demo area. The Gateway device (which is a mobile small cell) is supplied by Parallel Wireless*.



In case you missed BAPCO, Ken Rehbehn, a very well known Industry Analyst who works as a Principal Analyst at Critical Communications Insights and is also Montgomery County Firefighter/EMT, shared his observations and reflections from conference. Very grateful for his interview which is embedded below



Further Reading:




Related posts:

*Full Disclosure: I work for Parallel Wireless as a Senior Director in Strategic Marketing. This blog is maintained in my personal capacity and expresses my own views, not the views of my employer or anyone else. Anyone who knows me well would know this.

Friday 10 August 2018

Changes in LTE pricing strategies


Its been a while since I blogged about pricing strategies (see old posts here, here and here). I recently enjoyed listening to Soichi Nakajima, Director of "Digital Telco and OTT" at IDATE DigiWorld when he presented a talk on LTE pricing strategy. The slides are embedded below



I think the slides are self-explanatory but here is the summary worth highlighting:

How LTE plans have changed: shift in focus from data allowance to quality of service 

  • Mobile data services are still largely structured by on data allowance, but high volume and unlimited plans are increasingly common. 
  • Unlimited does not necessarily mean high-end: some target users with a small budget, providing a very slow connection. 
  • Quality of service becoming central in structuring product lines – especially speed which my or may not be combined with data caps – as is content quality. 
  • Certain applications being favoured through zero rating (traffic not deducted from the customer’s allowance). This can be a way to market unlimited plans and avoid fixed-mobile substitution. 
  • Growing number of partnerships with OTT video services, rather than selling premium content plans, which are tending to wane.

The slides are available to download from techUK page here. There is also a bonus presentation on "How to address the challenges of providing connectivity on trains".

Monday 25 June 2018

Free Apps for Field Testing - Part 2

The last time I wrote about the free apps for field testing, many people came back and suggested additional apps that are much more commonly used. In fact we got the following comment when 3G4G re-posted this

As I have used both these apps frequently, here is a small summary on them.

Network Signal Guru: This is surprisingly very popular and is quite useful. The only issue is that you need to have a rooted phone with Qualcomm chipset. I know many testers have their favourite phones and quite a few testers buy the latest phones, root them and start testing using NSG (Network Signal Guru).

I prefer using Motorola Moto Gx series phones. They are cheap, not too difficult to root (YouTube have quite a few tutorials and Google search works too) and I find that their receivers are better than others. Have detected cells that other phones cant and have even camped and speed tested on them too.

So what can NSG do?

It can provide lots of useful information on the physical layer, cell configurations, neighbor cell lists, MIMO, etc.
You can even RAT lock to LTE / WCDMA / GSM and band lock to use a specific band. It can be very useful during surveys when you want to check if you can see particular frequency anywhere in an area. You can also see Codecs, RACH information, Data information, etc.

Finally, one of the best things I find is the signalling information. Some of the details are only available for purchased option, its nevertheless very useful. Just in case you are wondering how much does it cost, its roughly £50 per month license in UK.


Cell Mapper: I find this much more helpful as it can be used without rooting. CellMapper is a crowd-sourced cellular tower and coverage mapping service. Its simple and only used for basic testing but nevertheless very useful. To give you an idea, the other day I was camped on a cell with very good signal quality but very poor data rates and there weren't many people so congestion didn't seem like a factor. On investigation I found out that I was camped on 800MHz band that has limited bandwidth per operator and there was no CA.

Cell mapper, as you can see provides information about the cell you are camped on, the cell tower location, what other sectors and frequencies are there, etc.


Do you have a favorite testing app that I missed? Let me know in comments.

Saturday 16 June 2018

Summary and Analysis of Ericsson Mobility Report 2018

Ericsson Mobility reports always make a fantastic reading. Its been a while since I wrote anything on this topic so I thought lets summarize it and also provide my personal analysis. Please feel free to disagree as this is just a blog post.

Before we start, the official site for the report is here. You can jump directly to the PDF here. Ericsson will also be holding a webinar on this topic on 19 June, you can register here.

A short summary of some of the highlights are in the table above but lets look at more in detail.

Mobile subscriptions 



  • The total number of mobile subscriptions was around 7.9 billion in Q1 2018.
  • There are now 5.5 billion mobile broadband subscriptions.
  • Global subscription penetration in Q1 2018 was 104 percent.
  • The number of LTE subscriptions increased by 210 million during the quarter to reach a total of 2.9 billion.
  • Over the same period, GSM/EDGE-only subscriptions declined by 90 million. Other technologies declined by around 32 million.
  • Subscriptions associated with smartphones now account for around 60 percent of all mobile phone subscriptions.

Many things to note above. There is still a big part of the world which is unconnected and most of the connectivity being talked about is population based coverage. While GSM/EDGE-only subscriptions are declining, many smartphone users are still camped on to GSM/EDGE for significant time.

While smartphones are growing, feature phones are not far behind. Surprisingly, Reliance Jio has become a leader of 4G feature phones.

My analysis from the developing world shows that many users are getting a GSM feature phone as a backup for when smartphone runs out of power.


Mobile subscriptions worldwide outlook


  • 1 billion 5G subscriptions for enhanced mobile broadband by the end of 2023, accounting for 12 percent of all mobile subscriptions.
  • LTE subscriptions continues to grow strongly and is forecast to reach 5.5 billion by the end of 2023
  • In 2023, there will be 8.9 billion mobile subscriptions, 8.3 billion mobile broadband subscriptions and 6.1 billion unique mobile subscribers.
  • The number of smartphone subscriptions is forecast to reach 7.2 billion in 2023.

The report describes "A 5G subscription is counted as such when associated with a device that supports NR as specified in 3GPP Release 15, connected to a 5G-enabled network." which is a good approach but does not talk about 5G availability. My old question (tweet below) on "How many 5G sites does an operator have to deploy so that they can say they have 5G?" is still waiting for an answer.


5G device outlook



  • First 5G data-only devices are expected from the second half of 2018.
  • The first 3GPP smartphones supporting 5G are expected in early 2019.
  • From 2020, when third-generation chipsets will be introduced, large numbers of 5G devices are forecast.
  • By 2023, 1 billion 5G devices for enhanced mobile broadband are expected to be connected worldwide.

Qualcomm has made a good progress (video) on this front and there are already test modems available for 5G. I wont be surprised with the launch. It would remain to be seen what will be the price point and demand for these 5G data-only devices. The Register put it quite bluntly about guinea pigs here. I am also worried about the misleading 5G claims (see here).


Voice over LTE (VoLTE) outlook



  • At the end of 2017, VoLTE subscriptions exceeded 610 million.
  • The number of VoLTE subscriptions is projected to reach 5.4 billion by the end of 2023.
  • VoLTE technology will be the foundation for enabling 5G voice calls.
  • New use cases in a 5G context are being explored, such as augmented reality (AR) and virtual reality (VR).

Back in 2011, I suggested the following (tweet below)
Looks like things haven't changed significantly. There are still many low end devices that do not support VoLTE and many operators dont support VoLTE on BYOD. VoLTE has been much harder than everyone imagined it to be.


Mobile subscriptions worldwide by region



  • Globally, mobile broadband subscriptions now make up 68 percent of all mobile subscriptions.
  • 5G subscriptions will be available in all regions in 2023.
  • In 2023, 48 percent of subscriptions in North America and 34 percent in North East Asia are expected to be for 5G.

I think that for some regions these predictions may be a bit optimistic. Many operators are struggling with finance and revenue, especially as the pricing going down due to intense competition. It would be interesting to see how these numbers hold up next year.

While China has been added to North-East Asia, it may be a useful exercise to separate it. Similarly Middle East should be separated from Africa as the speed of change is going to be significantly different.


