Friday, 13 February 2009
3GPP Humour with MIMO ;)
Athens, Greece, 9 – 13 February, 2009
Source: MIMO Very Late Session
Title: Text proposal for TR36.814 on M.I.M.O.
Agenda Item: 12
Document for: Text Proposal
During offline discussion after the parallel session on Agenda Items 12.3 and 12.4, the very late session attendees arrived at the following text proposal for inclusion into TR 36.814.
--- Start text proposal ---
Annex B1: M.I.M.O. (Informative)
B1.1 Scope
The following section describes the M.I.M.O. approach and is best understood in conjunction with the tune of the song “Y.M.C.A.” performed by Village People played in the background.
B1.2 Lyrics
U-E, when your channel looks fine,
I said, U-E, give the network a sign,
Which means, U-E, give a high C-Q-I,
To report what you have measured.
U-E, there is data for you,
And two codewords,
I think they may come through,
So let's put them onto different ports
And use spatial multiplexing.
In other words it is M-I-M-O.
In other words it is M-I-M-O.
You don't need M-L-D,
There are plenty of ways,
Manufacturers have a choice ...
M-I-M-O.
In other words it is M-I-M-O.
Two antennas you need,
Four by four is agreed,
And your throughput can be so high!
U-E, can you see the Node-B?
Come on, U-E, should it do T-x-D?
Alamouti is a simple approach.
But you've got to know this one thing!
Node-B is not serving just you.
I said, Node-B, has a whole cell to do,
And at cell-edge there's no M-I-M-O
'Cause the S-I-N-R is low.
You cannot always do M-I-M-O.
You cannot always do M-I-M-O.
Two R-x ports you have
So you still can combine,
And the coverage should be fine ...
M-I-M-O.
It's good for you to use M-I-M-O.
Two antennas you need,
Four by four is agreed,
And your throughput can be so high!
U-E, if you want to transmit,
I say, U-E, MI-MO isn’t legit,
You will have to wait for L-T-E- A,
Where RAN-1 will make it okay.
That’s where the decisions are made,
And where many MI-MO sessions run late,
So that Dirk says: ‘Juho will you take care
Of this bunch of loopy people?’.
It's fun to standardize M-I-M-O.
It's fun to specify M-I-M-O.
You don't need M-L-D
There are plenty of ways,
Manufacturers have a choice ...
M-I-M-O.
It's fun to specify M-I-M-O.
When your channel looks fine,
Give the network a sign.
M-I-M-O.
Then just go and do M-I-M-O.
Can you see the Node-B?
Should it do T-x-D?
M-I-M-O.
--- End text proposal ---
LTE UE Modes of Operation
Thursday, 12 February 2009
E-books readers: Good or Bad?
It's been striking to me how many book-lovers can immediately see the use of an ebook reader. I've taken my iLiad to writers' gatherings, book launches and meetings with editors. The very people I'd have expected to resist it - bookish people, who both read and write a lot - are the people who have looked at it, played with it, cooed over it and said decisively, "I need one of these." If these people take to the ebook reader with ease, the future of books may indeed be electronic.
And will this be a good thing for the environment? It's hard to judge. A report by the US book industry study group last year found that producing the average book releases more than 4kg of carbon dioxide into the atmosphere - that's the equivalent of flying about 20 miles. Then there's the cost of warehousing and transport to consider and the waste and toxic chemicals produced by paper mils.
What about the electronic alternative? While the digital books themselves have a relatively low impact - recent figures suggest that transferring one produces around 0.1g of CO2 - there are other factors to take into account. Charging the reader and turning virtual pages all have an energy cost, as does turning on your computer and downloading a file. Even so, the balance may still favour the hi-tech alternative. A 2003 study by the University of Michigan concluded that "electricity generation for an e-reader had less of an environmental impact than paper production for the conventional book system".
The heaviest burden, though, will be in making the reader itself. If one were to buy an ebook reader, then keep it for 30 years, the impact would be small. But many electronic devices don't last that long, and with the constant advances in processing power and functionality it's unlikely that we would want to keep a single ebook reader as long as we might keep a book.
