Sunday, 6 September 2009
Youtube Clip on Dangers of driving while texting
The film tells the story of a fictional 17-year-old girl, Cassie Cowan (nickname COW), who is distracted by her mobile for a few seconds while driving with two friends.
COW – a "nice girl from a nice valleys family" – causes a devastating crash which kills her friends and another couple. The impact and its aftermath is portrayed in vivid, harrowing and bloody detail.
One girl's face hits the windscreen with sickening force. A child in the car COW crashes into asks: "When will mummy and daddy wake up?" while a baby strapped into a child seat stares unblinking and may be dead.
Actually, police had intended to commission a different film – on joyriding. But when they spoke to pupils at Tredegar comprehensive, the youngsters told them that texting while driving was a much more important issue for them.
With a budget of £10,000, film-maker Peter Watkins-Hughes was asked to write and direct the film. Local people donated props including the cars that are smashed up and the locations while Watkins-Hughes and his cast gave their time.
A 30-minute version of the film is due to be shown for the first time this autumn but Watkins-Hughes put a four-minute clip of it on YouTube (entitled COW test 001) to show it to a friend. For weeks the clip remained unnoticed by anyone but the friend and a few crew members.
Then suddenly it began to attract hits. It was copied on to other sites, attracted attention around the world and within a couple of weeks became one of the most popular viral videos. Today it was still ninth on one global viral video chart. Clips about Oasis and Jay-Z were at first and second place.
Watkins-Hughes said it felt like being in an Ealing comedy when a small Welsh community had suddenly attracted worldwide attention.
The "weirdest" moment for him was when his explanation, "We've gone for grim reality", was a quote of the day on the Time website.
Watkins-Hughes said he thought it was so powerful because the violence of the crash was shown but the film then "lingered" on the human price – the baby, the child asking about his mother and father. And the screams of COW, who survives the crash.
The film has struck such a chord in the US where the danger of texting while driving is a big issue because it is not illegal in all states. The trend in America has been to try to get the anti-texting message across more gently through humour or playing on the emotions but not showing violence.
However, one survey in the US found that 80% of people who had seen the Gwent film were less likely to text while driving than before.
In the UK, the road safety charity Brake, having been asked to watch the clip by the Guardian, praised the film-makers and said it was important to show the reality of road crashes.
Saturday, 5 September 2009
Farmers worldwide being helped by Mobile Phones Technology

Airtel has entered into a strategic tie-up with IFFCO (Indian Farmers Fertilisers Cooperative) for providing agriculture and allied information to farmers through mobile phones. The facility was formally launched by the Chief Operating Officer (Andhra Pradesh) of Bharti Airtel Limited, Rajnish Kaul, at a function at Anakapalle town, about 40 km from here on Tuesday.
Addressing a media conference on the occasion, he said that the unique facility would benefit over 10 lakh IFFCO society members of rural Andhra Pradesh by giving them access to vital information. The farmer members would be given five free voice messages on farming techniques, weather forecasts, dairy farming, animal husbandry, fertilizer availability and rural health initiatives.
Mr. Kaul said the farmers could also call a dedicated free helpline to get answers from a qualified veterinarian to their specific queries regarding the health of their animals. He said that SIM cards would be provided at subsidised rates and lifetime activation would be done for a mere Rs.47. Calls between the members would be charged at 50 paise a minute. The SIMs would be compatible with any mobile handsets and farmers could buy the handsets of their choice depending on their purchasing power. He said the facility was launched about six months ago in various districts of the State and there were already 65,000 connections.
Question Box provides a service in India and Uganda. In India, phone boxes are installed in slums and villages that connect users to operators that will answer questions. In Uganda, users can call in from any mobile phone and ask their questions. The operators have access to a repository of previously asked questions (and their answers), and they can also occasionally consult the Internet. A special search engine and database were also built specifically for the project.
Another initiative, Avaaj Otalo, provides an audio community forum for farmers in rural Gujarat, India. Working with an organization that produced a popular radio program, Otalo provides a call-in number where farmers can exchange questions and answers. Users are also able to listen to archives of the radio program.
These projects differ in that Question Box avoids having to process users' questions by adding a human listener in the loop; Avaaj Otalo avoids processing by organizing their collection of audio prompts with into a menu. Both programs, however, have yet to deal with the problem of cost because they subsidize the service for users. Otalo operates with a toll-free number and Question Box provides the phones to call from in India. In Uganda, Grameen Community Knowledge Workers provides the mobile phones.
It's easy to see why the fishermen of the southern Indian state of Kerala captured the attention of a Harvard economist when they began using mobile phones a few years ago to track prices in the markets where they sold their catch of the day. Observing how these devices can be used to promote economic growth, Robert Jensen wrote in a 2007 paper titled, "The Visible Hand(set): Mobile Phones and Market Performance in South Indian Fisheries -- The Micro and Mackerel Economics of Information," that "before mobile phones, deciding which [market] would offer the best price was sheer guesswork." With mobile phones, however, suddenly it became an information-based decision. What's more, noted Jensen (who is currently at Brown University in Rhode Island), "it's not a zero-sum trade-off." The fishermen's customers benefitted from lower prices and greater choice, and there was less waste since the fishermen could easily identify the villages that would have the greatest demand for their fish each day.
Now Jensen's "visible handset" is reaching further into rural India. Following a nationwide launch this summer of Nokia Life Tools (NLT), India's farmers can use their mobile phones to access tailored information to help them grow, harvest and sell their crops and manage their livestock. "There is no reason why farmers should not be as successful as fishermen," says Ravi Bapna, associate professor of information systems at the Carlson School of Management in Minnesota and executive director of the Centre for Information Technology and the Networked Economy at Hyderabad-based Indian School of Business (ISB).
Consider Ravindra Shinde, a farmer in Magardhokada, a village in the Nagpur district of Maharashtra. When he recently harvested 125 quintal (a quintal is 100 kilograms) of soybeans and was about to take the crop to market, the price was $32 a quintal. But then he received a message on his handset that soybean production in the U.S. and Argentina had fallen, so he held back and later sold his crop for $48 a quintal.
IN the early 1990s, I was engaged in an empirical research work relating to the nexus between mobile phone and poverty in rural Bangladesh. However, friends used to tease me and raise their eyebrows on hearing about the project and my interest at that time. This was to be expected in the early 1990s when, not to speak of the poor, even the "solvent" could not afford to have a mobile set. It was treated as a "luxury" item, only to be monopolised by the moneyed people.
My research findings on village pay phones of the Grameen Bank at that time -- and as published in international journals in subsequent years -- clearly showed that mobile phones could help the poor escape "rural penalty" (a la H. Hudson), defined as poverty mainly due to distance, poor connectivity and asymmetric information. However, as of today, about 40 percent of the rural households in Bangladesh are reported to have access to mobile phones and roughly one-fourth of the users are poor. Rickshaw pullers, fishermen, traders all use it to minimise information asymmetry and quicken communication between two points.
About a decade later, I was invited to comment on two research papers showing the impacts of mobile phones on farmers and traders in Africa.
The first paper was by Megumi Muto and Takashi Yamano, both representing JICA and Foundation for Advanced Studies on International Development (FASID). They drew upon panel data of rural Uganda where banana producers could reduce marketing costs and raise income with expansion of mobile phone coverage. The message is that the expansion of mobile networks increased market participation and sales of the perishable product, banana. More importantly, small producers and farmers in remote areas gained the most.
As information flow increases due to the expanded mobile phone coverage, the cost of crop marketing is expected to decrease, particularly in remote areas where potential marketing gains from the increased information flow is large. We indeed find that the network expansion has a larger impact in market participation in areas farther away from the district centers than in closer areas.
The second paper was presented by Jenny C. Aker of the University of California, Berkeley, on the impact of mobile phones on price dispersion of grains in Niger. Using a sequential searching model, the researcher observed that cell phones increased traders' reservation sales price and the number of markets over which they searched. This reduces price dispersion across markets. To be specific, grain price dispersion reduced by 6-7 percent and reduced intra-annual price variation by 10 percent.
What is important, and as revealed in both papers, is that every farmer need not possess a set. It could be the community, producers' organisations and others from where the price information could spread, either as a "public good" or as a "private good." A participant from the audience in that seminar informed us that in his village in Africa, a mobile phone is hung from the branch of a tree and interested persons could use it on payment of a fee. Second, even with access to mobile phones, full gains might not be reaped as farmers might need more information. The role of public authority and media in this respect is very important. Again, producers' organisations could form an information forum of their own to be more effective at bargaining than individual initiatives.
Friday, 4 September 2009
LTE Buzz from Alcatel Lucent

Alcatel-Lucent has produced a LTE Widget that provides real-time LTE news and information direct on your PC. Very useful if you want to keep a watch on breaking news and information. The widget can be downloaded from their website here.
Thursday, 3 September 2009
Samsung claims First commercial LTE Modem development

LTE NAS and AS states and their relation

As you can see that there are three different states in an LTE system we are talking about.
The first is the RRC state that goes from RRC_IDLE to RRC_CONNECTED everytime the UE needs to be connected to the eNodeB.
Once the UE is RRC_CONNECTED, it can register with the Mobility Management Entity (MME), and the EPS Mobility Management (EMM) state moves from EMM-DEREGISTERED to EMM-REGISTERED
The EPS Connection Management (ECM) state (ECM-IDLE or ECM-CONNECTED) reflects the connectivity of the UE with the Evolved Packet Core (EPC). See the Interface diagram for details.
The NAS states, and their relationship to the AS RRC states can be seen in the diagram above
I have picked up some information from: LTE: The UMTS Long Term Evolution: From Theory to Practice
Wednesday, 2 September 2009
LTE Protocol Stack

Tuesday, 1 September 2009
Mobile Phone purchase, decision process...

The post titled "Do single factors drives purchase of mobile devices? If so which ones?" is I would say quite important as sometimes it drives the decision process when someone is looking for a phone.
Friday, 28 August 2009
Whitepaper: Voice over LTE via Generic Access (VoLGA)

The whitepaper can be found here.
Mobile Phones to replace Alarm Clocks

A spokesperson for Rightmobilephone.co.uk - who commissioned the study - said: "The mobile phone now plays a larger more important role in our lives. "Handsets now provide us a wealth of information on the go, schedule our social occasions and as we found for many simply ensure we get out of bed each morning.
Thursday, 27 August 2009
Security of Mobiles and Networks to be tested soon

In comments made to the German edition of the Financial Times, the hacking group claims that governments, and criminals, are already using the technique which can break the encryption used to protect 2G GSM calls in near-real time using existing systems. The group says a public exposure of the technique will take place in the next month or two and allow anyone equipped with a laptop and an antenna to listen in to GSM phone calls.
Wednesday, 26 August 2009
Europe makes 'eCall' high priority

The European Commission has made a final call to the European governments to speed up the implementation of the 'eCall' technology that uses cellular networks to automatically alert emergency services when a road accident occurs.
Currently, the deployment of eCall is voluntary and is not being used in any EU country. The Commission warns, in a policy document, that if no significant progress is made in rolling out the system by the end of 2009 it could propose regulatory measures to make it mandatory.
The Commission has presented a policy document with a strategy for introducing an affordable in-car emergency call system in all new vehicles across Europe by 2014, starting next year. Triggered automatically, if the passengers cannot do so, eCall is claimed to be able to save up to 2,500 lives per year in the EU when fully deployed and reduce severity of injuries by 10 to 15%.

Implementing eCall needs the full collaboration of the car and telecoms industries, as well as national administrations in all EU countries who must ensure that their emergency services are equipped to handle eCalls.
Although the technology is ready and common EU-wide standards have been agreed by industry, six EU countries ( Denmark, France, Ireland, Latvia, Malta and the UK) are still not ready to commit, due to cost related concerns.
Preparing phone networks and emergency services for the roll out of eCall in cars across Europe has the full support of the European Parliament and 15 EU countries who have signed the eCall Memorandum of Understanding (Austria, Cyprus, Czech Republic, Estonia, Finland, Germany, Greece, Italy, Lithuania, Portugal, Slovakia, Slovenia, Spain, the Netherlands and Sweden) and three other European countries (Iceland, Norway and Switzerland) .
Another six countries (Belgium, Bulgaria, Hungary, Luxembourg, Romania and Poland) support eCall and are willing to sign the agreement in due time.

Before making eCall fully operational across the EU, countries must agree common standards and guidelines for harmonised deployment of the system and perform field tests putting it into practice (pilots have been launched in some EU countries, including Finland, Czech Republic, Germany, Austria, Italy, The Netherlands). Through its Competitiveness and Innovation Programme the Commission may financially support such pilots, as well as public awareness campaigns about how the technology works.
Road accidents cost the EU economy more than EUR160 billion a year. Equipping all cars in the EU with the eCall system could save EUR26 billion annually while the system' is estimated to cost less than EUR100 per car. Introducing this device will not only benefit consumers, but also businesses by enabling the car and telecoms industries to offer new upgraded applications and services (like digital tachographs or electronic tolls) based on eCall to be installed in all vehicles and use satellite positioning technology.
Monday, 24 August 2009
3G or 4G: What should India do?

Last week I wrote about Indian subscribers getting taste of 3G as the state owned MTNL and BSNL have launched some services. I am not sure what has been launched but all I can say is there is a dismal takeup as of yet. I read an article today about how Motorola is testing 4G [sic] and this can spoil the governments plan of rasing Rs 35,000 crore (£4.6Billion: 1Billion = 100 crores).
People may start panicking that investing in 3G is now doomed and it can just cause problems for the operators in future. The reality though is much more simpler. In a simple sentence, I would say that going for 3G or LTE does not matter much. Read on.
Lets first get Hardware out of the way. Most of the Base Stations (NodeB's, eNodeB's, RNC, etc) have a major part as SDR's or Software Defined Radios. The advantage of this is that if you have bought a 3G Node B, with just software change it should be upgradable to LTE eNode B. I have come across quite a few products where the equipment manufacturers are claiming that their 3G equipment is fully upgradeable to LTE. I did blog about some of this in this post here.
The second point we should get out of the way is the terminology. For a layman, 3G is something that was introduced 10 years back in 2000 so its quite an obsolete technology. In reality, 3G is commonly used to refer to even the new developments within the 3G spectrum. For example some of the people may have heard of HSDPA which is actually referred to as 3.5G in the mobile domain. Similarly we have HSUPA which is 3.75G and so on. The latest development is going on around 3.8G and 3.85G as part of Release 8. In general usage 3.5G, 3.75G, etc. is referred to as 3G but its more than 3G (3G+ ;). The good thing is that this 3G+ is till evolving. Release 8 was finalised in Dec. 2008 and the terminals based on that are still being tested. It should hopefully be available soon.
So whats the difference between LTE and HSPA+ (also known as 3G even though its 3.8/3.85G). Not much I would say from a general users point of view. Please note I am not arguing about the fundamental technologies because 3G+ uses WCDMA and LTE uses OFDMA/SC-FDMA technologies. OFDM based technologies will generally be always superior to WCDMA ones but it doesnt matter much. The main enhancement that has happened with LTE as compared to 3G is that in 3G the bandwidth is fixed to 5MHz whereas in case of LTE the bandwidth is flexible and can go all the way to 20MHz. Now if we compare the data speeds in 5MHz spectrum then there may not be much difference between them. Now how many operators will be rolling out services across 20MHz bandwidth? More general case will be using 10MHz.
In case of HSPA+, there is a new feature that allows a UE to use couple of cells. In this case even though the bandwidth is 5MHz but due to Dual Cell feature the UE would effectively see 10MHz bandwidth. This will definitely enhance the speeds.
Now coming to devices. 3G/HSPA/HSPA+ technologies have evolved over quite few years. There are some nice sleek and cheap handsets available. The technology in it as been rigourously tested. As a result the handsets are quite stable and many different design and models available.
LTE is yet to come. NTT DoCoMo and Verizon will be the first one to roll it out probably end 2010. Initial plan is to roll out the dongles then handsets will the eventually arrive. The initial ones will have problems, crashes, etc. Will take atleast till 2010 to sort out everything.
The big problem with LTE as many of us know is that the standards have to support for the old style CS voice and SMS. This should be fixed in Release 9 which is going to be standardised in Dec. 2009 (Mar. 2010 practically). There are different approaches and maybe untill LTE is rolled out we wont know which of them is better.
Last thing I should mention is the spectrum. The consensus is that 3G operates in 2.1GHz spectrum mostly worldwide. LTE would initially be deployed in 2.6GHz spectrum. The digital dividend spectrum when it becomes available will also be used for LTE. Most of the devices for LTE will be designed that way. As a result, 3G will continue to operate as it is in the 2.1GHz band. The devices will always be available and will be usable for long time.
Considering all the facts above, I think 3G (HSPA/HSPA+) is the best option in India or as a matter of fact in any country that is thinking of jumping directly from 2G to LTE. When the time is right, it should not be difficult to move from 3G to LTE.
EU commits to LTE-A future

Sunday, 23 August 2009
4 Billion GSM-HSPA connections soon.

3G Americas, announced that GSM-HSPA is expected to reach 4 billion mobile connections worldwide in September 2009. This marks a major milestone for the industry, as no other technology innovation has ever reached a scale remotely close to its penetration level – equivalent to more than six of every ten people worldwide.
Equally noteworthy is the increasing number of 3G subscribers for UMTS-HSPA which has captured an annual worldwide gain of 57 percent in the year ending June 2009, according to Informa Telecoms & Media’s World Cellular Information Service. With 377 million subscriptions worldwide at the end of second quarter 2009, UMTS-HSPA added more than 137 million new connections in 12 months.
Friday, 21 August 2009
Mobile Search in Future...

Thursday, 20 August 2009
Handset Manufacturers preparing for Ramadan

The newly launched LG GD335 and LG KP500N have special features, including a Qiblah indicator that uses an in-built longitude and latitude orientation or city references that, when used in comparison to the magnetic north, indicates the direction of the Qiblah. The two phones also come complete with Adhan and Salah prayer time alarm functions as well as Quran software, the Hijri calendar and a Zakat calculator.
With its slim 11.9 mm body, LG's KP500N is a slim and lightweight handset fully equipped with key features such as a 3.2 megapixel camera, 3D accelerometer and an Active Flash User Interface with vivid widget icons to provide easy access to commonly used functions. The LG GD335 features a 2 megapixel autofocus camera that displays photos on a high resolution 2.2 inch GVGA touchscreen. The handset also has a MP3 player and can hold up to 1GB of music, photos or data. In addition, it has Bluetooth compatability and enhanced battery capabilities through the built in light sensors.
With Ramadan approaching, the features will be a welcome benefit during the month. The phones are available at major outlets across the UAE.

“Last year’s applications were very well received, as we saw over 2.4 million Ramadan applications downloaded. And based on the feedback we had received from Nokia consumers, we have further enhanced the offering this year to include additional applications as well as upgrades to some of the existing features. The applications this year also support a wider range of devices, to include both touch and non-touch Nokia devices,” said Chris Braam, Vice President, Sales, Nokia Middle East and Africa.
Users can launch Ovi Store from the Download folder on the main menu on their Nokia device or access nokia.com/Ramadan on the PC. However when I tried searching for one of Nokia’s
Wednesday, 19 August 2009
Greener Base stations are must for the future

But there is now significant competition, both from new divisions of companies such as Pirelli, established telecoms companies such as Sagem and Alcatel-Lucent (who have joined together to provide the Vodafone femtocell) and large players such as Huawei of China which ships equipment to 60m broadband subscribers and is a major supplier to the Chinese mobile operators.
However there is new factor which start to develop from the past year or so, i.e the factor of energy costs. It’s not a secret for anybody how energy process has soared in the past few years and now the telecoms are getting affected by this as well. Energy costs, both to build and run mobile networks, are getting increasingly important. Operators use a phenomenal amount of power, 400GW - or 200,000 tons of carbon - and over half of this is on the radio access. While this seems a lot, this equates to 25kg per user, or the same as an hour's drive on the motorway.
There is now research in place in order to study the whole energy chain, from the carbon cost of building the base stations, macrocells and femtocells, to the running costs.
In my view after looking at the femtocells especially at the Green Radio at the Wireless2.0 conference in a way of filling in the network at lower cost for the operators. Having a mini base station in your home obviously brings the access point closer for the mobile phone and hence the power consumed may be less. Bit how much of this is true I don’t know.
There is no doubt that energy factor is going to have a significant impact on the design and manufacture of femtocells and traditional mobile phone cells. If, as expected, the market takes off with millions of devices, this is going to have a huge energy cost.
As mentioned by Nick Flaherty in his blog that the carbon emission will also be a challenge for the home grown suppliers to provide low energy solutions, both in operations and also in the manufacturing to provide truly green radio. And this will help the
There is no choice for the companies to look for the alternative and green solution. As costs of deploying solar and wind power falls and energy costs rise, carriers have started looking toward green cell sites.
Once such company who is taking a lead in this prospect is Alcatel-Lucent. It’s planning to have alternative energy-powered cellsites matches that of electrically powered cell sites, which could prompt a new wave of solar-and wind-powered base stations, even in areas where an electrical connection is available. In my opinion there is no other way round as the cost of traditional energy is increasing manifolds (together with carbon emission), the price of green technology falls and networks become more efficient, using alternative energy to provide all or part of the energy at cell sites is becoming less prohibitive
Alcatel-Lucent has been working with alternative energy in wireless for five years, but it has deployed only 300 sites, mainly in Africa and the Middle East until now, which rely entirely on alternate fuels. But in the last year especially after the recent recession the alternative energy solution become a priority which resulted in a surge in interest in those technologies.
Every body in this credit crunch are finding means to cur the cost and the operators are looking to avoid the enormous costs of transporting diesel to their remote cell.
The recession has certainly given some momentum to the alternative energy cell sites and there is no doubt acceleration towards this genuine cause.
This is purely simple Economics as Electricity is a large part of an operator’s operational budget as it feeds massive quantities of power to a highly distributed network of cell sites to support not just the base station power amplifiers and radios on-site but also the air-conditioning units necessary to power them. The increase in energy costs is being largely offset with the increased power efficiencies of most vendors’ equipment. The huge site cabinets are now getting replaced with compact modular base stations, which not only consume less power but also require far less cooling. The current generation of equipment has cut power consumption between one-third and one-half. Many new radio systems also are coming equipped with energy-saving software, which powers down the base station during non-peak hours or when relatively few customers are on the cell.
Current economic climate and energy efficiency factor will definitely serve to promote green energy sooner rather than push it off to a later date. Furthermore as the market for alternative energy solutions grows in other industries the cost of the technology goes down for telecom, sending the price of solar panels and wind turbines down. Combining the above trend together with regulatory and political environments the alternative energy solution is imminently favorable as a green solution.
Tuesday, 18 August 2009
Indian subscribers getting taste of Mobile Broadband


MTNL is keen to experiment with WiMAX but it does not want to do it alone. There are many companies in India that have developed WiMAX protocol stacks so it may be a boost for these generally small and medium sized companies if WiMAX is deployed by MTNL. The only problem with WiMAX is that there are hardly big global names with any WiMAX devices/equipment. As a reult the prices could be higher and the consumers may have less choice. 3G and LTE will help in this scenario. Qualcomm for example is already looking forward to getting a big chunck of the Indian market.
India has a very big pool of keen technologists and they will whole heartidly embrace mobile broadband and the variety of apps/mobiles but only when they know that there will be stability and reliability. Once the ball starts rolling then the snowball will turn into an avalanche. The question is not if, but when.
Sunday, 16 August 2009
DoCoMo and Verizon on track for LTE
The data transfers were made over the 700 MHz LTE networks in Verizon's first two major city test sites. Boston and Seattle are expected to be the first two cities that will go live commercially with the pre-4G technology early in 2010. Those cities each now have 10 LTE 4G cell sites up and running on the 700 MHz spectrum.
Verizon isn't yet talking about the data connection speeds. "Everything is as the team expected... But because this is a very controlled environment we don't want to put a number out on the market yet," says company spokesman, Jeff Nelson.
This has pretty much been Verizon's stance throughout -- it doesn't want to talk about test numbers that might not have much relevance on the real networks. Tests have shown connections at anything between 50 Mbit/s to 8 Mbit/s.

NTT DoCoMo was the first carrier in the world to launch a commercial 3G wireless service based on WCDMA but based on its LTE roll-out it will likely be beaten this time around by carriers in other countries.
Verizon Wireless has said it plans to launch a 60Mbps trial LTE service in two U.S. cities in late 2009, to be followed by a commercial service in 2010. European carriers are also getting behind the technology with several tests under way or planned on the continent. TeliaSonera has said it will build a commercial LTE network in Stockholm, Sweden, and in Oslo, Norway.
Saturday, 15 August 2009
Kenya gets Solar Charged Phones
Kenya is home to at least 17 million mobile-phone customers, but only one million have regular access to electricity, making it difficult to recharge a mobile phone.
But the first solar-powered handset could change Kenya's telecommunication industry.