Monday, 2 June 2008

LTE v/s WiMax

In my last blog “LTE Latest News and Status” I wrote how LTE is developing as a technology how some companies are choosing LTE over WiMax.
But we still have a long way to go before it is clear that which technology will be the winner in the race of 4G.
Every now and then the trends are occurring in which one technology being preferred than the other.
But some of the recent developments have once again suggested that WiMax as a technology can’t be taken as lightly and is providing seriously competition for LTE.

WiMax already has a first-mover advantage over LTE. It is possible that WiMax could prove to be the winner in the 4G race against LTE (Long Term Evolution) simply because the technology is here, first.
Teresa Kellett, director of global development for telco Sprint Nextel, said during a panel discussion at WiMax Forum Asia 2008 that WiMax's first-mover advantage over LTE may help the former become a more widely-adopted technology eventually.

LTE is touted as the successor to the existing UMTS (Universal Mobile Telecommunications System) 3G technology, capable of supporting significantly faster data rates.
Comparing the two competing technologies to another pair of competing standards--GSM and CDMA--she said GSM is the dominant cellular technology globally because it was first to market. CDMA, on which Sprint Nextel operates, has a stronger footprint in the United States.

"The head start a technology has is the key differentiator," said Kellett.
Another panellist, Scott Wickware, vice president of carrier networks for Nortel, said the exchange of knowledge is also beneficial to current players in the market in helping them in areas such as establishing business plans.
"This is the first time I'm seeing so much cooperation in the industry, so it's good to be a first mover," said Wickware.

Recent trends in the industry are showing that when some big gun like Nokia, Ericsson are choosing LTE then WiMax as a technology also has something to relish when it sees that Intel is in their camp.

But together with the competion between the two technolgies, both the camps also realise that to survive and instead of killing each other they might be complementary to each other and move towards the convergence.

Garth Collier, managing director, of Intel's WiMax division for Asia-Pacific and Japan, said he is "seeing for the first time a convergence in the cellular industry".
Collier raised the point of WiMax and 3G being complementary and the possibility of co-existence.

While the market waits for LTE, WiMax will serve as a "data overlay" for 3G, meant for delivering data where 3G's speeds are inadequate, while the cellular network continues to handle voice well, he said.

The emergence of dual mode or dual band devices is most likely to happen in the "early days" as the industry in developed markets embraces 4G technology, he said. Raising the example of Korea, he noted the availability of models which combine both HSDPA (high-speed downlink packet access) and WiBro functionality.

In an interview with ZDNet Asia, Wickware said he expects WiMax to find its place as a more cost-effective and quicker way for providers to turn on broadband in rural areas without having to lay physical copper or fibre infrastructure to homes.

This concept is not just contained to emerging markets. "Even in developed countries, there are pockets where coverage is not good, where the operators have not had a business case to provide standard broadband," said Wickware.

Furthermore, the ecosystem is growing, he said. "When you consider that companies such as Intel are very much backing WiMax, it is not a stretch to imagine many of the PCs or consumer electronics devices will drive the deployment of WiMax in developed urban areas, too," said Wickware.

LTE camp sees this competition and trying very hard to complete 3GPP specifications for LTE (36 series comprise of LTE specifications).In the recent RAN meeting in Kansas, USA (May 5 – 9 2008) it was concluded that most LTE specifications are about 95% ready (RRC about 80%).

So LTE is not keeping itself far behind and only time will tell who will score the goal in this extra time or the match might go to penalties.

IMS to succeed by serving LTE

IMS (IP Multimedia Subsystems) has been around for some time, and many infrastructure vendors have invested heavily in developing IMS capabilities, solutions and products. But market acceptance has been slower than expected. Now, with the 4G standards LTE (Long Term Evolution) and WiMAX taking shape, the IMS platform has been given a new role and a niche that will carry it a considerable distance into the future.

That is because some elements of IMS such as the Home Subscriber Server (HSS) and the Policy and Charging Rule Function (PCRF) are also key components in the LTE core architecture. Similar elements are also defined in WiMAX. These elements are required to enable the end-to-end QoS and dynamic charging capabilities required for the next generation of mobile data services.

“IMS, which enables the rapid creation and deployment of new services and applications, was rather slow to take off because operators weren’t quite sure how they were going to use it,” says ABI Research senior analyst Nadine Manjaro. “They struggled to find a business case for it. Now, the FCC in the United States has declared that winners of 700MHz spectrum must meet open application and device criteria. Verizon won most of that band in the recent auction, and will use it for LTE. Verizon launched its Open Development Initiative (ODI) based on IMS architecture called ‘Advance to IMS’ in March 2008. This interface for applications and devices will enable the openness that the FCC requires.”

Many operators and vendors are now moving to an open applications architecture: Sprint has mentioned it in reference to its application strategy and uses IMS as the base architecture for its High Performance Push to Talk (HPPTT) network scheduled to launch in June 2008. Nokia mentioned open devices and applications as a key initiative in its migration strategy. IMS will help to ease the transition to open development, and will be a fundamental part of future LTE and WiMAX networks.

More on this available available in this paper here.

Friday, 30 May 2008

Worlds Worst War


The annual D&AD award winners have been announced with a ‘Yellow Pencil’ going to an interesting campaign by Tokyo-based agency Hakuhodo for snack food client Tohato.

The World’s Worst War used two new spicy snack flavors as opposing forces and engaged players to invite friends, thereby increasing their own personal rank, to join forces of either the Habanero Evil Army or the dreaded Satan Jorquia… Yikes. Better to watch the video!

The simplest way to understand this is the self explanatory youtube video:
http://www.youtube.com/watch?v=PNp7qBLX7rw

Tomi has interesting post on this here.

Wednesday, 28 May 2008

E-MBMS out of Rel-8, CBS in


E-MBMS is out of Release 8 and CBS (Cell Broadcast Service) is back in LTE. CBS as far as I am aware is not used much anywhere except Japan. CBS has been added specifically as now there is requirement for EWTS (Earthquake and Tsunami Warning System) .

Tuesday, 27 May 2008

Clever move from LTE camp regarding IPR costs

Finally, probably because of threat from WiMAX, LTE vendors have announced a mutual commitment to a framework for establishing predictable and more transparent maximum aggregate costs for licensing intellectual property rights (IPR) that relate to 3GPP Long Term Evolution and Service Architecture Evolution standards (LTE/SAE). The companies invite all interested parties to join this initiative which is intended to stimulate early adoption of mobile broadband technology across the communications and consumer electronic industries.

Alcatel-Lucent, Ericsson, NEC, NextWave Wireless, Nokia, Nokia Siemens Networks and Sony Ericsson are the initial signatories

The framework is based on the prevalent industry principle of fair, reasonable and non-discriminatory (FRAND) licensing terms for essential patents. This means that the companies agree, subject to reciprocity, to reasonable, maximum aggregate royalty rates based on the value added by the technology in the end product and to flexible licensing arrangements according to the licensors’ proportional share of all standard essential IPR for the relevant product category.

Femtocell Training

I am in process of preparing Femtocell training as couple of companies have already inquired. I am thinking of the following topics:

Introduction
  What is a Femtocell
  Why do we need Femtocell
  One-phone, Blue-Phone and BT Fusion
  Different types of femto's including Femto++ and super-femtocell (PicoCell)
State of Market

  Key Players
  Whats going on
Femtocell Network Architecture

  UMA based architecture
  Iub over IP
  Iu over IP
  SIP/IMS based architecture
Security, etc.
Advanced Technical issues

   PNP
   Auto Discovery
   Auto Provisioning
   Cognitive Radio Approach
   Open and Close femtocell
   RF Interference
Femtozone Services
Environment and Health effects


Can anyone suggest anything else?

Friday, 23 May 2008

Femtocell - The new jargon

I was in the Wireless 08 event yesterday in London to hear more about Femtocells and there were some very interesting presentations. There are lots of new terms floating around and they are as follows:
  • Super-Femtocell: Well this term is being used by IP Access to refer to their Picocell. I am not sure if this is the right way to refer them but they aare surely getting lot of attention. Super-Femto is another variant of this term and so is 'femtocell on steroids'
  • Femto++: This term was used by Airvana to refer to enterprise femtocell. They also refered to it as eFemto.
  • Cognitive Radio Femtocell: This was referred by Ubiquisys. I was really impressed with this one and will write a blog later on this one.
So listen all you spammers who buy up all the website names to sell at profit later. Now is your time, so read this blog carefully and off you go ;)

Wednesday, 21 May 2008

Dell to power laptops with HSPA

Ericsson has a press release saying that Dell will use its high-speed HSPA mobile broadband technology in next-generation laptops due in the second quarter of 2008. The modules will be built in to the Dell laptops, according to a press release by both companies. By June, Intel is expected to roll out its next-generation "Montevina" mobile chipset, which will be used as the foundation for the next generation of Centrino notebooks.

Although Montevina was expected to usher in the next-generation WiMAX technology, the apparent delays underlying Clearwire's WiMAX rollout may have pushed Dell to seek an alternative broadband choice.

According to a Dell spokeswoman, the choice to include Ericsson's HSPA technology was as much about compatibility as throughput. If a customer takes a 3G-enabled laptop with him or her to Europe, it might work, "but it's not a seamless transition," Dell's Anne Camden said. The HSPA technology is more uniform throughout the globe, she said.

But it's also true that Dell wanted a broadband solution now. "Mobile broadband delievers a broadband experience today, and that is what we need," Camden said. "We want to deliver a great broadband experience. We're certainly looking at WiMAX support in future products."
Dell is the second major PC vendor to sign on to use Ericsson's HSPA technology, after Lenovo.

According to Ericsson, both Dell's business customers and consumers will use the new modules. Interestingly, Ericsson built in a GPS component into the HSPA modules, meaning that location services will be also be built in.

Market projections indicate that in 2011, approximately 200 million notebooks will ship annually and Ericsson anticipates that 50 percent of those notebooks will feature a built-in HSPA mobile broadband module. Users will increasingly have the option to take their broadband connections with them, delivering on the promise of full service broadband, which is anytime, anywhere access from the screen or device of choice.

Meanwhile:

Winners of Sweden's 2.6GHz spectrum auction can now look to rapid deployment of advanced mobile networks, with Ericsson poised to deliver end-to-end HSPA and LTE technology. The auction is the first held in the world to license according to the harmonized band arrangement decision by the European Conference of Postal and Telecommunications Administrations (CEPT).

As a front runner in allocating the 2.6GHz frequency band, the regulator Swedish Post and Telecom Agency has adopted a harmonized spectrum allocation as defined by CEPT. The allocation will facilitate economies of scale for operators and secure the availability of standardized terminals, allowing roaming between countries for users. Auctions of the 2.6GHz band in Austria, Netherlands, Italy and the UK are scheduled for 2008.
LTE and HSPA, the preferred technologies for the 2.6GHz band, enable a superior, mass-market user experience, enhancing demanding applications such as mobile video, blogging, advanced games, rich multimedia telephony and professional services.


Ericsson's solutions help operators leverage their network investments by providing optimal voice communication and mobile broadband services. Ericsson employs scalable architecture and allows seamless network expansion, providing an efficient migration path to broadband, regardless of the legacy technology in place.

Ericsson's offerings for the 2.6GHz band are based on its multi-standard RBS 3000 and RBS 6000 series. These energy efficient base stations support WCDMA/HSPA/LTE and GSM/EDGE/WCDMA/HSPA/LTE respectively. Ericsson's RBS suite offers the smallest base stations on the market and facilitates low-cost migration and easy network integration. HSPA is already commercially deployed in more than 185 networks in 80 countries, with more than 600 devices launched.

Monday, 19 May 2008

Introduction of Hierarchical cells by the networks

This one is from Dean Bubley's Disruptive Wireless Blog. Now I was under the impression that the network operators have already deployed multiple frequencies and have a hierarchical arrangement as in the diagram above. This may not be exactly true as according to Dean's post it seems that only now the operators are looking at this option.

Surely the people already involved in field testing can tell us if they are seeing Inter-frequency measurements and if they are wouldnt this indicate multiple frequencies?

My thinking was that when the operators rolled out HSPA they kept the HSPA part on one frequency and they let the existing 3G on the original frequency. This helped them keep everything smooth without worrying too much about the code tree management.

Now Dean has something on Femtocell and since I have posted on this topic recently, I am quite interested in his views:

Austria is a bit of an outlier in adoption of HSPA, with data traffic apparently now 20x outweighing voice on the network, but it's an interesting indicator of what's coming down the line. HSPA networks are now having to deploy an extra set of transmitters on the base stations. For those readers who don't follow this area, 3G UMTS networks (including HSPA), use 5MHz spectrum slices. Most operators have allocations of 10, 15, 20MHz or more, but typically haven't been using all of their theoretical capacity thus far. if you assume that most countries will take two years from launching flatrate dongle plans, rather than one year, to fill up the first 5MHz, it's an early indicator of demand ramp-up for spectrum (and capacity) over the next few years. This is especially true as end users get used to higher-speed HSPA, as well as increases in the total number of users. Add in some growth in data traffic from phones with decent browsers or video clients, and it starts to look as if the 2.1GHz 3G band is going to fill up very quickly. This has a number of implications:
  • Firstly, there's a short term business case for femtocells - if they can work out cheaper than adding a second or third 5MHz carrier on the macro network. On the flipside, some of the calculations I've seen have suggested that femtos substitute for new extra base stations rather than adding extra kit to existing ones. I'm not sure what the comparative costs are, but I guess that bring up a 2nd carrier must be a lot less. [Not much discussion from Ericsson about femtos for 3G macro-offload (or indeed at all), to be honest. My take is that as well as potentially impacting its overall integrated base station/transmission business model and bringing in new competitors, I get the distinct impression that the Big E is a little skeptical about some of the femto hype on a fundamental basis.]
  • Secondly, it means that operators will need to get extra spectrum if they're serious about continuing to drive mobile broadband. 2.6GHz is the obvious big chunk, but refarming 900 and 1800MHz GSM starts to take on more urgency ( as well as expediency for coverage reasons).
  • Lastly, it means that operators are going to be faced with some unpalatable choices in terms of capex for HSPA - having to choose between fulfilling the need for extra 5MHz carriers in high-use areas, versus continuing 3G build out in areas with no coverage at all. I suspect that this is going to drive a lot more emphasis on EDGE - and EDGE Evolved, as an interim coverage solution in marginal areas, as it wring more life out of existing 2G base stations. Interestingly, the GSA has been talking up EDGE today as well.
I am going to try and digup some information on UK operators on the frequency usage as this may probably help understand about the situation better.

Sunday, 18 May 2008

Qualcomm to back MediaFLO at the expense of MBMS

Just couple of days back I was complaining about everyone abandoning MBMS but now I can see why Qualcomm is suddenly uninterested in MBMS:

U.S. mobile technology company Qualcomm Inc. (QCOM) said Friday that it acquired an L-band radio spectrum licence for GBP8.3 million that will enable it to bring new mobile TV and wireless services to the U.K.

Qualcomm U.K. Spectrum Ltd bought the licence to use 40 Megahertz of the 1452 MHz to 1492 MHz band in an auction by communications regulator Ofcom.

The licence is suitable for offering mobile television, wireless broadband and satellite radio, Ofcom said.

The L-Band spectrum license acquired by Qualcomm covers the entire United Kingdom and is technology neutral, thereby enabling Qualcomm to use the spectrum for innovative technologies, depending on its assessment of market needs in the United Kingdom.

The L-band, on which any technology or service can be used, will contend with two main rivals, DVB-H, backed by Nokia, the handset maker, and by Viviane Reding, the European Telecoms Commissioner, who wants to make it the European standard, and TDTV, which is being tested by Orange and T-Mobile in the UK. All three technologies would require special handsets able to pick up a broadcast signal.

Mobile companies including Vodafone and 3 already offer mobile television in Britain, but take-up has been poor.

Qualcomm said that it does not intend to run a mobile TV broadcasting network as an operator, as it has done in the United States, but is looking for partners to launch its mobile television technology, MediaFLO.

Andrew Gilbert, head of Qualcomm's European operations, said: “We will not attempt to become an operator, but if service providers want to partner with us ... we are open to talking to folk.” Mr Gilbert added that Qualcomm would use the spectrum to bring a variety of wireless technologies to the UK market but that it had no timetable for launches in mind.

With industry heavyweights supporting DVB-H and TDTV, analysts see this as Qualcomm's last chance to bring MediaFLO to the UK and European markets. Will Harris, of Enders Analysis, said: “One potential outcome from this is that two competing mobile TV services could be launched. While it is too early to say which technology will win at this stage, those that fail to get support from the mobile operators will lose.”

O2, the mobile network provider, was initially interested in the L-band auction, but pulled out without bidding. Failed bidders include WorldSpace, the satellite radio group, and The Joint Radio Company, which runs spectrum for the UK energy industry.

The next competition, to run later this year, is even more significant. It has a price tag that could run into the tens of millions because it is for a frequency that supports WiMax, a high-speed network technology similar to a common WiFi home wireless system, but with a more robust signal and a range of a kilometre or more.

Although WiMax is not new it has had little success so far. But interest is hotting up. In the US last week, Sprint Nextel announced a $14.5bn (£7.4bn) joint venture with Clearwire to build a network servicing as many as 140 million people by the end of 2010. And Google is pumping another $500m into the scheme.

At the moment, the UK market is small. Freedom4 and UK Broadband, a subsidiary of PCCW, are the only providers with a national licence, and only limited services are available. But developments on the other side of the Atlantic are fuelling interest, and some big players are lining up for the relevant spectrum auction. Ian Livingston, who takes over aschief executive at BT in two weeks' time, has said thecompany is interested, and Vodafone has trials running in Malta.

Freedom4 is also already in talks with potential investors about the £100m infrastructure funding it estimates it will need from 2009-11. "We are talkingto our partners and the banks," Mike Read, chief executive of Freedom4, said. "Following the deals in the US, there is moreinterest in what we are doing over here."

Ian Keene, a senior analyst at Gartner, said: "There is abusiness case for WiMax in the UK, but most likely it will becity-centric and focused on business, rather than nationalcoverage competing with mobile networks."

The biggest auction of all will be next year's bidding for the "digital dividend" – the wide bands of frequency freed up when the analogue television signal is switched off in 2012. The debate about who should get what is already well under way. Broadcasters claim a substantial portion for high-definition TV, mobile operators want it for next-generation cellular services such as video, and internet service providers say it iscrucial for the broadbandinfrastructure.