Sunday, 5 April 2009
Nokia's Point, Click, Find
Nokia launches beta of 'Point & Find' system for mobile phones, letting consumers scan images for search with their camera phone.
The service can currently be downloaded in the US and the UK, on selected handsets. The phones supported by the current beta are the Nokia N82, N95, E66, N81, N76, E51, 6290, 6124 Classic, 6121 Classic, 6110 Navigator, and the 5700 Xpress Music.
Nokia has launched a beta of its new Point & Find system, which lets mobile phone users search for information on an object by looking at it with their handset camera.
Philipp Schloter, Nokia’s general manager for Point & Find, explained: "Simply by pointing their camera phone at a poster for a new movie, people can watch the trailer, read reviews, and find the closest cinema where it is playing.”
Other uses suggested by Nokia include scanning barcodes for prices, looking at items for sale and being sent more details on where to shop or coupons, or eyeing objects in a museum and being sent multimedia information about it.
The open platform system uses the camera to look at images, GPS positioning to decide where it is, and the internet to search though a database of tagged objects. When an image is recognised, links to content – such as film times or prices – are sent back to the user.
Nokia doesn’t just want consumer feedback, but is looking to hear from businesses about their ideas for the tech – click here for the Point & Find business site. It’s already being used by the Body Worlds exhibition at the O2 in London, so pointing the camera of a Point & Find phone at related advertising should bring up data on the show.
Saturday, 4 April 2009
Sonim XP1: The toughest phone
- Water/Humidity: Impervious to the Wettest Weather
- Temperature Range: Works Perfectly In Extreme Conditions (-20C to +60C )
- Shock and Vibration: Drop It, Abuse It, Drive Over It – No Problem! The XP1 is Virtually Indestructible
- Screen: Unique No-Glare Coating Resists Scratches and Smudges
- Durable Case: Hardened Rubber Molding Cast Via Dual Injection
- Durable Mechanics: Keypad Buttons Tested To 500,000 Pushes Dedicated PPT Buttons Tested To 200,000 Pushes
- Dirt and Dust: Non-Porous Casing Blocks Entry of Micro-Particles
Friday, 3 April 2009
Nokia favours LTE by dismissing WiMax
It’s very well known that Nokia although has chosen LTE as their 4G technology, are still part of WiMax forum.
However what is astonishing is that Nokia has now strongly come out openly to dismiss WiMax as a 4G technology. This latest development will no doubt will generate some intensifying and interesting comments from both the camps.
Nokia by dismissing WiMAX as a 4G technology standard seemed to have solidified its support for Long Term Evolution (LTE) technology while comparing WiMAX's future to that of Betamax, the video format that met its demise when VHS triumphed in the 1970s and 1980s. In a recent Nokia launch event in San Francisco Anssi Vanjoki, Nokia's head of sales and manufacturing said the following:
"I don't see that WiMAX is taking hold anywhere in a big way. I don't think the future is very promising for WiMAX. This is a classic example of industry standards clashing, and somebody comes out as the winner and somebody has to lose. Betamax was there for a long time, but VHS dominated the market. I see exactly the same thing happening here."
The words above are really strong as far as dismissing WiMax as a 4G technology is concerned.
Nokia has wavered in its support for WiMAX in the past, but this is by far the strongest condemnation the world's largest handset maker has made of the technology. Nokia quite rightly present WiMAX's lack of backwards compatibility as one of the reasons why they think LTE is the future and for that very reason call WiMAX a niche play.
However it still remains to be seen whether Nokia is completely abandoning WiMax as it is still involved in WiMAX business development efforts.
Albeit it is still an immense argument as what will be 4G. Clearly from the dominant mobility operator perspective the trend is towards LTE. Any technology that gets rolled out has to provide global backwards compatibility because networks don't appear overnight. The only technology that offers you backward compatibility to CDMA and TD-CDMA and wideband-CDMA is LTE. It makes a huge difference because you're not building greenfield networks; these are evolutions of existing networks and the user experience has to be maintained. From that perspective, WiMAX doesn't quite have the same capability.
I don’t want to sound too harsh on WiMax and I think there might be a place for WiMAX as a fourth generation niche technology but I believe over time, LTE will be the standard bearer for 4G globally. The (WiMAX) technology itself, there's nothing wrong with it; it's strong and it ultimately will work. The question is whether there will be a market.
More on ICE
During the Mobile World Congress in Barcelona this year, I heard from Adrian Scrase for the first time that 3GPP has specified how to put information on the SIM card for "In Case of Emergency" (ICE) events, i.e. to help first responders to identify someone and to contact their next of kin.
A great idea and now that it is specified it will hopefully become a worldwide accepted feature. It's not in current phones and SIM cards yet so it will take a couple of years for the feature to be added. Let's keep our fingers crossed a critical mass is reached so people actually enter information and first responders actually use the feature.
As somebody asked me over at Forum Oxford at how it will work in practice, I've had a look at the standards:
- The user enters ICE information like names of persons, relation to these persons and phone numbers. For details see 3GPP TS 22.101, A28
- During an emergency, the information can be retrieved by pressing '* * *'. That's specified in 3GPP TS 22.030, 6.8
- The information is stored in a new file on the SIM card referred to as EF(ICE_DN) and the format is described in 3GPP TS 31.102
Thursday, 2 April 2009
Fundamental difference between HSDPA and HSUPA
- In the downlink, the shared resource is transmission power and the code space, both of which are located in one central node, the NodeB. In the uplink, the shared resource is the amount of allowed uplink interference, which depends on the transmission power of multiple distributed nodes, the UEs.
- The scheduler and the transmission buffers are located in the same node in the downlink, while in the uplink the scheduler is located in the NodeB while the data buffers are distributed in the UEs. Hence, the UEs need to signal buffer status information to the scheduler.
- The WCDMA uplink, also with Enhanced Uplink, is inherently non-orthogonal, and subject to interference between uplink transmissions within the same cell. This is in contrast to the downlink, where different transmitted channels are orthogonal. Fast power control is therefore essential for the uplink to handle the near-far problem. The E-DCH is transmitted with a power offset relative to the power-controlled uplink control channel and by adjusting the maximum allowed power offset, the scheduler can control the E-DCH data rate. This is in contrast to HSDPA, where a (more or less) constant transmission power with rate adaptation is used.
- Soft handover is supported by the E-DCH. Receiving data from a terminal in multiple cells is fundamentally beneficial as it provides diversity, while transmission from multiple cells in case of HSDPA is cumbersome and with questionable benefits as discussed in the previous chapter. Soft handover also implies power control by multiple cells, which is necessary to limit the amount of interference generated in neighbouring cells and to maintain backward compatibility and coexistence with UE not using the E-DCH for data transmission.
- In the downlink, higher-order modulation, which trades power efficiency for bandwidth efficiency, is useful to provide high data rates in some situations, for example when the scheduler has assigned a small number of channelization codes for a transmission but the amount of available transmission power is relatively high. The situation in the uplink is different; there is no need to share channelization codes between users and the channel coding rates are therefore typically lower than for the downlink. Hence, unlike the downlink, higher order modulation is less useful in the uplink macro-cells and therefore not part of the first release of enhanced uplink.
Femtocells in India: No thank you.
First some details on the current situation in India:
Yet from a wired broadband internet position:
Coin operated 'Credit Crunch Mobile'
The following is from dialaphone website:
Following our brief earlier coverage of the phone set to challenge the Credit Crunch, we’re very excited to have the first artist’s impression of this new handset, codenamed the 100-F from a Latvian manufacturer, new to the mobile phone market, called Lirpa. It seems bizarre, but the phone design has been inspired by the global credit crunch (which must have reached Latvia too), and works as either a coin-operated or credit/debit card mobile. The UK variant will have a £1 coin slot for calls and a 10p slot for texts (not a bad price for a PAYG text) as well as a card slot (for which you’ll need to enter your PIN). It sounds like it will be quite bulky, maybe comparable with some of the smartphones around, and features will be limited - no camera or MP3 player as the components would take up too much valuable coin space.
Here are some of the 100-F features:
Colour screen - No
Bluetooth - No
Weight - 110g empty, 400g full
Available colours - Midnight Black, Dirty Grey and Grey Black
Card slot - Visa, Mastercard, Electron
Messaging - SMS, MMS, IOU
Ringtones - Built-in, Vibrate, Jangle
The idea behind this phone is obviously to make you think about how much you spend on calls, and we understand there’s another twist on this - users will be able to opt for having no access to the coin box, in which case they will have to take the phone to one of their network provider’s shops to have it emptied. None of the UK networks have commented on this as yet.
Dont forget to checkout the pre-order offers here.
Wednesday, 1 April 2009
Prisoners need mobiles too :)
Looks like there is a worldwide problem of Mobiles in the jails. Nearly everywhere mobiles are illegal in jails but people somehow manage to sneak them in.
First, this news from India about an inmate found with a mobile inside the prison. Apparently these phones are used by inmates to create co-ordinated attacks, etc. Sneaking a mobile in India is probably not too difficult because you bribe the policeman and he will get one for you ;)
In Brazil, it difficult to probably get a phone by bribing the policemen. That is why the prisoners have to ask someone to send mobiles using pigeons as carriers. Pigeons are carrying parts of mobiles which are being used by the inmates to assemble and create working mobiles. Maybe they can fix my old Nokia 6280 as well. Unfortunately couple of pigeons were recently caught and thats how authorities found out about them.
The Australian authorities in New South Wales have already passed a law stating that if someone is found smuggling mobiles in prison then they will face 2 years jail and $2200 fine. They are training dogs to sniff out mobiles.
In India a member of public (normal human being like most of us) has demanded that 'rude' mobile users should go to prison:
A petition filed by Gurjit Singh, a member of the public, demands that carrying mobiles at funerals and temples should be made illegal and the installation of mobile phone jammers on school buildings to block students from making calls mandatory.
Mr Singh also wants phone companies to roll-out apparatus would disable mobiles on the roads to avoid traffic accidents, and a law under which civil servants could be imprisoned if they make personal calls on their handsets during office hours.
His final demand is that mobile phones fitted with cameras be outlawed “for the safety of women”.
The measures may appear extreme, but have already won significant backing, including from The Times of India, the country’s most-read English language newspaper. “Mobile phones have made us less considerate for each other,” it said.
The newspaper went on to admit – somewhat ruefully – that banning mobile phones outright was not an option, but added: “The problem will only get worse, unless the parliamentary panel’s observations are taken seriously.”
India’s mobile phone market is one of the few corners of the global economy to have remained impervious – so far – to the effects of the credit crunch. In January, the country added a record 15 million subscribers, making it the world’s fastest growing, with customers from the country's poor rural areas driving the surge.
The industry's success has a dark side, however: in cinema theatres across India audience members can often be heard chatting on their new handsets, discussing the plot of the film as it unfolds on screen.
While even doctors commonly answer calls while treating patients.
The problem is made worse as the phone companies force as many conversations as possible through a limited amount of infrastructure, a cost-cutting measure that executives privately admit lessens the clarity of calls and means users often have to shout to make themselves heard.
There are, however, doubts over whether tough new penalties would work, especially when laws banning other public nuisances such as spitting have failed. A spokesman for RCom, India’s fastest growing mobile provider, insisted that while the industry takes the etiquette issue seriously there is a limit to what it can do. “This is really a matter of personal responsibility,” he said.
My solution for the Indian government is that mobiles should be allowed only in prisons :-)
ICE: In case of emergency
In case of emergency (ICE) is a program that enables first responders, such as paramedics, firefighters, and police officers, to identify victims and contact their next of kin to obtain important medical information. The program was conceived in the mid-2000s and promoted by British paramedic Bob Brotchie in May 2005. It encourages people to enter emergency contacts in their cell phone address book under the name "ICE". Alternately, a person can list multiple emergency contacts as "ICE1", "ICE2", etc. The popularity of the program has spread across Europe and Australia, and has started to grow into North America.
Saturday, 28 March 2009
Implementation of CQI Reporting in HSPA
The CQI measurement is implemented in the HSPA module and the measurement interval as well as the influence of measurement errors can be parameterised. The results can be given in form of maps or in a statistical manner as histogram for each cell.
Information about the instantaneous channel quality at the UE is typically obtained through a 5-bit Channel-Quality Indicator (CQI) in HS-SCCH, which each UE feed back to the NodeB at regular intervals. The CQI is calculated at the UE based on the signal-to-noise ratio of the received common pilot. Instead of expressing the CQI as a received signal quality, the CQI is expressed as a recommended transport-block size, taking into account also the receiver performance.
The reason for not reporting an explicit channel-quality measure is that different UEs might support different data rates in identical environments, depending on the exact receiver implementation. By reporting the data rate rather than an explicit channel-quality measure, the fact that a UE has a relatively better receiver can be utilized to provide better service (higher data rates) to such a UE. It is interesting to note that this provides a benefit with advanced receiver structures for the end user.
This is appropriate as the quantity of relevance is the instantaneous data rate a terminal can support rather than the channel quality alone. Hence, a terminal with a more advanced receiver, being able to receive data at a higher rate at the same channel quality, will report a larger CQI than a terminal with a less advanced receiver, all other conditions being identical.
Each 5-bit CQI value corresponds to a given transport-block size, modulation scheme, and number of channelization codes. Different tables are used for different UE categories as a UE shall not report a CQI exceeding its capabilities. For example, a UE only supporting 5 codes shall not report a CQI corresponding to 15 codes, while a 15-code UE may do so. Therefore, power
The CQI values listed are sorted in ascending order and the UE shall report the highest CQI for which transmission with parameters corresponding to the CQI result in a block error probability not exceeding 10%.
Specifying which interval the CQI relates to allows the NodeB to track changes in the channel quality between the CQI reports by using the power control commands for the associated downlink (F-) DPCH. The rate of the channel-quality reporting is configurable in the range of one report per 2–160 ms. The CQI reporting can also be switched off completely.
In addition to the instantaneous channel quality, the scheduler implementation in the NodeB should typically also take buffer status and priority levels into account before finalising the data rate for the UE. Obviously UEs for which there is no data awaiting transmission should not be scheduled. There could also be data that is important to transmit within a certain maximum delay, regardless of the channel conditions. One important example hereof is RRC signalling, for example, related to cell change in order to support mobility, which should be delivered to the UE as soon as possible. Another example, although not as time critical as RRC signalling, is streaming services, which has an upper limit on the acceptable delay of a packet to ensure a constant average data rate. To support priority handling in the scheduling decision, a set of priority queues is defined into which the data is inserted according to the priority of the data. The scheduler selects data from these priority queues for transmission based on the channel conditions, the priority of the queue, and any other relevant information.