Mobile data Traffic Growth and Outlook

  • In Q1 2018, mobile data traffic grew around 54 percent year-on-year.
  • The quarter-on-quarter growth was around 11 percent.
  • In 2023, 20 percent of mobile data traffic will be carried by 5G networks.
  • North America has the highest monthly usage of mobile data per smartphone at 7.2 gigabytes (GB), anticipated to increase to 49GB in 2023.
  • Total mobile data traffic is expected to increase by nearly eight times by the end of 2023.
  • In 2023, 95 percent of total mobile data traffic is expected to be generated by smartphones, increasing from 85 percent today.
  • North East Asia has the largest share of mobile data traffic – set to reach 25EB per month in 2023.

This is one of the toughest areas of prediction as there are a large number of factors affecting this from pricing to devices and applications.

Quiz question: Do you remember which year did data traffic overtake voice traffic? Answer here (external link to avoid spoilers)


Mobile traffic by application category



  • In 2023, video will account for around 73 percent of mobile data traffic.
  • Traffic from social networking is also expected to rise – increasing by 31 percent annually over the next 6 years.
  • The relative share of social networking traffic will decline over the same period, due to the stronger growth of video.
  • Streaming videos in different resolutions can impact data traffic consumption to a high degree. Watching HD video (720p) rather than standard resolution video (480p) typically doubles the data traffic volume, while moving to full HD (1080p) doubles it yet again.
  • Increased streaming of immersive video formats would also impact data traffic consumption.

It would have been interesting if games were a separate category. Not sure if it has been lumped with Video/Audio or in Other segments.


IoT connections outlook


  • The number of cellular IoT connections is expected to reach 3.5 billion in 2023. This is almost double our last forecast, due to ongoing large-scale deployments in China.
  • Of the 3.5 billion cellular IoT connections forecast for 2023, North East Asia is anticipated to account for 2.2 billion.
  • New massive cellular IoT technologies, such as NB-IoT and Cat-M1, are taking off and driving growth in the number of cellular IoT connections.
  • Mobile operators have commercially launched more than 60 cellular IoT networks worldwide using Cat-M1 and NB-IoT.

It is important to look at the following 2 definitions though.

Short-range IoT: Segment that largely consists of devices connected by unlicensed radio technologies, with a typical range of up to 100 meters, such as Wi-Fi, Bluetooth and Zigbee. This category also includes devices connected over fixed-line local area networks and powerline technologies

Wide-area IoT: Segment consisting of devices using cellular connections, as well as unlicensed low-power technologies, such as Sigfox and LoRa

The Wide-area IoT in the table above includes cellular IoT. If you are a regular reader of this blog, you will know that I think LoRa has a bright future and my belief is that this report ignores some of the reasons behind the popularity of LoRa and its growth story. 


Network coverage

  • In 2023, more than 20 percent of the world’s population will be covered by 5G.
  • 5G is expected to be deployed first in dense urban areas to support enhanced mobile broadband.
  • Another early use case for 5G will be fixed wireless access.
  • Today, 3GPP cellular networks cover around 95 percent of the world’s population.

A lot of work needs to be done in this area to improve coverage in rural and remote locations.

I will leave this post at this point. The report also contains details on Network Evolution, Network Performance, Smart Manufacturing, etc. You can read it from the report.

Tuesday 1 May 2018

MAMS (Multi Access Management Services) at MEC integrating LTE and Wi-Fi networks

Came across Multi Access Management Services (MAMS) a few times recently so here is a quick short post on the topic. At present MAMS is under review in IETF and is being supported by Nokia, Intel, Broadcom, Huawei, AT&T, KT.

I heard about MAMS for the first time at a Small Cell Forum event in Mumbai, slides are here for this particular presentation from Nokia.

As you can see from the slide above, MAMS can optimise inter-working of different access domains, particularly at the Edge. A recent presentation from Nokia (here) on this topic provides much more detailed insight.

From the presentation:

        MAMS (Multi Access Management Services) is a framework for

-            Integrating different access network domains based on user plane (e.g. IP layer) interworking,

-            with ability to select access and core network paths independently

-            and user plane treatment based on traffic types

-            that can dynamically adapt to changing network conditions

-            based on negotiation between client and network
        The technical content is available as the following drafts*



-            MAMS User Plane Specification: https://tools.ietf.org/html/draft-zhu-intarea-mams-user-protocol-02




*Currently under review, Co-authors: Nokia, Intel, Broadcom, Huawei, AT&T, KT,

The slides provide much more details, including the different use cases (pic below) for integrating LTE and Wi-Fi at the Edge.


Here are the references for anyone wishing to look at this in more detail:

Thursday 12 April 2018

#CWHeritage Talk: The History of Synchronization in Digital Cellular Networks


CW (a.k.a. Cambridge Wireless) held a very interesting event titled 'Time for Telecoms' at the Science Museum in London. I managed to record this one talk by Prof. Andy Sutton, who has also kindly shared slides and some other papers that he mentions in his presentation. You can also see the tweets from the event on Twitter.

The video playlist and the presentation is embedded below.






The papers referred to in the presentation/video available as follows:

Sunday 25 March 2018

5G Security Updates - March 2018


Its been a while since I wrote about 5G security in this fast changing 5G world. If you are new to 3GPP security, you may want to start with my tutorial here.

3GPP SA3 Chairman, Anand R. Prasad recently mentioned in his LinkedIn post:

5G security specification finalized! Paving path for new business & worry less connected technology use.

3GPP SA3 delegates worked long hours diligently to conclude the specification for 5G security standard during 26 Feb.-2 Mar. Several obstacles were overcome by focussed effort of individuals & companies from around the globe. Thanks and congrats to everyone!

All together 1000s of hours of work with millions of miles of travel were spent in 1 week to get the work done. This took 8 meetings (kicked off Feb. 2017) numerous on-line meetings and conference calls.

Excited to declare that this tremendous effort led to timely completion of 5G security specification (TS 33.501) providing secure services to everyone and everything!

The latest version of specs is on 3GPP website here.

ITU also held a workshop on 5G Security in Geneva, Switzerland on 19 March 2018 (link). There were quite a few interesting presentations. Below are some slides that caught my attention.

The picture in the tweet above from China Mobile summarises the major 5G security issues very well. 5G security is going to be far more challenging than previous generations.

The presentation by Haiguang Wang, Huawei contained a lot of good technical information. The picture at the top is from that presentation and highlights the difference between 4G & 5G Security Architecture.


New entities have been introduced to make 5G more open.


EPS-AKA vs 5G-AKA (AKA = Authentication and Key Agreement) for trusted nodes


EAP-AKA' for untrusted nodes.


Slice security is an important topic that multiple speakers touched upon and I think it would continue to be discussed for a foreseeable future.

Dr. Stan Wing S. Wong from King’s College London has some good slides on 5G security issues arising out of Multi-Tenancy and Multi-Network Slicing.

Peter Schneider from Nokia-Bell Labs had good slides on 5G Security Overview for Programmable Cloud-Based Mobile Networks

Sander Kievit from TNO, a regular participant of working group SA3 of 3GPP on behalf of the Dutch operator KPN presented a view from 3GPP SA3 on the Security work item progress (slides). The slide above highlights the changes in 5G key hierarchy.

The ITU 5G Security Workshop Outcomes is available here.

ETSI Security Week 2018 will be held 11-15 June 2018. 5G security/privacy is one of the topics.

There is also 5GPPP Workshop on 5G Networks Security (5G-NS 2018), being held in Hamburg, Germany on August 27-30, 2018.

In the meantime, please feel free to add your comments & suggestions below.


Related Posts & Further Reading: