Wednesday, 22 July 2009

All data packets are not created equal





Have a look at this video from last year then read this extract from a report in Mobile Europe:

The most inefficient mobile data applications are mobile email, location based services, secure applications and things like stock updates and tickers.

This is what Alcatel-Lucent’s Mike Schabel, Phd, Alcatel-Lucent General Manager, 9900 Wireless Network Guardian, told journalists in an excellent presentation on the difficulties the huge increases in wireless data usage will give mobile operators.

Schabel said that although attention has been focused on P2P traffic because of the volume involved, such services are in fact very efficient in terms of the network resources they use. In essence, a user downloading a film, or watching a video, gets online, establishes a radio connection, does what they have to, and then gets offline.

This kind of behaviour is predictable and manageable, Schabel said. In contrast, Schabel’s team found that in one operator, mobile email was using 25% of the available signaling capacity, even though it was only responsible for 4% of the network traffic volume. This is because of the constantly on-off nature of a push mobile email device as it receives messages, continuously signing on and off the network. Location based services, that also required a constant “conversation” with the network, are also very resource intensive.

Schabel said that examples such as this show that there is a “hidden cost” in many of the data services that mobile operators are looking to deploy. Operators need to factor in cost per minute and cost per bit, he said. A further cost comes when as a result of not understanding network activity such as this, or the way an application works imperfectly on a device, can cause outages and delays in the network – causing poor user experience.

The answer, he said, is first to understand the root cause of problems occurring within the network, or on other elements upon which the service relies (content/ app server, handset, web server, etc).

Second, operators then can plan and design their networks to meet predictable and known demand (“System engineering 1.0”, in Schabel’s words). This may include additional bearers and resources, but it may also be something as simple as re-aligning existing resources. Only then would operators need to consider other throttling or management methods such as policy management, or CRM and billing tools.

Schabel was speaking to publicise his company’s tool, the 9900 Wireless Network Guardian. This is a device that takes in core network data information in real time, analyses it, and produces data on specific issues of network performance.

Schabel said that the issue to date is that wireless network monitoring tools have been “blind” to IP traffic, while packet inspection and other IP techniques cannot “see” the wireless network. What is needed is a system that marries to two together, so operators can see services operating both in cost per bit, and cost per minute terms.

Read Complete report here.

Tuesday, 21 July 2009

LTE Subscribers forecast and market movements



A report last year mentioned that the number of LTE subscribers by 2013 will be 85 million but a new report from research firm Forward Concepts, which looks at trends including 3G evolution and handset shipment growth, claims that the number of LTE users will be 56 million by 2013.

According to the report, HSPA+ will begin to displace W-CDMA and HSDPA technologies, and the first LTE devices to hit the market in 2010 will be data cards and dongles.

The Forward Concepts study also takes a look at some other trends in the industry. The firm predicts that global handset shipments will be down this year, and forecasts a 4.4 percent contraction. The report predicts a resurgence in unit shipments in 2010, however, and calls for a 12.8 percent growth in shipments. The one bright spot for 2009 is smartphones: Forward Concepts predicts a 25 percent jump in smartphone sales.

LCD display technology also will come under pressure from other technologies, including OLED, ePaper, Qualcomm's Mirasol and Liquavista, according to the report. The market for these "post-LCD" displays will grow to over $3 billion in 2013, the report said.

On the operator front, NTT DoCoMo is sticking to its plan to be a first stage deployer, with first roll-out in 2010, while work has begun on outdoor testing of the TD-LTE technology that all three Chinese carriers will use.

DoCoMo chief Ryuji Yamada told the London Financial Times that the cellco has not gone cool on its 2010 timescale. The firm needs to enable new services to respond to UQ's aggressive launch of mobile broadband offerings based on WiMAX, and to stay ahead of established rivals KDDI and Softbank, and the disruptive and data-driven newcomer eMobile. Yamada said DoCoMo wants to be "in the leading group in this technology", and that he sees a move to LTE as a way to be fully compatible with global standards, which will improve device economics. In 3G, DoCoMo moved so early that it deployed a pre-standard implementation of W-CDMA, FOMA. This is now used by 91% of its base, with over 50m subscribers after almost eight years in commercial service, but it has two downsides that will drive DoCoMo to LTE early - over-dependence on Japanese handset makers, with the high costs of slightly off-standard devices; and networks that are older than those of newer cellcos and in areas are becoming obsolete.

The Chinese operators have similar dilemmas, especially China Mobile, which is stuck with an off-standard 3G technology, TD-SCDMA, and wants to move quickly to a platform that brings global economies of scale and allows it to be more cutting edge in services. While it may have virtually no opportunity to get ROI on its 3G spend, it aims also to be in the first group of LTE deployers, though it will be using the TDD strain of the standard.

Earlier this year, it took over the trial sites in Spain that had previously been used by Vodafone and Verizon Wireless for FDD-LTE, and is now reported to be moving this initial test program to China and towards more real world outdoor trials. Sources say these outdoor tests could also involve other Chinese operators, and will involve six vendors working in the Beijing area. Surprisingly, if the insiders are right, these vendors do not include Motorola, which has been the main supplier in the Spanish project, and claims it has a major headstart in TD-LTE because of its extensive experience with TDD mobile broadband, using WiMAX. But the new Chinese tests involve four homegrown vendors (Huawei, ZTE, Datang and Potevio, the latter a Nokia venture) plus Ericsson and Nokia Siemens. The inclusion of more CDMA-oriented suppliers, notably Motorola and Alcatel-Lucent, is likely to follow when CDMA carrier China Telecom starts its own TD-LTE tests.

The testing process determined by the TD-LTE Working Group has three stages - indoor, outdoor and large-scale outdoor testing, the last of these involving two or three major cities with at least 100 base stations each. The local vendors have already been working on indoor testing in China since the start of the year.

Japanese Mobiles suffering from Galápagos syndrome


Excellent article from NY Times:

At first glance, Japanese cellphones are a gadget lover’s dream: ready for Internet and e-mail, they double as credit cards, boarding passes and even body-fat calculators.

But it is hard to find anyone in Chicago or London using a Japanese phone like a Panasonic, a Sharp or an NEC. Despite years of dabbling in overseas markets, Japan’s handset makers have little presence beyond the country’s shores.

“Japan is years ahead in any innovation. But it hasn’t been able to get business out of it,” said Gerhard Fasol, president of the Tokyo-based IT consulting firm, Eurotechnology Japan.
The Japanese have a name for their problem: Galápagos syndrome.


Japan’s cellphones are like the endemic species that Darwin encountered on the Galápagos Islands — fantastically evolved and divergent from their mainland cousins — explains Takeshi Natsuno, who teaches at Tokyo’s Keio University.

This year, Mr. Natsuno, who developed a popular wireless Internet service called i-Mode, assembled some of the best minds in the field to debate how Japanese cellphones can go global.
The only Japanese handset maker with any meaningful global share is Sony Ericsson, and that company is a London-based joint venture between a Japanese electronics maker and a Swedish telecommunications firm.


And Sony Ericsson has been hit by big losses. Its market share was just 6.3 percent in the first quarter of 2009, behind Nokia of Finland, Samsung Electronics and LG of South Korea, and Motorola of Illinois.

Yet Japan’s lack of global clout is all the more surprising because its cellphones set the pace in almost every industry innovation: e-mail capabilities in 1999, camera phones in 2000, third-generation networks in 2001, full music downloads in 2002, electronic payments in 2004 and digital TV in 2005.

Japan has 100 million users of advanced third-generation smartphones, twice the number used in the United States, a much larger market. Many Japanese rely on their phones, not a PC, for Internet access.


Several Japanese companies are now considering a push into overseas markets, including NEC, which pulled the plug on its money-losing international cellphone efforts in 2006. Panasonic, Sharp, Toshiba and Fujitsu are said to be planning similar moves.

“Japanese cellphone makers need to either look overseas, or exit the business,” said Kenshi Tazaki, a managing vice president at the consulting firm Gartner Japan.

At a recent meeting of Mr. Natsuno’s group, 20 men and one woman crowded around a big conference table in a skyscraper in central Tokyo, examining market data, delivering diatribes and frequently shaking their heads.

The discussion then turned to the cellphones themselves. Despite their advanced hardware, handsets here often have primitive, clunky interfaces, some participants said. Most handsets have no way to easily synchronize data with PCs as the iPhone and other smartphones do.

Because each handset model is designed with a customized user interface, development is time-consuming and expensive, said Tetsuzo Matsumoto, senior executive vice president at Softbank Mobile, a leading carrier. “Japan’s phones are all ‘handmade’ from scratch,” he said. “That’s reaching the limit.”

Then there are the peculiarities of the Japanese market, like the almost universal clamshell design, which is not as popular overseas. Recent hardware innovations, like solar-powered batteries or waterproofing, have been incremental rather than groundbreaking.

The emphasis on hardware makes even the newest phones here surprisingly bulky. Some analysts say cellphone carriers stifle innovation by demanding so many peripheral hardware functions for phones.

The Sharp 912SH for Softbank, for example, comes with an LCD screen that swivels 90 degrees, GPS tracking, a bar-code reader, digital TV, credit card functions, video conferencing and a camera and is unlocked by face recognition.

Read the complete article here.

Follow discussion on this article at Forum Oxford here.

Monday, 20 July 2009

eMBMS: evolved Multimedia Broadcast Multicast Control


I spent a lot of time working on MBMS but operators decided not to roll out the technology. It was killed in its infancy. Earlier I blogged that MBMS wont be present in Release 8 but now there is interest in some quarters about MBMS being present in Release 9.

As I have mentioned earlier, the main advantage of MBMS over other TV technologies is that no additional infrastructure is required, the same technology and spectrum is used as for the 3G/LTE case and user interaction is possible thereby involving participation.

At the moment, I was only able to see eMBMS information in 3GPP TS 36.300 but I am sure more is on way soon. Section 15 of 36.300 is dedicated to eMBMS information.

In E-UTRAN, MBMS can be provided with single frequency network mode of operation (MBSFN) only on a frequency layer shared with non-MBMS services (set of cells supporting both unicast and MBMS transmissions i.e. set of "Unicast/MBMS mixed cells").

MBMS reception is possible for UEs in RRC_CONNECTED or RRC_IDLE states. Whenever receiving MBMS services, a user shall be notified of an incoming call, and originating calls shall be possible. ROHC is not supported for MBMS.

So where does it fit in the overall architecture?



Multi-cell/multicast Coordination Entity (MCE): The MCE is a logical entity – this does not preclude the possibility that it may be part of another network element – whose functions are the allocation of the radio resources used by all eNBs in the MBSFN area for multi-cell MBMS transmissions using MBSFN operation. Besides allocation of the time/ frequency radio resources this also includes deciding the further details of the radio configuration e.g. the modulation and coding scheme. The MCE is involved in MBMS Session Control Signalling. The MCE does not perform UE - MCE signalling. When the MCE is part of another network element, an eNB is served by a single MCE.

E-MBMS Gateway (MBMS GW): The MBMS GW is a logical entity – this does not preclude the possibility that it may be part of another network element – that is present between the BMSC and eNBs whose principal functions is the sending/broadcasting of MBMS packets to each eNB transmitting the service. The MBMS GW uses IP Multicast as the means of forwarding MBMS user data to the eNB. The MBMS GW performs MBMS Session Control Signalling (Session start/stop) towards the E-UTRAN via MME.

“M3” Interface: MCE – MME: An Application Part is defined for this interface between MME and MCE. This application part allows for MBMS Session Control Signalling on E-RAB level (i.e. does not convey radio configuration data). The procedures comprise e.g. MBMS Session Start and Stop. SCTP is used as signalling transport i.e. Point-to-Point signalling is applied.

“M2” Interface: MCE – eNB: An Application Part is defined for this interface, which conveys at least radio configuration data for the multi-cell transmission mode eNBs and Session Control Signalling. SCTP is used as signalling transport i.e. Point-to-Point signalling is applied.

“M1” Interface: MBMS GW – eNB: This interface is a pure user plane interface. Consequently no Control Plane Application Part is defined for this interface. IP Multicast is used for point-to-multipoint delivery of user packets.


It is not precluded that M3 interface can be terminated in eNBs. In this case MCE is considered as being part of eNB. However, M2 should keep existing between the MCE and the corresponding eNBs. This is depicted in Figure above which depicts two envisaged deployment alternatives. In the scenario depicted on the left MCE is deployed in a separate node. In the scenario on the right MCE is part of the eNBs.

It will be possible to have an MBMS Dedicated cell or a MBMS/Unicast mixed cell. For transmission, it will be possible to have a Single-cell transmission or Multi-cell transmission. Multi-cell transmission where the safe information is sent synchronously over multiple cells will have an advantage of receivers being able to combine information from Multiple cells and also to roam in the area of transmission seamlessly.

More information when detailed specs are available.

Friday, 17 July 2009

Dilbert humour on Mobile Rebates

Missed this one earlier but otherwise I am a big Dilbert fan. Thought it would be nice to end the week with.

By the way, last year I blogged about the Mobile Billing strategies which may be useful for you if you are considering getting new contract.

Thursday, 16 July 2009

Texting teen falls down New York manhole

Last year there was a talk here in UK about adding padding to the lamp-posts because people were bumping into them while texting. The survey of over 1,000 Britons suggested that one in 10 had suffered an injury from a collision while sending an SMS. The research claimed that there were 68,000 SMS-related injuries in the UK last year, ranging from minor bumps to skull fractures.

Now, I read this news about Alexa Longueira, 15, whose family is suing after the teenager fell into an open manhole in Staten Island, New York, while trying to send a text message. Poor Alexa apparently suffered a fright and some scrapes on her arms and back when she fell.

Her mother, Kim Longueira, said it did not matter that her daughter was texting when she fell down the hole. "Oh my God, it was putrid," she told MNBC. "One of her sneakers is still down there."

If the case comes to court it is destined to join such infamous lawsuits as the woman who sued McDonald's after spilling hot coffee on herself, which inspired an annual award for the most ridiculous lawsuit. A glance at British legal history suggests Longueira may have actually have a chance of winning. In the 1964 case of Haley v London Electricity Board it was deemed workmen should have known a hole might pose a threat to visually impaired people.

Whether texting and walking is now so common that a court ruling will require workmen – and the rest of us – to adjust our actions accordingly remains to be seen.

Iranians start boycott Nokia campaign


The mobile phone company Nokia is being hit by a growing economic boycott in Iran as consumers sympathetic to the post-election protest movement begin targeting a string of companies deemed to be collaborating with the regime.

Wholesale vendors in the capital report that demand for Nokia handsets has fallen by as much as half in the wake of calls to boycott Nokia Siemens Networks (NSN) for selling communications monitoring systems to Iran.

There are signs that the boycott is spreading: consumers are shunning SMS messaging in protest at the perceived complicity with the regime by the state telecoms company, TCI. Iran's state-run broadcaster has been hit by a collapse in advertising as companies fear being blacklisted in a Facebook petition. There is also anecdotal evidence that people are moving money out of state banks and into private banks.

Nokia is the most prominent western company to suffer from its dealings with the Iranian authorities. Its NSN joint venture with Siemens provided Iran with a monitoring system as it expanded a mobile network last year. NSN says the technology is standard issue to dozens of countries, but protesters believe the company could have provided the network without the monitoring function.

Siemens is also accused of providing Iran with an internet filtering system called Webwasher.


"Iranians' first choice has been Nokia cellphones for several years, partly because Nokia has installed the facility in the country. But in the past weeks, customers' priority has changed," said Reza, a mobile phone seller in Tehran's Big Bazaar.

"Since the news spread that NSN had sold electronic surveillance systems to the Iranian government, people have decided to buy other company's products although they know that Nokia cellphones function better with network coverage in Iran."

Some Tehran shops have removed Nokia phones from their window displays. Hashem, another mobile phone vendor, said: "I don't like to lose my customers and now people don't feel happy seeing Nokia's products. We even had customers who wanted to refund their new Nokia cellphones or change them with just another cellphone from any other companies.

"It's not just a limited case to my shop – I'm also a wholesaler to small shops in provincial markets, and I can say that there is half the demand for Nokia's product these days in comparison with just one month ago, and it's really unprecedented. People feel ashamed of having Nokia cellphones," he added.

News of the boycott has appeared on the front page of Iranian pro-reform papers such as Etemad-e Melli, owned by the reformist candidate Mehdi Karroubi. Hadi Heidari, a prominent Iranian cartoonist, has published an image of a Nokia phone on a No Entry traffic sign.
A Nokia spokeswoman refused to comment on the company's sales in Iran.


The Iranian authorities are believed to have used Nokia's mobile phone monitoring system to target dissidents. Released prisoners have revealed that the authorities were keeping them in custody on the basis of their SMS and phone calls archive, which was at officials' disposal.

One Iranian journalist who has just been released from detention said: "I always had this impression that monitoring calls is just a rumour for threatening us from continuing our job properly, but the nightmare became real when they had my phone calls – conversations in my case.

"And the most unbelievable thing for me is that Nokia sold this system to our government. It would be a reasonable excuse for Nokia if they had sold the monitoring technology to a democratic country for controlling child abuse or other uses, but selling it to the Iranian government with a very clear background of human rights violence and suppression of dissent, it's just inexcusable for me. I'd like to tell Nokia that I'm tortured because they had sold this damn technology to our government."

NSN spokesman Ben Roome said: "As in every other country, telecoms networks in Iran require the capability to lawfully intercept voice calls. In the last two years, the number of mobile subscribers in Iran has grown from 12 million to over 53 million, so to expand the network in the second half of 2008 we were required to provide the facility to intercept voice calls on this network."

The SMS boycott, meanwhile, has apparently forced TCI into drastic price hikes. The cost of an SMS has doubled in recent days. Protesters view the move as a victory.

Wednesday, 15 July 2009

IP Access Virtual Fridge Notes Demo

Yesterday I blogged about the Airvana HubBub demo, so someone pointed out to me the IP access demo of Virtual Fridge notes. I saw the demo in Femtocells World Summit and wasnt clear on how exactly it worked, but this Youtube video shows it quite well.





When I was discussing this app with a friend, the first question he asked was, why cant we send an SMS directly to the person rather than using the Facebook app. I think the main reason is convinience. You need an app somewhere so why not put it in a popular social networking website. There is a plan of Femtocells being available with SIM cards. In that case it maybe possible in future to have a way where you send the SMS directly to the Femto and it can relay that SMS to any unique UE that enters its range for a limited time. I am sure someone will already be working on a similar thing ;)

Vodafone R&D people start a blog on LTE & Mobile Broadband


Its good to see R&D people from Vodafone starting their own blog. Vodafone has been very active with R&D and they also do very interesting lectures. I covered about one such lecture in Telecoms area here. Few months back I also attended an interesting lecture on Mobile Healthcare about which I blogged here. I am sure this is going to be an interesting blog with lots of useful information and insights.

You can check the blog out at: http://witherwire.betavine.net/

Tuesday, 14 July 2009

Airvana HubBub femtocell demo at Femtocells World Summit 2009

I blogged about the demo earlier here. Here is the video showing the live demo:



3GPP Release-10 Features and Studies

New Items in Rel-10
  • Network Selection for non-3GPP Access
  • Network Improvements for Machine-type Communications
  • Registration in Densely-populated area (RED)
  • Enhanced Home NodeB / eNodeB continuation of Rel-9
  • IMS Service Continuity – Inter Device Transfer enhancements
  • EEA3 and EIA3 (new Encryption & Integrity EPS security algorithms)
  • Study on Mobile Haptic Services
  • Study on Policy solutions and enhancements
  • Study on IPv6 MigrationStudy on SR-VCC Enhancements
Items moved from Rel-9 to Rel-10
  • IMS aspects of Architecture for Home NodeB
  • GTP-based S8 chaining
  • Multi Access PDN Connectivity
  • Study on advanced requirements for IP interconnect
  • Study on Unauthenticated PS Emergency Calls
  • Study on Study on Personal Broadcast Service
  • Study on LCS support in SAE for non-3GPP accesses
  • Study on System enhancements for the use of IMS services in local breakout and optimal routing of media
  • Study on Intra Domain Connection of RAN Nodes to Multiple CN Nodes
  • Study on IMS Evolution
  • Study on enhancements to IMS border functions for IMS Interconnection of services
I will add some details as I have the information and as I get time :)

Sunday, 12 July 2009

Stage 2 Specification For Voice Over LTE from VOLGA Forum now available

From our friend Martin Sauter's blog:

Regular readers of this blog probably remember that I'm a fan of Voice over LTE via GAN (VOLGA). For those who don't, have a look here on more details on why I think it has a good chance of becoming THE voice solution for LTE. It's amazing how fast the Volga-Forum is pushing out the specifications. In May, they published the stage 1 specification document, which contains a high level architecture and the requirements. Now only a month later, a first version of the stage 2 specification is available. Stage 2 specifications as per 3GPP contain a detailed architecture description and all procedures required from connecting to the network, originating and terminating calls, doing handovers, etc.

While their speed is incredible, maybe it should not be that surprising, because VOLGA is based on the already existing 3GPP GAN (Generic Access Network, i.e. GSM over Wi-Fi) specification. That's a good thing because that means that VOLGA could thus be developed quite quickly as it's likely that existing products can be modified instead of being designed from scratch. In addition, this should also mean that the first version of the standard is already quite mature as many areas were already verified during implementation and rollout of GAN in current networks.

I did a quick comparison between the two stage 2 specs and as I expected, many parts are very similar. While the GAN stage 2 specification has 126 pages, the current VOLGA stage 2 specification has 87 pages. This is probably because VOLGA is simpler than GAN. There are fewer handover procedures and most of the handover details are part of the 3GPP Single Radio Voice Call Continuity (SR-VCC) specification (for IMS) so they don't have to be included in the VOLGA spec. In addition to fewer handover scenarios, handovers are a bit more simple with LTE from a VOLGA perspective, as the network takes care of it unlike with GAN, where the mobile has to force the network into a handover. Also, there's no need to support the packet switched part of the network which also significantly lowers the complexity.

Well done, I am looking forward to the stage 3 specification which will contain the details on all messages and information elements used.

I blogged about VoLGA last month here.

Saturday, 11 July 2009

LTE and 4G IPR

The other day I heard from Alex GeunHo Lee about his new blog related to 4G technologies IPR. Alex has got extensive experience in IPR and patent related issues and I am sure his blog will be very useful for everyone.

Couple of Alex's presentations are embedded below which I am sure many would find interesting.

LTE Essential Patents Landscape 2009 2Q



4G Key Technologies Patent Landscape 2Q 2009


Friday, 10 July 2009

You know you're Mobsessed when...



Tomi and friends are having fun on Twitter under #mobsessed. They are challenging everyone to complete the sentence "You know you are mobsessed if..". Here are few funny ones:

You know you're #mobsessed when you think text'n'drive is for amateurs. You google and drive.

You know you are #mobsessed if while on vacation,you value a place because it's 3G network coverage

you are #mobsessed if you and your wife squabble over the phone chargers (even though you have one in every room of your house)

You are #mobsessed when you think in sentences of 140 characters or less.

You know you are #mobsessed if you wake up your children in the morning by sending them SMS text messages,

You're #mobsessed when you go to toilet just so you can #tweet legally without being seen as #twitterholic in office

You know you're #mobsessed when you can't download new apps to your iPhone without deleting old ones.

You know you are #mobsessed when dropping your phone causes a near death experience. And you can't help singing when the phone still works.

If u carry 2 phones and are considering 3rd, u are #mobsessed

Check the search results on Twitter.

Thursday, 9 July 2009

LTE UE Initial Signalling example

I have added initial signaling MSC for an LTE UE at the 3G4G website here. I havent yet managed to expand on the signalling details yet but it should be a good starting point for most people.

Santosh on his Wired n Wireless site has details on LTE Attach procedure which you may find interesting here. See here.

Wednesday, 8 July 2009

UK: Ofcom releases 3G coverage maps

Ofcom has just released (or as The Register puts it; found under the sofa) 3G coverage maps for UK. Its useful for people who dont live in big towns but planning to take out contracts on dongles/data services. They can now quickly check which operator to go for.

These 3G coverage maps by mobile operator were prepared in January 2009. They represent the area where we have assessed the mobile operators met a minimum coverage threshold set by Ofcom (see technical notes below). The shaded areas on the maps indicate areas where customers have the possibility of making and receiving a call outside over a 3G network (but with no guarantee of being able to do so). They do not indicate areas where customers are able to access higher data rate services.

All operators produce their own coverage indicators on their websites which are likely to provide more reliable guidance to network availability in any given area. The accuracy and detail of the maps are not to the same level as the mobile operators publish. These maps show UK-wide general coverage and are not suitable for zooming in to see specific locations i.e. a particular house or street. Also they are not suitable for assessing the quality or depth of coverage within the indicated areas (e.g. different operators may be able to offer better or worse data rate services or support a smaller or greater number of users).

You can see the PDF of the coverage maps here.

Wireless Cellular Security

Arvind, an old colleague recently spoke in ACM, Bangalore on the topic of Security. Here is his presentation:







There are lots of interesting Questions and Answers. One interesting one is:

Does number portability mean that data within an AuC is compromised?

Not really. Number portability does not mean sensitive data from old AuC are transferred to the new AuC. The new operator will issue a new USIM which will have a new IMSI. Number portability only means that MSISDN is kept the same for others to call the mobile. The translation between MSISDN and IMSI is done at a national level register. Such a translation will identify the Home PLMN and the HLR that’s needs to be contacted for an incoming call.
That’s the theory and that’s how it should be done. It will be interesting to know how operators in India do this.

You can read all Q&A's here.

I wrote a tutorial on UMTS security many years back. Its available here.

Tuesday, 7 July 2009

Smart Grids: New Wireless Revolution



In the past two years, M2M (machine-to-machine) applications have become one of the most talked-about topics in the wireless industry. While M2M apps can be used for many purposes (such as smart homes, smart metering/electricity meter reading, fleet management, mobile workforce, automobile insurance and vending machines) and in many sectors (such as healthcare, agriculture, commercial, industrial, retail and utility), smart metering applications--also known as smart grids--present the biggest growth potential in the M2M market today. With many leading wireless service providers and utility companies jumping on the bandwagon and the growing support from states like Texas and California, M2M applications are set to become very successful in the coming years.


AT&T in March announced a new alternative for electric utility companies looking to provide the benefits of smart grid technology to the residential sector. AT&T and SmartSynch are for the first time providing utilities with a cost-effective solution by combining a new suite of service plans from AT&T designed specifically for machine to machine (M2M) communications with SmartSynch's smart grid solutions already deployed at more than 100 utilities throughout North America.

With this new solution from AT&T and SmartSynch, electric utility companies will now be able to concentrate on efficient electricity delivery rather than being distracted by building, maintaining, expanding and upgrading a communications network. This new solution offers a cost-effective point-to-point configuration model in which each meter communicates directly with the utility over the AT&T wireless network.

Smart grids combine "smart meters", wireless technology, sensors and software so customers and utilities can closely monitor energy use and cut back when the availability of electricity is stretched to its limit. The IP-based smart grid model ultimately helps consumers understand the economics of their consumption patterns so they can make intelligent decisions about their power consumption. The smart grid technology will also help to enhance reliability and energy efficiency, lower power-line losses and provide utilities with the ability to remotely automate service, providing cost-savings for consumers.

Key benefits of the point to point smart meter solution to utility companies include:
  • improved speed of deployment over traditional meshed networks
  • the simplicity of an open standard, IP-based network
  • the ability to communicate directly with each meter.

How can T-Mobile, the fourth-largest cell phone carrier in the U.S., generate business in the face of dropping net additional subscribers and competition from low-cost cell phone companies? Get into the smart grid. Like AT&T and Verizon, T-Mobile is hoping to leverage its already built-out wireless networks to tap into the coming smart grid boom spurred by the stimulus package. On Thursday, T-Mobile plans to announce that it’s developing a durable SIM card that can be embedded in smart meters (as well as used for other industrial processes), and a new partnership with smart meter technology maker Echelon.

Mobile’s national director of Machine-to-Machine services, John Horn, told us that T-Mobile has been playing in the connected electric meter space for several years, including working with smart meter maker SmartSynch (AT&T has a deal with them, too), and he says the carrier has several utility pilot projects under way in the Pacific, Southwest and Midatlantic regions with an aggregate of “tens of millions” of smart meters. In some of those trials T-Mobile has been testing out its new smart meter SIM card, which is like the SIM card in your regular cell phone, but smaller — 5 by 6 millimeters — more durable and made of silicon, not plastic. Horn says the SIM, which can be connected to any of T-Mobile’s wireless networks, including 3G, can withstand the heat and environmental conditions of being outdoors in a smart meter much better than a standard SIM card.

One of the first smart meter makers to embed the new SIM is Echelon, which is also working with T-Mobile on a smart meter service that will run over T-Mobile’s wireless networks and, according to the companies, is significantly cheaper for utility customers. T-Mobile is just the latest phone company to drop its prices to attract utilities. AT&T and SmartSynch announced a similar deal last week. Horn said of T-Mobile’s smart grid price move: “We’ve broken historical pricing models.”

Network technologies including LTE, mobile WiMAX, WiFi and ZigBee potentially could be used for future smart grid applications. While it is still too soon to tell which technology is likely to become the big winner in this market, mobile WiMAX appears to have an edge over LTE due to mobile WiMAX's time-to-market advantage. Mobile WiMAX also has the advantage of being more reliable and secure than "pure" unlicensed technologies like WiFi. WiMAX can also count on support from leading companies like GE, Intel, Sprint Nextel, Clearwire, Motorola, Samsung and Google, among others.

Most importantly, WiMAX will enable carriers, utility companies and other key players to build open-standards based smart meters. Ultimately, through WiMAX, third parties will be able to develop many applications and devices, helping to reduce cost. With WiMAX chipsets currently running about $36, some observers believe that the cost could become as low as $8 or $6 in the next 18 months.


In the meantime, WiMAX-based smart meters are already available in the U.S. For instance, GE, in association with Intel and Grid Net software, has built one of the first WiMAX-based smart meters. Intel Capital and GE both invested in Grid Net in 2006. Companies competing with GE include companies like Trilliant, Itron, Silver Spring Networks (also one of GE's partners) and Landis & Gyr.


However, over time, LTE could become a valuable option for many companies involved in this space as LTE becomes widely adopted and prices associated with it start to come down. LTE's larger coverage capacity and ability to support a higher number of points should play a key role here. In our opinion, it will also become critical for LTE carriers to offer a decent revenue share with utility companies and other key players.


Although being a short-range technology, ZigBee could also have a role to play in the M2M apps space as several companies have expressed some interest in the technology. In fact, U.S.-based startup Tendril Networks is well positioned to become a pioneer in this space; the company, which teamed up with Itron and Landis & Gyr, has already developed a product called Tendril Residential Energy Ecosystem (TREE), compatible with various ZigBee-based devices to be used for smart grid apps inside homes.


Lastly, if fully secured, WiFi could also become a disruptor. WiFi-based smart grid apps appear to be gaining traction in the U.S. and Europe. For instance, the city of San Jose, in association with Echelon, is currently testing a whole smart streetlight network using WiFi-based smart grids set to be launched this summer. The system may receive federal stimulus money, and if it does the city plans to revamp the entire 65,000-light network, which would help reduce energy costs by 40 percent. That figure is consistent with the performance of two European cities: Milton Keynes in the United Kingdom and Olso in Norway, which have been implemented by Echelon.

From Ajit Jaokar's Open Gardens Blog:

While Telcos have historically rebelled against 'opening up', the US administration's emphasis on Open is creating huge opportunities for Telecoms and the Cloud

Broadband stimulus grants are tied to net neutrality rules, which means networks have to allow users to connect any device to the network

But this also leads to a huge opportunity because now Telecoms can extend their reach into the Smart Grid through MTM (machine to machine) applications which will generate a much higher number of network connections. These may have less ARPU (i.e. average revenue per user) but a greater number of actual connections with no need to subsidise devices. Hence, they could be profitable.

A smart grid starts with a 'smart meter' which is capable of two way communications and lets the user and provider manage electricity consumption in a more granular way. If the customer's power consumption can be captured in a granular manner, the provider can offer specials/ discounts to the customer. The added potential of smart grids arises from knowing data trends and also extend power management to other devices. These synergies fit well into LTE and home gateways and this explains with LTE and also explains Verizon's emphasis on Ipv6
The Verizon Itron partnership is an example of such a service and this service will be a part of Verizon's LTE deployment in the 700 MHz band for M2M apps.

The Zigbe alliance is also gaining traction as a result of this move by building wireless intelligence and capabilities into everyday devices and all this will lead to the 50 billion devices mark which suddenly does not sound so far away

On the services side, initiatives like Microsoft Hohm are being deployed and even if a utility isn't a part of Hohm, users can enter data directly which means that they can get more benefits the more they contribute to it.Google power meter is a similar initiative from Google.

The wider potential of this trend is discussed in an excellent article from Andrew GesmerEnergy Conservation From Zero to Sixty

Thus, Smart grids, LTE and the Cloud are a huge opportunity for the industry - but the privacy concerns with sensor networks and the Cloud will play an important part here.

Companies are building out the smart grid with various broadband technologies — cellular, WiFi, WiMAX — so why not good ol’ DSL? Smart grid sensor and software maker Current is touting a new smart grid partnership with DSL provider Qwest.

Current largely provides the sensors that monitor different conditions on the electrical network, like voltage and current, as well as the software that processes the sensor information for the utility customer. While Current is mostly focused on the distribution portion of the grid, it can also provide communication gear and sensors for smart meters and in-home gateways, which it is doing for Colorado utility Xcel Energy for its SmartGridCity rollout. Because Current needs to get its information back to the utility, it works with a number of companies that provide that network connection. The latest is Qwest, which Current started partnering with, and is currently working with, for Xcel Energy’s SmartGridCity plan (Qwest provides phone and broadband service in Colorado). The buildout of SmartGridCity is supposed to be completed soon, followed by an assessment of the network’s benefits.

What are the benefits of using DSL? Current’s senior vice president of business solutions, Mae Squier-Dow, says that because DSL is already widely available, using it speeds up the ability to deploy smart grid technology. And because the networks have already been built, she says, the option is more affordable for a utility than building out its own communications network. (Other companies argue that in the long run it’s cheaper to build and own the network). Since DSL is a proven technology, it can help smart grid projects gain access to stimulus funds meant for “shovel-ready” projects, Squier-Dow says.

DSL is also high-speed, so if utilities want to use the networks for more bandwidth-intensive services, they can. And DSL is based on Internet Protocol, so it can more easily connect with other IP-based networks and systems, which are ubiquitous. Ultimately DSL is a standard that’s been used for years, so utilities can be rest assured that the technology is highly reliable.

Monday, 6 July 2009

LTE activity gathering pace


Wireless internet access is going to be a better, richer experience than fixed link access Professor Michael Walker, group R&D director at Vodafone told Wireless 2.0 conference in Bristol, organised by Silicon South-West.

“People think wireless can’t compete with fixed link, but it can”, said Walker, pointing out that the 100Mbit/s of FTTH is the same as the theoretical maximum throughput of LTE.

“LTE capacity on 20MHz is an order of magnitude higher than HSPA,” said Walker. He said that, “in the first real field trials,” average downlink speeds of 15Mbit/s, with 4.5 spectral efficiency, were achieved. “Wimax takes three times more spectrum”, he said.

“We decided with LTE that we would make sure the technology works before we buy spectrum,” said Walker.

To that end, Vodafone has been working with China Mobile and Verizon to make sure LTE has compatible standards.

Walker regards talk of a killer app as silly for LTE as it was for 3G. “LTE is just about access,” he said.

He predicted the gradual relative demise of the person-to-person phone calls, referencing data that showed 11 times more wireless traffic is being generated by community chatting than by person-to-person calls.

Ericsson, one of the world’s leading suppliers of mobile phones and related network solutions, has warned that it could be 2012 before the first true next generation Mobile Broadband networks gain a good foothold in the UK. The deployment of Long Term Evolution (LTE) technology (aka - 4G), which could deliver download speeds of 150 to 1000Mbps, is being hampered by problems with releasing the needed 900Mhz spectrum.

Presently both O2 and Vodafone own some of the older 2G (900MHz) spectrum, which Ofcom is seeking to have redistributed to rival operators ( Orange , T-Mobile and Three (3) ). This could then be converted for use by 3G/4G voice and Mobile Broadband technologies, such as HSPA and LTE .
Nokia Siemens Networks (NSN), although providing WiMAX solutions for Taiwan operators, plans to launch commercialized LTE (Long Term Evolution) solutions in 2010, Mike Wang, NSN's general manager for Taiwan, Hong Kong and Macau.

NSN has already received LTE solution orders from Japan-based NTT DoCoMo, which is expected to start offering LTE-based services in 2010, Wang stated.

In addition, NSN has also landed orders for the installment of LTE trial networks for T-Mobile and Singapore-based service provider Mobile One, he added.

LTE-enabled chipsets are expected to hit the market starting in the second half of 2009, followed by LTE USB modems and network cards in 2010 and other LTE CPE such as handsets, PDAs, tablet PCs in 2012, Wang predicted.

Japan's DoCoMo is reported to be planning an investment of ¥ 343 billion (US$3.4 billion) for the investment, while KDDI and Softbank Mobile have budgeted ¥ 515 billion and ¥207.3 billion, respectively. According to the Nikkei newspaper, among the four, LTE services are forecast to attract around 36 million subscribers, with DoCoMo projecting 17.74 million LTE customers.
The total investment will top ¥1 trillion (US$10 billion)

DoCoMo, KDDI and Softbank Mobile expect roughly 30% of their existing customers to switch to 3.9G services. DoCoMo is also reported to be expecting to upgrade or deploy some 20,000 LTE enabled base stations by 2014. The network should cover 50% of the population and commercial services will start in 2010.

LTE provides downlink peak rates of at least 100Mbit/s, 50 Mbit/s in the uplink and RAN round-trip times of less than 10ms. Fujitsu recently announced that, in collaboration with NTT DoCoMo, they had successfully completed field testing for LTE, using 4x4 MIMO technology, which resulted in data transmission speeds in the range of 120 Mbps (using 10 MHz bandwidth) in Sapporo's urban environment.

NTT DOCOMO has selected Alcatel-Lucent' Ethernet transmission solution to provide the backhaul network of its Long Term Evolution (LTE) service. Financial terms were not disclosed.

Alcatel-Lucent said its packet optical gear will provide NTT DOCOMO with cost-effective and flexible Ethernet-based aggregation and transport from the base stations to the core network. Specifically, the Alcatel-Lucent solution, based on the 1850 Transport Service Switch (TSS) and its universal switching technology, will provide multipoint Ethernet connections between cell sites supported by strong operations, administration and maintenance capabilities, as well as carrier-class protection and network management.

China Mobile Ltd., recognizing that future growth of its 3G services is not yet certain, is looking to secure its future with a nearly parallel development of Long Term Evolution (LTE) capabilities, according to its annual report filed with the Securities and Exchange Commission (SEC) recently.

High on the list of limitations TD-SCDMA imposes are the availability, functionality, and price of terminals, and the support for international roaming. The latter particularly impacts China Mobile's high-end and business customers.

China Mobile remains committed to TD-SCDMA, but at the same time it's going all out to develop converged time division duplex (TDD) and frequency division duplex (FDD) products for LTE, the proto-4G wireless technology set to be deployed by mobile operators worldwide.
Developing a simultaneous LTE strategy will enable China Mobile to limit the time it is dependent on TD-SCDMA, and also help it counter the constraints it's currently experiencing as a result of the TD-SCDMA sector's limited ecosystem.

The Chinese vendors have labored too long under the market perception that they deliver low cost equipment, but can't do cutting edge. To fight this image and enhance their position among tier one carriers, Huawei and ZTE are throwing everything - including their huge credit lines for vendor financing - at gaining early LTE trials, which puts them in the spotlight even if commercial roll-outs are often two years or more away. The latest points go to ZTE, which has won field trial contracts with Telefónica in Spain and CSL in Hong Kong.

This comes shortly after Huawei highlighted its LTE deal with Netcom of Norway, and the Chinese duo are, early market estimates indicate, coming close to Ericsson in terms of their penetration of stage one LTE trials - and ahead of Alcatel-Lucent and Nokia Siemens.

Telefónica confirmed reports by Light Reading that ZTE's trial will take place in the third quarter. While success at the Spanish firm may not translate into meaningful revenue any time soon (and Ericsson has already conducted LTE trials with Telefónica too), it will still be a major boost for the vendor. It has not been as successful in getting tier one western carrier deals as its compatriot - although its overall wireless equipment market share grew at a similar rate to that of Huawei in the past 12 months, its base is far more concentrated on the lower margin developing markets.

By contrast with Telefónica, CSL is already a major customer for ZTE and one of the first commercial users of its software defined base station platform, which it is currently rolling out in an IP-based HSPA+ network across Hong Kong. In a recent interview with Telecoms.com, Tarek Robbiati, CEO of the Telstra subsidiary, said: "Further consolidation will come in the next three to five years. In the end there will be only three [infrastructure vendors] left, and two of them will be Chinese. The European vendors are just too slow."

With LTE firmly at the top of the hype curve in 2009, WiMAX is somewhat overshadowed in the headlines, but did make a strong impression at last week's CommunicAsia show in Singapore, highlighting how the technology has gained a higher profile in Asia than in Europe - because of the importance of the Taiwanese ODMs and vendors like Samsung, as well as a large number of deployments in countries like Japan, Vietnam, Korea and Taiwan.

Friday, 3 July 2009

Create your own LTE tests in 15 minutes with Anritsu’s RTD

Today we take an exclusive look in this blog inside Anritsu’s Rapid Test Designer (a.k.a. RTD) tool. RTD is a very powerful tool that can be used to design LTE tests for R&D purpose. RTD works in conjunction with Anritsu’s MD8430A. MD8430A has not very long back won the CTIA Emerging technology award.

For WCDMA/HSPA testing, Anritsu offered Protocol Test System (PTS) for R&D purpose. For LTE the basic tool is the RTD. The advantage of RTD as opposed to earlier generation PTS is that RTD is GUI based development environment that can speed up development and very little knowledge of test script development environment like TTCN-2 and TTCN-3 is required.
The RTD is a software tool that sits on top of a control PC. It controls the Signalling Tester (hardware) MD8430A. The diagram above shows the setup and connections of different components. The hardware (MD8430A) simulates Layer 1 (PHY), MAC, RLC and PDCP. The software (RTD) is used to simulate RRC and NAS.

When the tool starts up you are offered typical options as in case of any software. Once you have clicked on new test and provided it with a name, you are up and creating your own scenario.

The simple procedures already have a name defined but you can start giving meaningful names to complex procedures. Each name signifies the action it will be performing. For example Cell Configuration will be used initially to configure the parameters of the cell.

Clicking on the Cell Configuration will provide you with the possible options that can be used to configure the cells like the SFN Offsets, etc. All the channels that are necessary for a cell can be configured here.

Here is my attempt to randomly create something :)

And try sending some message like RRC Connection release. Didn’t quite work because it’s not in the right sequence but just shows the ease with which things can be done.


This is run time result of one of the test cases.

It may take few hours to get the hang of RTD, but once you understand how it works, you can start creating your own tests and scenarios at full speed. There are also example procedures available to get you started ;)

"The MD8430A is being used by LTE chipset manufacturers to ensure the quality of their products, speed time to market, and reduce design and production test costs." - Wade Hulon, Vice President and General Manager of Anritsu Company, Americas Sales Region.

You can learn more about MD8430A and RTD by following the links below:

Note: All the information mentioned in this post is my personal view and does not represent Anritsu's official views. Also if you manage to take few more minutes to create your own test then please do not blame me ;)

Thursday, 2 July 2009

R&S bidding for LTE leadership

Free online LTE Tutorial is available at IEEE Communications Society Website, courtesy of Rohde & Schwarz. You can view the tutorial here.

Not long back, I saw R&S demo of CMW-500 with the LG UE at the LTE World Summit. R&S has also verified ETSI 3GPP LTE TTCN-3 test cases with Qasara and has shown successful interoperability testing between Qasara’s Virtual UE and Rohde & Schwarz's 3GPP LTE Virtual Tester.

There is also a LTE TDD Technology Overview available to download from their website here.

Wednesday, 1 July 2009

3G Americas releases White Paper on MIMO (Smart Antennas)



3G Americas, a wireless industry trade association representing the GSM family of technologies including LTE, announced that it has published an educational report titled, MIMO Transmission Schemes for LTE and HSPA Networks as a tool to increase awareness of smart antenna systems – also known as multiple-input multiple-output (MIMO) technology – and help guide their deployments in HSPA and LTE networks within 3GPP’s specifications and technology standards. The 3GPP evolution continues to be the leader in standardizing the most advanced forms of multiple-input multiple-output (MIMO) antennas.

Smart antenna, or MIMO, technology is commonly defined as, the use of two or more unique radio signals, in the same radio channel, where each signal carries different digital information, or two or more radio signals that use beam forming, receive combining and spatial multiplexing (SM). Relative to a traditional 1x1 antenna system, a 2x2 MIMO system is expected to deliver significant cell throughput gain.

The MIMO Transmission Schemes for LTE and HSPA Networks report provides an overview and detailed information of the current and emerging MIMO techniques that significantly increase the performance of HSPA and LTE networks.

“Smart antenna technology has arrived and will be a vital part of mobile broadband communications,” stated Pantelis Monogioudis, Ph.D, of Alcatel-Lucent LTE-Advanced Technology Strategy. “It is an exciting time for smart antenna technology as 3GPP has provided the leading technical standards for MIMO that the industry will utilize to improve the capabilities of mobile broadband.”

MIMO was first standardized in 3GPP Release 6 (Rel-6), and was further developed in Rel-7 with spatial multiplexing for HSPA+ using Double Transmit Adaptive Array (D-TxAA). As the report highlights, the use of multiple antennas at both transmitter and receiver allows:

  • Substantial increase in peak data rate
  • Significantly higher spectrum efficiency, especially in low-interference environments
  • Increased system capacity (number of users)

Based on simulation results presented in the report, it was shown that the relatively simple MIMO transmission scheme based on 2x2 closed-loop SM, at low user equipment (UE) speeds, can increase by 20 percent the downlink (DL) sector spectral efficiency relative to a single antenna transmission, as well as increase the cell edge efficiency by approximately 35 percent. More advanced antenna configurations can provide benefits that are significant for users that are receiving a strong signal as well as cell edge users.

The 3GPP Rel-8 LTE specifications, completed in March 2009, included the most advanced forms of MIMO of any standard in the industry, and now, 3GPP is studying even more advanced MIMO enhancements for inclusion in 3GPP Rel-9 and Rel-10 for LTE-Advanced.

The white paper, MIMO Transmission Schemes for LTE and HSPA Networks, was written by members of 3G Americas, and is available for free download on the
3G Americas website here.

800 or 2600MHz: Frequency Impact on Fixed Deployments


From a presentation by Richard Keith, Director of Global Strategy, Broadband Access Solutions Home & Networks Mobility, Motorola at LTE World Summit

Tuesday, 30 June 2009

Drivers for TD-LTE


From a presentation by Matthias Reiss –Head of LTE Radio, NSN

Monday, 29 June 2009

Complex LTE IPR System


Markus Münkler, Vodafone Group R&D spoke about IPR Regime for LTE @ LTE World Summit, Berlin

Progress since 2005
•ETSI has improved visibility of standards essential IPR across its membership
•NGMN Ltd has produced indications of the total royalty burden of candidate technologies LTE & WiMAX
•Placed IPR royalty rates in the middle of the next generation mobile economy debate
•Raised the IPR discussions to the attention of the EU and other regulatory bodies
•Built a legally sound platform of trusted collaboration among technology stakeholders

Interim conclusion
•IPR transparency has improved among engaged industry stakeholders
•However, new challenges have emerged from outside the technologydevelopers
•Therefore, IPR royalties remain a stumbling block on mobile technology developments