Disposal of electronic items is extremely problematic. More than 6m electronic items are thrown away in the UK every year, and the cadmium from one discarded mobile phone is enough to pollute 600,000 litres of water. Even recycling electronic equipment - or processing them into constituent parts - isn't without environmental damage. A recent study by Hong Kong Baptist University examining the environment around a Chinese village intensely involved in e-waste recycling, showed that lead levels in the area - including schools - were raised to an extent that might be dangerous. Paper books are, at least, eventually biodegradable, while ebook readers might pose a lasting environmental problem.
Wednesday, 11 February 2009
Mobile TV: Any Luck?
Mobile television suffered another setback when the U.S. House of Representatives voted Wednesday to delay the broadcast airwaves' long-planned transition to all-digital services from Feb. 17 to June 12, a move that effectively forces Qualcomm to postpone plans to increase its MediaFLO TV footprint until early summer. Qualcomm previously said it would turn on FLO TV service in more than 40 additional U.S. cities on Feb. 17, an expansion timed to coincide with a federal law mandating that all full-power television stations must terminate analog broadcasting on that date. The transition to digital television frees up the 700 MHz spectrum auctioned last year by the FCC--Qualcomm spent more than $500 million acquiring eight licenses during the auction, and hopes to serve about 200 million potential mobile TV subscribers in more than 100 U.S. markets by the close of 2009. But with the Nielsen Company estimating that 6.5 million American households remain unprepared for the switch to digital TV, and Congress mulling a stimulus package that includes as much as $650 million in financing for coupons to ease the transition, Qualcomm must now sit tight for four additional months.
According to a report from Nielsen Mobile, only 5% of all U.S. cell phone owners subscribe to a mobile TV service. Yet that number is the highest out of of all the other worldwide markets tracked by the company. Only France and Italy came close, each at 4 percent. According to Nielsen, mobile video use isn't more prevalent due to lack of differentiating capabilities, high cost, and lack of compelling content. In fact, we are now even seeing mobile video's plateau - a point where you would normally expect to see adoption slow considerably.
In the U.S., 10.3 million mobile phone subscribers watch video content on their mobile phones each month. These clips from mobile web sites, subscriptions delivered by the carrier, or through mobile "live" TV programming. But the mobile video subscription market has barely grown during the past year. In Q3 2007 it was at 6.4 percent and by Q3 2008 it was only 7.3 percent. And only 26% of subscribers who paid for mobile video services during the third quarter of 2008 used them at least once a month.
The Open Mobile Video Coalition (OMVC), announced that a new mobile DTV service will soon arrive in 22 U.S. cities, covering 35% of U.S. television households. The mobile service aims to provide live, local and national over-the-air digital television to mobile devices.
Included in the service are 63 stations from the 25 major broadcasters that are on board. Those include NBC Television, Gannett Broadcasting, Sinclair Broadcast Group, Fox Television, Belo Corp., Grey Television, Scripps Television, Hearst Argyle Television, ION Media Networks and Lin Television.
This mobile TV service may succeed where others have failed because it bypasses the carriers altogether. Instead, the service uses an ATSC broadcasting system to beam signals directly from the station to the mobile devices themselves. This unburdens the carriers from having to support the data transmissions - they just have to sell the phones.
If France doesn't decide to go down the DVB-H route, there are many who think that could signal the end of the road for the mobile broadcast standard in most European markets
According to one industry commentator, there's a lot riding on the French. Our source, who would rather not be named, thinks that if the French market does not decide to follow the DVB-H standard this year, then that could be the end for the mobile broadcast standard in the region as a whole.
Certainly, the signs have not been good elsewhere - and the industry is dogged by accusations of self-interest. For example, despite operator pressure, Nokia, which sits on 40-50% market share in most European markets, has not moved as fast as the industry had hoped to push DVB-H and DRM technology into its handsets.
According to the head end vendors, and this is a surprisingly widely held view, the issue has been that Nokia has tried to tie the sale of its network infrastructure to the development of its handset range.
"Nokia is saying, give us the head end, and we will give you the handsets," one competing vendor told us.
The China Digital Television Terrestrial Broadcasting (DTTB) System Standard, also known as GB20600-2006, became the mandatory national DTTB standard in August 2007.
GB20600-2006 was designed to deliver a consistent, high-quality digital TV viewing experience no matter where consumers are sitting: in their living room watching television or on a high-speed train watching shows on their cell phones. The technology can broadcast audio and video at transmission rates of greater than 24 Mbps to consumer devices. Because the mobile reception capability is inherently built into the standard, these consumer devices now have a mobile TV feature that works not only when stationary, but even while traveling at speeds greater than 200 km per hour.
The China television market is in the midst of a broadcast revolution because of this new free-to-air terrestrial DTV standard. GB20600-2006 is spurring station owners to broadcast HDTV signals to TVs and set-top boxes, creating a market opportunity that is larger than any other in the world. With 380 million television households, China is home to more televisions than any other country in the world. And nearly 70 percent of those households receive their programming via roof-top antenna.
At the same time, the GB20600-2006 standard is creating a significant new market for mobile TV services. There are more than 600 million cell phone subscribers in China and nearly seven million new mobile phones are purchased each month. Now that the free-to-air HDTV broadcast signal has become a reality, manufacturers of cell phones and other handheld mobile devices are rushing to incorporate mobile TV reception into their products.
Technical details are available here.
China also has its mobile specific TV standard called the CMMB (China Multimedia Mobile Broadcasting). Leading mobile TV chip-maker Siano Mobile Silicon's CMMB receiver chip, the SMS1180, has been selected to power CMMB mobile TV for leading Chinese phone-makers ZTE, Tianyu, CEC Telecom and MP3/4 giant AIGO.
The number of mobile TV subscribers in Korea grew by almost 60% in 2008 following aggressive marketing campaigns and the Beijing Olympics, reports the Yonhap News Agency.
The number of DMB users totalled 17.25 million at the end of 2008, up 59.9% from a year earlier, according to the Terrestrial-DMB Special Committee. South Korea started the world’s first DMB service in 2005, operated through terrestrial and satellite broadcasts.
According to the committee, which represents six service carriers, 15.4 million terrestrial DMB devices, including mobile phones, were sold as of the end of 2008, up 70% from the previous year. The number of subscribers to the satellite platforms (S-DMB) rose 45% annually to 1.85 million last year.
Telegent Systems announced that it has shipped more than 20 million mobile TV receivers since it launched the products in 2007.
The TV receivers have been rapidly adopted by consumers who want to watch the same TV on their mobiles that they enjoy on their home TVs.
Telegent’s receivers use the existing broadcast infrastructure, and allow consumers to watch local programming.
Telegent’s latest success is a deal with Telefónica Móviles Perú, to bring mobile TV to Telefónica’s ZTE i766 handset.
In order to continue its rapid growth, Telegent is expanding into the PC TV market in 2009 and adopting the digital standard DVB-T.
Tuesday, 10 February 2009
OFDM and SC-FDMA
OFDM has been around since the mid 1960s and is now used in a number of non-cellular wireless systems such as Digital Video Broadcast (DVB), Digital Audio Broadcast (DAB), Asymmetric Digital Subscriber Line (ADSL) and some of the 802.11 family of Wi-Fi standards. OFDM’s adoption into mobile wireless has been delayed for two main reasons. The first is the sheer processing power which is required to perform the necessary FFT operations. However, the continuing advance of signal processing technology means that this is no longer a reason to avoid OFDM, and it now forms the basis of the LTE downlink. The other reason OFDM has been avoided in mobile systems is the very high peak to average ratio (PAR) signals it creates due to the parallel transmission of many hundreds of closely-spaced subcarriers. For mobile devices this high PAR is problematic for both power amplifier design and battery consumption, and it is this concern which led 3GPP to develop the new SC-FDMA transmission scheme.
The LTE downlink transmission scheme is based on OFDM. OFDM is an attractive downlink transmission scheme for several reasons. Due to the relatively long OFDM symbol time in combination with a cyclic prefix, OFDM provides a high degree of robustness against channel frequency selectivity. Although signal corruption due to a frequency-selective channel can, in principle, be handled by equalization at the receiver side, the complexity of the equalization starts to become unattractively high for implementation in a mobile terminal at bandwidths above 5 MHz. Therefore, OFDM with its inherent robustness to frequency-selective fading is attractive for the downlink, especially when combined with spatial multiplexing.
Additional benefits with OFDM include:
• OFDM provides access to the frequency domain, thereby enabling an additional degree of freedom to the channel-dependent scheduler compared to HSPA.
• Flexible bandwidth allocations are easily supported by OFDM, at least from a baseband perspective, by varying the number of OFDM subcarriers used for transmission. Note, however, that support of multiple spectrum allocations also require flexible RF filtering, an operation to which the exact transmission scheme is irrelevant. Nevertheless, maintaining the same baseband-processing structure, regardless of the bandwidth, eases the terminal implementation.
• Broadcast/multicast transmission, where the same information is transmitted from multiple base stations, is straightforward with OFDM.
For the LTE uplink, single-carrier transmission based on DFT-spread OFDM (DFTS-OFDM) is used. The use of single-carrier modulation in the uplink is motivated by the lower peak-to-average ratio of the transmitted signal compared to multi-carrier transmission such as OFDM. The smaller the peak-to-average ratio of the transmitted signal, the higher the average transmission power can be for a given power amplifier. Single-carrier transmission therefore allows for more efficient usage of the power amplifier, which translates into an increased coverage. This is especially important for the power-limited terminal. At the same time, the equalization required to handle corruption of the single-carrier signal due to frequency-selective fading is less of an issue in the uplink due to fewer restrictions in signal-processing resources at the base station compared to the mobile terminal.
In contrast to the non-orthogonal WCDMA/HSPA uplink, which also is based on single-carrier transmission, the uplink in LTE is based on orthogonal separation of users in time and frequency. Orthogonal user separation is in many cases beneficial as it avoids intra-cell interference. However allocating a very large instantaneous bandwidth resource to a single user is not an efficient strategy in situations where the data rate mainly is limited by the transmission power rather than the bandwidth. In such situations, a terminal is typically allocated only a part of the total transmission bandwidth and other terminals can transmit in parallel on the remaining part of the spectrum. Thus, as the LTE uplink contains a frequency-domain multiple-access component, the LTE uplink transmission scheme is sometimes also referred to as Single-Carrier FDMA (SC-FDMA).
Via: 'Agilent Whitepaper' and '3G evolution'.
Monday, 9 February 2009
Microscope in your Mobile
Sunday, 8 February 2009
Patent leaders of 2008
- IBM: It has become the first company to earn more than 4,000 US patents in a single year. IBM plans to increase by 50 per cent the number of technical inventions it publishes annually instead of seeking patent protection. This will make these inventions freely available to others. IBM, which earns about $1 billion annually from Intellectual Property, owned 3,125 patents in 2007. It now has a total of 40,000 patents.
- Samsung: ranked second in the world in terms of patents. It comes close to IBM with a total of 3,515 patents
- Canon: with over two thousand patents comes third in the list. It received 2,114 patents in 2008. Canon has established itself as a technology leader as it continues to be among the top five companies awarded US patents every year.
- Microsoft: ranked 4th in the list of patent leaders. It won 2,030 patents in 2008
Microsoft has been criticised for applying for patents of pre-existing technologies. - Intel: with 1,776 patents is ranked fifth in 2008.
- Panasonic: Matsushita now known as Panasonic Corp comes sixth in the list with 1,745 patents. Panasonic's vision is to build products 'in harmony with the environment'. Panasonic makes products that can be easily used by people with disabilities also.
- Toshiba: Toshiba is ranked seventh with 1,609 patents.
- Fujitsu: with 1,494 patents is ranked 8th in the list.
- Sony: Sony is ranked 9th in the world top patent leaders' list. It received 1,485 patents in 2008. However, Sony expects biggest-ever operating loss of $2.9 billion as the global economic crisis has led to a fall in demand for televisions, cameras and video game consoles.
- HP: Hewlett-Packard is ranked 10th in the list of top patent holders. HP received 1,424 patents in 2008.
Saturday, 7 February 2009
Battle for ebooks on mobiles heating up
Amazon has said that books that Amazon.com Inc. sells for its Kindle electronic reading device will also be available on cell phones, too. Amazon spokesman Drew Herdener said Friday that the Seattle-based online retailer is working on making Kindle books available "on a range of mobile phones." The company is not yet saying when the books will be available, or on which phones.
Another e-book provider, Mobipocket, which is owned by Amazon, already sells titles that can be read on numerous smart phones.
Google has launched its Book Search service for mobile phones, featuring novels by Charles Dickens and Arthur Conan Doyle, as a challenger to Amazon's Kindle device. The internet giant has made the original text of 1.5m books available to be accessed for free via iPhone or Android phones. A spokesman for Google's book search mobile team said, "We believe we've taken an important step towards more universal access to books."
Experts said they expected an online battle for the market. Stuart Miles, of gadget website Pocket Lint, said: "Google has obviously seen how Amazon dominated the online selling of real books, and wants to stop that happening again. By offering free, out-of-copyright books they can instantly offer this huge library.
"Google's approach is also very clever because it is costing them very little, as they don't have to develop their own hardware."
Of course you can always download books on your windows devices and they can be read via PDF readers ;)
Indigo Books & Music Inc. believes strongly that the market for e-books is hitting critical mass, and, most important, that consumers will want to read e-books anytime, anywhere. Which is why the multi-channel retailer next month will launch Shortcovers, a mobile and conventional web destination for free and paid electronic content ranging from books and magazines to newspapers and blogs.
Shortcovers, Indigo Books & Music tells Internet Retailer, is a new division of the company with its own e-commerce infrastructure. Shortcovers in February will launch its web site and a mobile application for the iPhone. IPhone users can download the free program in Apple’s App Store. They create an account and profile through the mobile app or at Shortcovers.com that will enable them to search, browse and download e-books in numerous file formats, most significantly the publishing industry’s ePub standard. Indigo will introduce mobile applications for smartphones using the BlackBerry, Android and Symbian mobile operating systems, in that order, but did not specify a timeline.
Friday, 6 February 2009
MIMO schemes in LTE
SU-MIMO (Single User MIMO)
•This is an example of downlink 2x2 single user MIMO with precoding.
•Two data streams are mixed (precoded) to best match the channel conditions.
•The receiver reconstructs the original streams resulting in increased single-user data rates and corresponding increase in cell capacity.
•2x2 SU-MIMO is mandatory for the downlink and optional for the uplink
MU-MIMO (Multiuser MIMO)
•Example of uplink 2x2 MU-MIMO.
•In multiple user MIMO the data streams come from different UE.
•There is no possibility to do precoding since the UE are not connected but the wider TX antenna spacing gives better de-correlation in the channel.
•Cell capacity increases but not the single user data rate.
•The key advantage of MU-MIMO over SU-MIMO is that the cell capacity increase can be had without the increased cost and battery drain of two UE transmitters.
•MU-MIMO is more complicated to schedule than SU-MIMO
Thursday, 5 February 2009
100% secure Zumba Lumba Phone to be available soon
The Zumbafone could be available by the end of this year, according to reports.
The innovation is a circular pad that can be placed over the ear and detaches from a small handset that contains a circular dial pad and screen. Simply removing the earpiece pad from the handset activates a connection to the internet. You then simply say the name of a contact to dial a number or send a text. When you receive a text it can them be read out to you.
No contact information is stored on the handset itself, with all data being held ‘in the cloud’, which the makers say makes the phone 100 per cent secure. As it is fully tied to voice recognition, the claim is that if lost, the phone cannot be used by anyone else.
The phone is aimed as a low cost, or secondary phone, so eschews features such as high resolution screen and camera.
You can watch Youtube video of ZumbaLumba: