Showing posts with label Release 12. Show all posts
Showing posts with label Release 12. Show all posts

Tuesday 17 April 2012

Release-12 Study on Integration of Single Sign-On (SSO) frameworks with 3GPP networks



This Work Item aims to provide service requirements for interworking of the operator-centric identity management with the user-centric Web services provided outside of an operator’s domain. Specifically, it addresses integration of SSO and the 3GPP services, which is essential for operators to leverage their assets and their customers’ trust, while introducing new identity services. Such integration will allow operators to become SSO providers by re-using the existing authentication mechanisms in which an end-user’s device effectively authenticates the end user.

For the operator to become the preferred SSO Identity Provider might require integration of the operator core with existing application service / content providers to allow the usage of credentials on the UE for SSO services. The 3GPP operator may leverage its trust framework and its reliable and robust secure credential handling infrastructure to provide SSO service based on operator-controlled credentials. Such SSO integration has to work with varied operator authentication configurations.

The Objective is to provide a comprehensive set of service requirements for the integration of SSO frameworks with 3GPP network by building upon the work done in the related feasibility study FS_SSO_Int (published in TR 22.895) as well as previously published related technical reports. This Work Item covers the following:

Service requirements for integration of Identity Management and SSO frameworks, e.g. OpenID;
Service requirements for Operators to enable users to access 3rd party  services using Operator controlled user credentials;
Service requirements associated with ensuring that the intended user is making use of the associated SSO capability (including the case when the UE has been stolen or lost).

3GPP TR 22.895 V12.0.0 - Study on Service aspects of integration of Single Sign-On (SSO) frameworks with 3GPP operator-controlled resources and mechanisms (Release 12) is an interesting read that provides use cases for SSO

The diagram above is from an interesting paper titled "Multi-domain authentication for IMS" that describes SSO and other authentication procedures and introduces the advantage of SSO.



Friday 16 December 2011

Release 12 study item on Continuity of Data Sessions to Local Networks (CSN)

LIPA was defined as part of Release-10 that I have already blogged about. Imagine the situation where a user started accessing local network while camped on the Home eNode B (aka Femtocell) but then moved to the macro network but still wants to continue using the local network. Release 12 defines this feature and is called Continuity of Data Sessions to Local Networks (CSN). This study item was originally part of Release 11 but has now been moved to Rel-12.



From SP-100885:


Justification
Basic functionality for Local IP Access (LIPA) has been specified in Rel-10.
LIPA signifies the capability of a UE to obtain access to a local residential/enterprise IP network (subsequently called a local network) that is connected to one or more H(e)NBs.
The current study item investigates extending LIPA functionality to allow access to the local network when a UE is under coverage of the macro network and provide related mobility support.

LIPA allows a UE to work with devices in the local network – e.g. printers, video cameras, or a local web-server. If the local network offers services that enable exchange of digital content (e.g. UPnP) LIPA allows the UE to discover supporting devices and to be discovered.
Examples for services that become available by LIPA are:
·         The pictures stored in a UE’s digital camera may be uploaded to a local networked storage device or printed out at a local printer.
·         A portable audio player in the UE may fetch new content from a media centre available on the local network.
·         A UE may receive video streams from local surveillance cameras in the home.
·         A local web-server in a company’s intranet may be accessed by the UE.
·         Support of VPN.
LIPA does not require the local network to be connected to the Internet but achieves IP connectivity with the UE through one or more H(e)NBs of the mobile operator.
In Release 10  3GPP has only specified the support of LIPA when the UE accesses the local network via H(e)NB.
On the other hand an operator may, e.g. as a chargeable user service, wish to provide access to the local network also to a UE that is under coverage of the macro network. Access to the local network when a UE is under coverage of the macro network should be enabled in Rel-11.

In Rel-10 it had been required for a UE to be able to maintain IP connectivity to the local network when moving between H(e)NBs within the same local network.
However, access to the local network may be lost as a UE moves out of H(e)NB coverage into the macro network, even if other services (e.g. telephony, data services, SIPTO) survive a handover to the macro network and are continued. This may result in an unsatisfactory user experience.
The current study item will allow continuation of data sessions to the local network when the UE moves between H(e)NB and the macro network.

Therefore, in Rel-11, the 3GPP system requires additional functionality to allow
·         A UE to access the local network from the macro network
·         A UE to maintain continuity of data sessions to the local network when moving between a H(e)NB and the macro network

Objective:              to propose requirements and study feasibility for the following scenarios:
Provide a capability to the mobile operator to allow or restrict
­        Access to an enterprise/residential IP network when a UE is under coverage of the macro network, assuming that the IP address of the local IP network (e.g. residential/enterprise gateway) is available to the UE.
­        Continuity of data session(s) to an enterprise/residential IP network when a UE moves between a H(e)NB in an enterprise/residential environment and the macro network.
The support of Continuity of Data Sessions to Local Networks should be an operator option that may or may not be provided by individual PLMNs.

Service Aspects
The user should be able to decline access to the local network from the macro network. The user should also be able to decline continuity of data sessions to local networks when moving between H(e)NB and the macro network (e.g. in the case when data sessions to local networks is charged differently if accessed from macro coverage or via the H(e)NB).
A difference in QoS may be noticeable by the user when the local network is accessed from the macro network or via the H(e)NB.

Tuesday 6 December 2011

Proximity-based Services (ProSe) - New Study Item in 3GPP Rel-12


There is a new Rel-12 WI "Study on Proximity-based Services" with Qualcomm being the main proponent of this. This was earlier known as D2D (Device-to-device). From the 3GPP SP-110638:

Justification: Proximity-based applications and services represent a recent and enormous socio-technological trend. The principle of these applications is to discover instances of the applications running in devices that are within proximity of each other, and ultimately also exchange application-related data. In parallel, there is interest in proximity-based discovery and communications in the public safety community.


Current 3GPP specification are only partially suited for such needs, since all such traffic and signalling would have to be routed in the network, thus impacting their performance and adding un-necessary load in the network. These current limitations are also an obstacle to the creation of even more advanced proximity-based applications.


In this context, 3GPP technology, has the opportunity to become the platform of choice to enable proximity-based discovery and communication between devices, and promote a vast array of future and more advanced proximity-based applications.


Objective: The objective is to study use cases and identify potential requirements for an operator network controlled discovery and communications between devices that are in proximity, under continuous network control, and are under a 3GPP network coverage, for:
1. Commercial/social use
2. Network offloading
3. Public Safety
4. Integration of current infrastructure services, to assure the consistency of the user experience including reachability and mobility aspects
Additionally, the study item will study use cases and identify potential requirements for
5. Public Safety, in case of absence of EUTRAN coverage (subject to regional regulation and operator policy, and limited to specific public-safety designated frequency bands and terminals)


Use cases and service requirements will be studied including network operator control, authentication, authorization, accounting and regulatory aspects.


The study does not apply to GERAN or UTRAN.

In the past I have mentioned about Qualcomm's proprietary Flashlinq technology that seems to contain lots of similarities. There is also this AllJoyn technology that Qualcomm has been showing off since MWC. Here is a video of that:



There is a lot of potential of this proximity marketing technology mostly for marketing purposes and games. In the end it would depend of the Apps, services and charging based around this. There is also a big possibility for TV and VoD services where you start watching something on your device but then transfer it onto a TV or just a bigger screen.

Wednesday 27 April 2011

Possible Release-12 features

Not sure if everyone checked the presentation from yesterday, it has a slide that lists possible Rel-12 features that I have listed below:


Release 12 content not yet defined, but Study Items (SI) in Release 11 indicate where specification work is likely

•Study on IMS based Peer-to-Peer Content Distribution Services

•Study on IMS based Peer-to-Peer Content Distribution Services (Stage 2)

•Study on IMS Network-Independent Public User Identities

•Study on Integration of Single Sign-On (SSO) frameworks with 3GPP networks

•Study on Coordinated Multi-Point operation for LTE

•Study on UE Application Layer Data Throughput Performance

•Study on Uplink MIMO

•Study on Non Voice Emergency Services

•Study on UICC/USIM enhancements

•Study on Alternatives to E.164 for Machine-Type Communications

•Study on enhancements for Machine-Type Communications (MTC)

•Study on Support for 3GPP Voice Interworking with Enterprise IP-PBX

•Study on Security aspects of Integration of Single Sign-On (SSO) frameworks with 3GPP networks

•Study on Core Network Overload solutions

•Study on Continuity of Data Sessions to Local Networks

•Study on Non-MTC Mobile Data Applications impacts

•Study on System Enhancements for Energy Efficiency

•Study on Solutions for GSM/EDGE BTS Energy Saving

•Study on HSDPA Multipoint Transmission

•Study on Inclusion of RF Pattern Matching as a positioning method in the E-UTRAN

Release 11 completion date set for September 2012, Release-12 work will start after that.