Showing posts with label Mobile Phones and Devices. Show all posts
Showing posts with label Mobile Phones and Devices. Show all posts

Sunday 17 February 2019

Displaying 5G Network Status Icon on Smartphones and Other Devices

A more updated presentation & video on this topic is available on 3G4G '5G Training' page here.
Who thought displaying of network status icon on 5G devices would be so much fun. Typically the network icons are more of:
2G - Gsm, G, G+, E
3G - 3G, H, H+
4G - 4G, 4G+

Back in 2017, Samsung devices started displaying 4G+ icon. Samsung told mybroadband:

that by default its devices require a network to support Category 6 LTE, and for the total combined bandwidth to exceed 20MHz, before they will display the “4G+” icon.

Networks in South Africa frequently don’t have over 20MHz of aggregated bandwidth available, though.

As a result, one network asked Samsung to reduce the combined bandwidth requirement for the 4G+ icon to display to 15MHz, which Samsung approved.

“Samsung’s global policy regarding the display of the LTE/LTE-A/4G/4G+ network icon is that the network icon display is operator-configurable upon official request and Samsung approval,” it said.

The reason this is interesting is because LTE is really 3.9G but generally called 4G. LTE-A is supposed to be 4G because in theory it meets IMT-Advanced criteria. Then we have LTE-Advanced Pro, which is known as 4.5G. While in majority of the operators display 4.5G as 4G or 4G+, couple of operators has decided to become a bit innovative.

AT&T started by updating the network icons of some of their devices to 5GE, which is their way of saying 4.5G. E stands for Evolution. Or as some people joked, it stands for economy (or value) version, as opposed to premium version.


Brazilian operator Claro, decided to use the 4.5G icon but the 5 is much larger font compared to 4 (see the pic above). Some people call this as dishonest attempt by them.

I see a few people asking how can devices decide if they are on 4G or 4.5G. There is no standard procedure for this and is UE specific. One way is to look at RRC messages. If the system information messages contain optional IE's for 3GPP Release-13, then the network supports LTE-A Pro and if the device supports the features for LTE-A Pro, it can display 4.5G or 5GE, etc. Another approach is the optional IEs present in NAS Attach Accept message. As this comes slightly later in the registration process, the device displays 4G first and once the registration is complete, 4.5G. Note there is no requirement from standards point of  view about displaying of the network status indication icon up to 4G/4.5G.

To avoid such confusion in 5G, 3GPP submitted the first Liaison statement S2-175303. In this, 3GPP said:

With this number of System and Radio access options available, one or more new status icons are expected to appear on the User Interface of future (mobile) devices. A user should expect consistency across devices and networks as to what icons actually mean (i.e. what services might be expected when an icon is displayed).

While 3GPP specifications are not expected to define or discuss Service or RAT indicators in the User Interface themselves, 3GPP should provide the necessary tools in EPS and 5GS to enable them. It is therefore necessary to understand the conditions required for displaying these icons and with which granularity so we can identify what information ought to be available in/made available to the device.

SA2 understands that Status Icons related to 5G might be displayed for example on a UE display taking into account all or some combinations of these items (other items may exist):
- Access Restriction Data in subscription (with the potential exception of emergency access); 
- UE CN registration (i.e. is UE EPC- and/or 5GC-registered?);
- UE capabilities; 
- Network capabilities; 
- UE is camping on a cell of NG-RAN supporting NR only, E-UTRA only or, the ability to activate dual connectivity with another RAT (NR or E-UTRA);
- UE is camping on a cell of E-UTRAN (connected to EPC) with the ability to activate dual connectivity with NR as secondary cell;
- UE is in connected mode using NR, E-UTRA (in 5GS) or dual connectivity between E-UTRA and NR.

Given the above, SA2 would like to kindly ask for any feedback from GSMA FNW and NGMN on requirements and granularity for Service indicators and/or RAT indicators related to 5G.

GSMA responded in R2-1713952. 6 cases have been identified (see the first picture on top) :

The configurations consist of the following states and are as described in Table 1:

  1. EPS NR NSA (EN-DC) capable UE attached to EPC and currently in IDLE state under or in RRC_connected state connected to E-UTRAN cell not supporting LTE-NR dual connectivity 
  2. EPS NR NSA (EN-DC) capable UE attached to EPC and currently in IDLE state under or in RRC_Connected state connected to AND active on LTE for uplink and downlink on only E-UTRAN cell supporting LTE-NR dual connectivity and has not detected NR coverage (i.e. UE is not under NR coverage and/or not configured to make NR measurements)
  3. EPS NR NSA (EN-DC) capable UE attached to EPC and currently in RRC_Connected state connected to E-UTRAN cell (supporting dual connectivity) and active on LTE for uplink and downlink only and has detected NR coverage (i.e. UE is under NR coverage and has been configured to make NR measurements) 
  4. EPS NR NSA (EN-DC) capable UE attached to EPC and currently in IDLE state under E-UTRAN cell supporting LTE-NR dual connectivity and has detected NR coverage (i.e. UE is under NR coverage and has been configured to make NR measurements)
  5. EPS NR NSA (EN-DC) capable UE attached to EPC and currently in RRC_Connected state connected to E-UTRAN cell (supporting dual connectivity) and active on LTE and NR for uplink and/or downlink
  6. 5GS capable UE attached to 5GC and currently in IDLE state under or in RRC_Connected state connected to NG-RAN (eLTE (option 5 or 7) or NR (option 2 or 4) cell)

As there is no consensus on a single preferred configuration, it is desirable to make the display of 5G status icon in the UE configurable such that the display of 5G status icon can be made depending on operator preference. 

This proposal by GSMA was noted by 3GPP in R2-1803949.

RAN WG2 would like to inform GSMA and SA2 that, according to GSMA and SA2 recommendations (LSs R2-1713952 and S2-175270, respectively), RAN WG2 introduced 1 bit indication per PLMN called “upperLayerIndication” within LTE SIB 2. 

This bit enables the realization of the configurations based on UE states as per recommendation from GSMA (e.g. RRC_IDLE UE as for State 2 in LS R2-1713952 from GSMA)”. 

For idle mode UEs this is the only mechanism agreed. 

Actions: RAN WG2 would like to ask GSMA and SA2 to take the information above into account. 

Hopefully there will be less confusion when 5G is rolled out about the status icons. In the meantime we might see some more 4.5G icon innovations.

Tuesday 4 December 2018

Can KaiOS accelerate the transition from 2G / 3G to 4G?


The GSMA Mobile Economy 2018 report forecasts that 2G will still be around in 2025 and the dominant technology will be 3G in Africa. GSMA Intelligence Global Mobile Trends highlighted similar numbers but North Africa was missing in that report. As you can see in the picture below, 3G devices will make up 62% of the total number of devices in Sub-Saharan Africa and 37% in MENA.

Similar information was provided by Navindran Naidoo, Executive, Network Planning & Design, MTN Group in TIP Summit 2017 and Babak Fouladi, Technology and Information System (Group CTIO) , MTN Group in TIP Summit 2018. In fact Babak had a slide that showed 3G devices would make up 61%  of total devices in 2025 in Africa. Rob Shuter, Group President and CEO, MTN Group said at AfricaCom 2018 that Africa lags 7 years behind the Western countries in mobile technologies. Though this may not be universally true, its nevertheless a fact in many areas of the Continent as can be seen from the stats.

In my blog post "2G / 3G Switch Off: A Tale of Two Worlds", I said operators in many developing countries that maybe forced to switch off a technology would rather switch 3G off as they have a big base of 2G users and 3G devices can always fall back on 2G.

So what are the main reasons so many users are still on 2G devices or feature phones? Here are some that I can think off the top of my head:
  • Hand-me-downs
  • Cheap and affordable
  • Given as a gift (generally because its cheap and affordable)
  • 2G has better coverage than 3G and 4G in many parts of the world
  • Second/Third device, used as backup for voice calls
  • Most importantly - battery can last for a long time
This last point is important for many people across different parts of the world. In many developing countries electricity is at a premium. Many villages don't have electricity and people have to take a trip to a market or another village to get their phones charged. This is an expensive process. (Interesting article on this here and here). In developed countries, many schools do not allow smartphones. In many cases, the kids have a smartphone switched off in their bag or left at home. For parents to keep in touch, these kids usually have a feature phone too. 

While all feature phones that were available until couple of years ago were 2G phones, things have been changing recently. In an earlier tweet I mentioned that Reliance Jio has become a world leader in feature phones:


I also wrote about Jio phone 2 launch, which is still selling very well. So what is common between Jio phones and Nokia 8110 4G, a.k.a. Banana phone

They both use a new mobile operating system called KaiOS. So what is KaiOS?

KaiOS originates from the Firefox OS open-source project which started in 2011 and has continued independently from Mozilla since 2016. Today, KaiOS is a web-based operating system that enables a new category of lite phones and other IoT devices that require limited memory, while still offering a rich user experience through leading apps and services. KaiOS is a US-based company with additional offices in France, Germany, Taiwan, India, Brazil, Hong Kong, and mainland China. You can find a list of KaiOS powered devices here. In fact you can see the specifications of all the initial devices using KaiOS here.

Here is a video that explains why we need KaiOS:



There are couple of really good blog posts by Sebastien Codeville, CEO of KaiOS:

There is so much information in both these articles that I will have to copy and paste the entire articles to do them justice. Instead, I want to embed the presentation that Sebastien delivered at AfricaCom below:



I like the term 'smart feature phone' to distinguish between the smartphones and old dumb feature phones.

Finally, it should be mentioned that some phone manufacturers are using older version of Android to create a feature phone. One such phone is "Reinvent iMi" that is being billed as 'Slimmest Smart 3G Feature Phone' in India. It uses Android 4.1. See details here. Would love to find out more about its battery life in practice.

My only small concern is about security of old Android OS. As Android is extensively used, new vulnerabilities keep getting discovered all the time. Google patches them in newer versions of the software or sometimes releases a separate patch. All updates to the Android OS stops after 3 years. This means that older versions of Android can be hacked quite easily. See here for example.

Anyway, feature phones or 'smart feature phones' are here to stay. Better on 4G than on 2G.

Tuesday 2 October 2018

Benefits and Challenges of Applying Device-Level AI to 5G networks


I was part of Cambridge Wireless CWTEC 2018 organising committee where our event 'The inevitable automation of Next Generation Networks' covered variety of topics with AI, 5G, devices, network planning, etc. The presentations are available freely for a limited period here.

One of the thought provoking presentations was by Yue Wang from Samsung R&D. The presentation is embedded below and can be downloaded from Slideshare.



This presentation also brought out some interesting thoughts and discussions:

  • While the device-level AI and network-level AI would generally work cooperatively, there is a risk that some vendor may play the system to make their devices perform better than the competitors. Something similar to the signaling storm generated by SCRI (see here).
  • If the device-level and network-level AI works constructively, an operator may be able to claim that their network can provide a better battery life for a device. For example iPhone XYZ has 25% better battery life on our network rather than competitors network.
  • If the device-level and network-level AI works destructively for any reason then the network can become unstable and the other users may experience issues. 

I guess all these enhancements will start slowly and there will be lots of learning in the first few years before we have a stable, mutually beneficial solution.

Related Posts:

Sunday 22 April 2018

Short summary of #CWFDT event 'Smart Devices of 2025'


Last month, just before the Easter break, I along with some other SIG champions of the Future Devices & Technologies group at CW (Cambridge Wireless) organised an event titled 'Smart Devices of 2025'. Technologies are moving at such an amazing speed that it is not easy to foresee anything beyond 6-8 years. Hence 2025, 7 years from now.



As this was the inaugural event for the revamped SIG, the slides above are my quick introduction to the SIG. We not only talked about the future but we had some nice futuristic devices too. The nuFood 3D Food Printer by Dovetailed printed out some fancy toppings that could go on cheesecake and on other food, making it more appetising. Here is the video on how it works.



All the talks were very informative and very well explained. Its amazing how all of them came together to form a complete picture. The talks are all available here (limited time for non-CW members)

The starting talk by David Wood (@dw2), chair of London Futurists was not only informative and relevant to the subject being discussed but equally entertaining, especially for those who have been in the mobile industry for a long time. He has kindly agreed for me to share his slides which are embedded below.



David talks about NBIC (slide 18) and how it could be combined with Social-tech and Planetary-tech in future to do a lot more than what we can do with it today. While David explains NBIC in his slides, I found this short video on this topic that I think is worth embedding.



It was also good to hear Dr Jenny Tillotson again after a long time. I blogged about smell transmission some 6 years back here. This is something that is still work in progress and probably will be ready by 2025. In the meantime 'Context-Driven Fragrances' can be used for variety of purposes from entertainment to health.


Finally, here is another small presentation (with embedded video) on Telepresence Robots that I did.



Related posts:

Thursday 1 June 2017

Smartphones, Internet Trends, etc

Every few years I add Mary Meeker's Internet Trends slides on the blog. Interested people can refer to 2011 and  2014 slide pack to see how world has changed.


One of the initial slide highlights that the number of smartphones are reached nearly 3 billion by end of 2016. If we looked at this excellent recent post by Tomi Ahonen, there were 3.2 billion smartphones at the end of Q1 2017. Here is a bit of extract from that.

SMARTPHONE INSTALLED BASE AT END OF MARCH 2017 BY OPERATING SYSTEM

Rank . OS Platform . . . . Units . . . . Market share  Was Q4 2016
1 . . . . All Android . . . . . . . . . . . . 2,584 M . . . 81 % . . . . . . ( 79 %)  
a . . . . . . Pure Android/Play . . . . 1,757 M . . . 55%
b . . . . . . Forked Anroid/AOSP . . . 827 M . . . 26%
2 . . . . iOS  . . . . . . . . . . . . . . . . . . 603 M . . . 19 % . . . . . . ( 19 %) 
Others . . . . . . . . . . . . . . . . . . . . . . 24 M  . . . . 1 % . . . . . . (   1 %)
TOTAL Installed Base . 3,211 M smartphones (ie 3.2 Billion) in use at end of Q1, 2017

Source: TomiAhonen Consulting Analysis 25 May 2017, based on manufacturer and industry data


BIGGEST SMARTPHONE MANUFACTURERS BY UNIT SALES IN Q1 2017

Rank . . . Manufacturer . Units . . . Market Share . Was Q4 2016 
1 (2) . . . Samsung . . . .  79.4 M . . 22.7% . . . . . . . ( 17.9% ) 
2 (1) . . . Apple  . . . . . . . 50.8 M . . 14.5% . . . . . . . ( 18.0% ) 
3 (3) . . . Huawei  . . . . . . 34.6 M . . . 9.9% . . . . . . . (10.4% ) 
4 (4) . . . Oppo . . . . . . . . 28.0 M . . . 8.0% . . . . . . . (   7.1% ) 
5 (5) . . . Vivo . . . . . . . . . 22.0 M . . . 6.3% . . . . . . . (   5.6% ) 
6 (9) . . . LG  . . . . . . . .  . 14.8 M . . . 4.2% . . . . . . . (   3.3% ) 
7 (7) . . . Lenovo .  . . . . . 13.2 M . . . 3.8% . . . . . . . (   3.8% )
8 (8) . . . Gionee . . . . . . . .9.6 M . . . 2.7% . . . . . . .  (   3.5% )
9 (6) . . . ZTE  . . . . . . . . . 9.2 M . . . 2.6% . . . . . . . (   5.2% ) 
10 (10) . TCL/Alcatel . . .  8.7 M . . . 2.5% . . . . . . . (  2.4% ) 
Others . . . . . . . . . . . . . . 80.2 MTOTAL . . . . . . . . . . . . . 350.4 M

Source: TomiAhonen Consulting Analysis 25 May 2017, based on manufacturer and industry data


This year, the number of slides have gone up to 355 and there are some interesting sections like China Internet, India Internet, Healthcare, Interactive games, etc. The presentation is embedded below and can be downloaded from slideshare



Sunday 21 May 2017

Research on Unvoiced Speech Communications using Smartphones and Mobiles

A startup on kickstarter is touting world's first voice mask for smartphones. Having said that Hushme has been compared to Bane from Batman and Dr. Hannibal Lecter. Good detail of Hushme at Engadget here.

This is an interesting concept and has come back in the news after a long gap. Even though we are well past the point of 'Peak Telephony' because we now use text messages and OTT apps for non-urgent communications. Voice will always be around though for not only urgent communications but for things like audio/video conference calls.


Back in 2003 NTT Docomo generated a lot of news on this topic. Their research paper "Unvoiced speech recognition using EMG - mime speech recognition" was the first step in trying to find a way to speak silently while the other party can hear voice. This is probably the most quoted paper on this topic. (picture source).


NASA was working on this area around the same time. They referred to this approach as 'Subvocal Speech'. While the original intention of this approach was for astronauts suits, the intention was that it could also be available for other commercial use. Also, NASA was effectively working on limited number of words using this approach (picture source).

For both the approaches above, there isn't a lot of recent updated information. While it has been easy to recognize certain characters, it takes a lot of effort to do the whole speech. Its also a challenge to play your voice rather than a robotic voice to the other party.

To give a comparison of how big a challenge this is, look at the Youtube videos where they do an automatic captions generation. Even though you can understand what the person is speaking, its always a challenge for the machine. You can read more about the challenge here.

A lot of research in similar areas has been done is France and is available here.


Motorola has gone a step further and patented an e-Tattoo that can be emblazoned over your vocal cords to intercept subtle voice commands — perhaps even subvocal commands, or even the fully internal whisperings that fail to pluck the vocal cords when not given full cerebral approval. One might even conclude that they are not just patenting device communications from a patch of smartskin, but communications from your soul. Read more here.


Another term used for research has been 'lip reading'. While the initial approaches to lip reading was the same as other approaches of attaching sensors to facial muscles (see here), the newer approaches are looking at exploiting smartphone camera for this.

Many researchers have achieved reasonable success using cameras for lip reading (see here and here) but researchers from Google’s AI division DeepMind and the University of Oxford have used artificial intelligence to create the most accurate lip-reading software ever.
Now the challenge with smartphones for using camera for speech recognition will be high speed data connectivity and ability to see lip movement clearly. While in indoor environment this can be solved with Wi-Fi connectivity and looking at the camera, it may be a bit tricky outdoors or not looking at the camera while driving. Who knows, this may be a killer use-case for 5G.

By the way, this is not complete research in this area. If you have additional info, please help others by adding it in the comments section.

Related links:



Sunday 12 March 2017

High Power / Performance User Equipment (#HPUE)

3GPP refers to HPUE as High Power UE while the US operator Sprint prefers to use the term High Performance UE.

HPUE was initially defined for US Public Safety Band 14 (700MHz). The intention was that this high power UEs can increase the coverage range from 4km to 8km. This would mean larger coverage areas and less number of cells.

While the commercial UE's (class 3) transmit at +23dBm (max 200mW), the Public Safety people intend to use class 1 UE transmitting +31 dBm (max 1.25W). It was felt that this feature could be beneficial for some TDD bands that do not have to worry about backward compatibility. One such band, pushed by Sprint was TDD Band 41 (2500MHz). As this band is for the commercial UE's, instead of class 1, class 2 power at +26dBm (max 400mW) was proposed.

3GPP TS 36.886 provides the following justification:

Currently, 3GPP has defined only Power Class UE 3 as the type of UE supported for TDD LTE band 41 operations. This definition was based on aligning TDD LTE Band 41 UE power classes with prior work in 3GPP related to other bands. However, it should be mentioned that 3GPP UE Power Class 3 definition (i.e. 23dBm) was mainly driven to ensure backward compatibility with prior technologies (i.e. GSM/UMTS) [2] so that network deployment topologies remain similar. Furthermore, maintaining the same power class UE definition (i.e. Class 3) as previous technologies would maintaining compliance with various national regulatory rulings, particularly in terms of SAR, for FDD LTE duplexing mode. 

However, TDD LTE band 41 does not have any 3GPP legacy technologies associated with it, hence the backward compatibility consideration is not applicable in its case. Also, since band 41 is defined as a TDD LTE band, it is less susceptible to SAR levels that FDD LTE bands due to SAR definition. Therefore, defining a new UE power class with higher than 23dBm Tx power for TDD LTE Band 41 operations would not compromise any of 3GPP foundational work, while improving UE and network performance. It should also be mentioned that 3GPP has done similar work on other bands (i.e. band 14) when defining a higher power class UE, hence the concept presented in this document is a continuation of that process.

The present document carries out a feasibility analysis for defining a UE Power class 2 (i.e. 26dBm) for operation on TDD LTE band 41. The document analyses current and future technological advancements in the area of UE RF front-end components and architectures that enable such definition while maintaining 3GPP specification and other regulatory bodies' requirements. It should be emphasized that this proposal only relates to single carrier UL operations on TDD band 41 (i.e. TM-1/2 modes) without affecting current 3GPP definition for UL carrier aggregation on band 41.

As you can see from the tweet above, Sprint CEO is quite pleased with the HPUE. 

SourceDiana Goovaerts

Iain Gillott, iGR points out that HPUE applies to Sprint’s 2.5 GHz TDD network and associated spectrum, and the company claims up to 30 percent increase in cell cover from the new technology.  It should be noted that HPUE is a 3GPP standard that applies to the 2.5 GHz TDD band (Band 41) and is also to be used by China Mobile and Softbank.  HPUE was developed as part of the Global TDD LTE Initiative (GTI) which includes Qualcomm Technologies, Samsung, ZTE, Broadcom, MediaTek, Skyworks Solutions, Alcatel, Motorola, LG and Qorvo... The cool part: the improvement in coverage comes from simply improving the device uplink power.  So Sprint, China Mobile and Softbank will not have to visit their cell sites to make changes; they just need 2.5 GHz TDD devices with HPUE to get the benefit.


Milan Milanović recently wrote about Sprint’s Gigabit Class LTE network goes live in New Orleans. One of the questions I had was why is the uplink so rubbish as compared to downlink. He kindly pointed out to me that this is TDD config 2
If you are wondering what is TDD Config 2, see the pic below
Source: ShareTechNote

Sprint expects HPUE to appear in postpaid devices starting in 2017, including new devices from Samsung, LG, HTC, and Moto. It’s expected that all of Sprint’s new devices will have HPUE support within the next two years.

I think it would be interesting to see how this impacts when there are a lot more users and devices. I am quite sure there will be more requests for HPUE in further TDD bands.

Related Links:

Friday 17 June 2016

History: 30 years of the mobile phone in the UK


In January 1985 the UK launched its first mobile networks. Now, thirty years on, many people and companies in the UK have been celebrating this enormous achievements and advances that have been made since then and which have seen the mobile evolve from a humble telephone into the multimedia pocket computer which has become such an essential part of modern life. It was simply not possible in 1985 to envisage a country that would be able to boast more active mobile phones than people or to have along the way clocked up several world firsts, and be now leading on the deployment of 4G and shaping the future 5G technologies.

Below is a series of talks in an event organised by University of Salford,



The following talks are part of playlist:

1. Launch of Vodafone – Nigel Linge, on behalf of Vodafone
2. Launch of Cellnet - Mike Short, O2
3. The emergence of GSM - Stephen Temple, 5GIC
4. The launch of Mercury one2one and Orange - Graham Fisher, Bathcube Telecoms
5. From voice to data - Stuart Newstead, Ellare
6. Telepoint - Professor Nigel Linge, University of Salford
7. 3G - Erol Hepsaydir, 3 UK
8. Handset evolution and usage patterns - Julian Divett, EE
9. 4G and onwards to 5G – Professor Andy Sutton, EE  and University of Salford.

For anyone interested in reading about the history of mobile phones in UK, read this book below with more facts and figures


If you have any facts to share, please feel free to add in the comments below.

Saturday 14 May 2016

4G / LTE by stealth


In the good old days when people used to have 2G phones, they were expensive but all people cared about is Voice & SMS.


The initial 3G phones were bulky/heavy with small battery life, not many apps and expensive. There was not much temptation to go and buy one of these, unless it was heavily subsidised by someone. Naturally it took a while before 3G adoption became common. In the meantime, people had to go out of their way to get a 3G phone.

With 4G, it was a different story. Once LTE was ready, the high end phones started adding 4G in their phones by default. What it meant was that if the operator enabled them to use 4G, these devices started using 4G rather than 3G. Other lower end devices soon followed suit. Nowadays, unless you are looking for a real cheap smartphone, your device will have basic LTE support, maybe not advanced featured like carrier aggregation.

The tweets below do not surprise me at all:



This is what I refer to as 4G or LTE by stealth.

Occasionally people show charts like these (just using this as a reference but not pin pointing anyone) to justify the 5G growth trajectory with 4G in mind. It will all depend on what 5G will mean, how the devices look like, what data models are on offer, what the device prices are like, etc.

I think its just too early to predict if there will be a 5G by stealth.

Thursday 31 March 2016

Smartphones: It came, It saw, It conquered


Smartphones have replaced so many of our gadgets. The picture above is a witness to how all the gadgets have now been replaced by smartphones. To some extent hardware requirements have been transferred to software requirements (Apps). But the smartphones does a lot more than just hardware to software translation.

Most youngsters no longer have bookshelves or the encyclopedia collections. eBooks and Wikipedia have replaced them. We no longer need sticky notes and physical calendars, there are Apps for them.

Back in 2014, Benedict Evans posted his "Mobile is Eating the world" presentation. His presentation has received over 700K views. I know its not as much as Justin Bieber's songs views but its still a lot in the tech world. He has recently updated his presentation (embedded below) and its now called "Mobile ate the world".

Quite rightly, the job is not done yet. There is still long way to go. The fact that this tweet has over 600 retweets is a witness to this fact. Here are some of the slides that I really liked (and links reltaed to them - opens in a new window).
While we can see how Smartphones are getting ever more popular and how other gadgets that its replacing is suffering, I know people who own a smartphone for everything except voice call and have a feature phone for voice calls. Other people (including myself) rely on OTT for calls as its guaranteed better quality most of the time (at least indoors).

Smartphones have already replaced a lot of gadgets and other day to day necessities but the fact is that it can do a lot more. Payments is one such thing. The fact that I still carry a physical wallet means that the environment around me hasn't transformed enough for it to be made redundant. If I look in my wallet, I have some cash, a credit and debit card, driving license, some store loyalty cards and my business cards. There is no reason why all of these cannot be digital and/or virtual.
A Connected Car is a Smartphone on/with wheels.


A connected drone can be considered as smartphone that flies.
The Smartphones today are more than just hardware/software. They are a complete ecosystem. We can argue if only 2 options for OSs is good or bad. From developers point of view, two is just about right.
Another very important point to remember that smartphones enable different platforms.

While we may just have messaging apps that are acting as platforms, there is a potential for a lot more.

Here is the presentation, worth reflecting on each slide:



If you haven't heard Benedict Evans speak, you can refer to a recent video by him on this topic:



Related posts on the web:



Monday 29 February 2016

The Internet of Me: It’s all about my screens - Bob Schukai


I had the pleasure of attending the IET Turing lecture last week and listening to Robert Schukai. He gave a brilliant talk on how Smartphones are changing the way we do things. Its a very interesting talk but its nearly 87 minutes long. Slides are not available but the video is embedded below.


Wednesday 13 January 2016

Interesting gadgets from CES 2016

Here are some gadgets from the recently concluded Consumer Electronics Show (CES) 2016. These are all collected from the tweets and there is a Youtube video below if you are interested. There are just too many interesting things to list but do let me know which ones are your favourites.





Sunday 7 June 2015

Nuggets from Ericsson Mobility Report


Ericsson mobility report 2015 was released last week. Its interesting to see quite a few of these stats on devices, traffic, usage, etc. is getting released around this time. All of these reports are full of useful information and in the old days when I used to work as an analyst, I would spend hours trying to dig into them to find gold. Anyway, some interesting things as follows and report at the end.

The above chart, as expected, data will keep growing but voice will get flatter and maybe go down, if people start moving to VoIP

Application volume shares, based on the data plan. This is interesting. If you are a heavy user, you may be watching a lot of videos and if you are a light user then you are watching just a few of them.

How about device sizes, does our behaviour change based on the screen size?

What about the 50 Billion connected devices, was it too much? Is the real figure more like 28 billion?

Anyway, the report is embedded below.



Friday 3 April 2015

Some interesting April Fools' Day 2015 Technology Jokes

Here is a quick roundup of some interesting tech #AprilFools day jokes from the web. Click on the links to learn more

Samsung Galaxy Blade Edge - Chef's edition






Selfie Shoes by Miz Mooz - Shoefie



com.google - You can try it in chrome browser, it was working


Smartbox by Inbox: the mailbox of tomorrow, today - by Google




HTC Re-Sok - the "world's first truly smart sock"






Bing's Palm Search technology




Introducing #MotoSelfieStick - By Motorola



Twitter’s Twelfie Stick




Domino’s Domi-No-Driver Service

Iltasanomat news on April 1st 2015 (source not available): Finnish Police is having their own air forces with 250 seagulls with TETRA radio and camera


And finally, these old style pranks still work :-)

If you like them, you will enjoy the last year ones too. Here.

Saturday 28 March 2015

Report on Spectrum Usage and Demand in the UK


Last week at work, we released a report titled "UK Spectrum Usage & Demand". The only time most people hear about spectrum is when there are some auctions going on. Often a small chunk of spectrum gets sold off for billion(s) of dollars/pounds and these surely make a headline. As I recently found out, 50% of spectrum in UK is shared and 25% is license exempt.

Anyway, this first edition of the report focuses on Public Mobile, Utilities, Business Radio and Space/Satellites. Space is becoming an important area of focus here as it is a significant contributor to the UK economy.

Anyway, the report is embedded below and is available to download from here: